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Understanding how the brain forms representations of structured information
distributed in time is a challenging endeavour for the neuroscientific
community, requiring computationally and neurobiologically informed
approaches. The neuralmechanisms for segmenting continuous streams of sen-
sory input and establishing representations of dependencies remain largely
unknown, as do the transformations and computations occurring between the
brain regions involved in these aspects of sequence processing. We propose a
blueprint for a neurobiologically informed and informing computational
model of sequenceprocessing (entitled:Vector-symbolic Sequencingof Binding
INstantiating Dependencies, or VS-BIND). This model is designed to support
the transformation of serially ordered elements in sensory sequences into struc-
tured representations of bound dependencies, readily operates on multiple
timescales, and encodes or decodes sequences with respect to chunked items
wherever dependencies occur in time. The model integrates established vector
symbolic additive and conjunctive binding operators with neurobiologically
plausible oscillatory dynamics, and is compatible with modern spiking neural
network simulationmethods. We show that the model is capable of simulating
previous findings fromstructuredsequenceprocessing tasksthat engage fronto-
temporal regions, specifying mechanistic roles for regions such as prefrontal
areas 44/45 and the frontal operculum during interactions with sensory rep-
resentations in temporal cortex. Finally, we are able to make predictions based
on the configuration of the model alone that underscore the importance of
serial position information, which requires input from time-sensitive cells,
known to reside in the hippocampus and dorsolateral prefrontal cortex.

This article is part of the theme issue ‘Towards mechanistic models of
meaning composition’.
1. Introduction
Natural environments are richly structured in both space and time. Substantial
progress has been made in understanding the neurobiological bases of learned
relationships between spatially or temporally separated elements [1–3]. More-
over, prior research has established the importance of serial order for the
brain [4], and binding problems, whereby distinct sensory events are combined
for perception, decision and action [5], have attracted considerable interest
and empirical enquiry [6,7].

Establishing relationships, or dependencies, between elements over time allows
us to extract the structure of the sensory world and to make predictions about
future events. However, understanding how the brain binds complex information
distributed in time, building temporally organized structures that represent
multiple linked dependencies, remains a considerable challenge facing the
neuroscientific community. This sort of cognitive structure-building is challenging
for the brain to achieve because complex input must be discretized in time, resul-
tant discrete items chunked and stored in memory, dependencies identified and
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related items bound for perception (or other purposes), and rep-
resentations of multiple dependencies maintained concurrently
in memory to be further manipulated [8,9].

Human language—written, spoken or signed—is a salient
example of the complexity of the binding problem, because
it features syntactically organized dependencies between
semantic units [10]. Yet the problem of building complex
representations is also relevant to complex action sequences
[8,11,12], music [8,13,14], mathematics [9,15] and cognition in
general [11,13]. Moreover, some of these systems are not
unique to humans, since songbirds can construct complex
vocalization sequences [16], an ability supported by a forebrain
neural system [17], and correspondences have been established
between humans and a number of species in processing adja-
cent and non-adjacent sequencing dependencies [18–20].
Thus, advancing our understanding of how complex structure
can be built from sequential input in computational and
neural systems is important for developing better machine
and animal models to understand both general principles
and species-specific aspects of combinatorial binding.

In this article, we propose a blueprint for a neurobio-
logically informed and informing computational model of
sequence processing (entitled: Vector-symbolic Sequencing
of Binding INstantiating Dependencies, or VS-BIND). The
VS-BIND approach integrates: (1) advances in modelling
combinatorial binding within simulated neural systems using
vector symbolic operations; (2) insights from neuroimaging
and neurophysiological evidence in human and non-human
primates on neural correlates of structured sequence proces-
sing and working memory; and (3) dynamic mechanisms for
manipulating population codes that can be incorporated
in modern spiking neural networks [21,22]. The approach
allows us to plausibly transform internal representations, ren-
dering these into both mathematically idealized and neurally
simulated site-specific activity unfolding over time. Building
on these foundational mechanisms, we focus on modelling
chunk encoding and the binding of sensory items to represent
adjacent, non-adjacent and more complex (hierarchically)
structured sequencing dependencies. Our key objectives here
are to motivate the approach, ground it in the relevant litera-
ture, and use it to generate distinct mechanistic predictions,
the form of which, as will be seen below, depends on both
the specific binding operations used and their configuration.

It is important to note that any model using combinatorial
operators can only be described as classically compositional if
combinatorial representations precisely reflect the meaning of
all constituents and the relations between them. The operators
used here are not classically compositional, but nevertheless
serve an important purpose in allowing us to generate falsifi-
able predictions of neural mechanisms and correlates of
structured sequence processing ripe for neurobiological testing
across the species. To assist in this process, we also share
MATLAB (MathWorks) code, including a demonstration
(doi:10.5281/zenodo.3464607) [23]. Even on the basis of its
structure alone and initial modelling, the VS-BIND approach
posits a number of intriguing predictions.
2. Foundations of descriptive and computational
models of structured sequence processing

Language relies on semantic and syntactic knowledge, sup-
ported by the detection of dependencies between phonemes,
morphemes, words and phrases in sentences. The language
binding problem features the rapid detection of lexical symbols
and the encoding of complex syntactic regularities at multiple
scales and temporal granularities.

A large volume of neurobiological data implicate a
fronto-temporal brain system in various aspects of language
processing [11,24,25]. Neurobiological signals associated with
the chunking and parsing of speech with respect to phrase
boundaries have been identified in these regions [26–28].More-
over, the temporal structure of speech or language content at
different timescales (phonemic, syllabic, word or phrasal) pro-
duces stimulus- or context-driven neural entrainment at the
relevant oscillatory frequency bands [29,30].

Behaviourally, a number of sequencing processes are now
known to be evolutionarily conserved, including entrainment
to rhythmic sensory input [29,31]. There is also information
from artificial grammar learning paradigms, which are used
to establish dependencies between otherwise arbitrary audi-
tory or visual items in a sequence, either via statistical or
rule learning [32,33]. Humans and a number of non-human
animals can learn dependencies between sensory items next
to each other in a sequence (adjacent dependencies), as well
as dependencies further separated in time and by intervening
items (non-adjacent dependencies; reviewed in [18]). The learn-
ing of hierarchically organized dependencies by non-human
animals is, however, contentious and it remains to be seen
whether this ability is uniquely human [34,35].

Comparative neuroimaging work has identified brain
regions in human and monkey frontal and temporal cortex
involved in processing sequencing dependencies [19,20].
This has led to descriptive models of the brain-bases of struc-
tured sequence processing and the relationship with, and
distinctions from, neurobiological processes involved in
language [34,36,37]. For the purposes of this paper, we will
focus on the Wilson et al. [34] descriptive neurobiological
model of human and non-human primate structured
sequence processing, shown in figure 1. Relatively simple
sequencing relationships, such as between items that occur
next to each other in a sequence, can be learned by both
humans and monkeys and are seen to engage corresponding
brain regions, particularly the ventral frontal and opercular
cortex (figure 1a, vFOC, bottom row) [34]. For non-adjacent
dependencies (which increase working memory demands:
store an item in memory long enough to link to its matched
pair), it is less clear whether the frontal operculum, other
inferior frontal areas (such as areas 44/45), and/or the dorso-
lateral prefrontal cortex (DLPFC) are more involved. More
complex (including hierarchical) dependencies engage
inferior frontal areas 44/45 in humans (Broca’s area; see
figure 1a, middle and top rows) [38]. The hippocampus has
also been implicated in structured sequence processing
[39,40] and implicit learning [41], but its mechanistic role
within these contexts remains incompletely understood.

Computational models of language or the processing of
serial information provide compelling simulations of behav-
ioural data [42,43]. However, modelling underlying neural
mechanisms presents additional challenges. David Marr’s
tri-level framework [44] famously defines three levels of
description that are still widely applied in characterizing any
given model of the brain: the goals of the system (computational
level), the cognitive processes required to reach this goal
(algorithmic level), and the neural mechanisms required to
instantiate them (implementational level). Poggio [45] extended
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Figure 1. Neurobiologically informed heuristic model of structured sequence processing, by Wilson, Marslen-Wilson and Petkov. (a) Fronto-temporal regions involved
in sequence processing, from [34]. DLPFC, dorsolateral prefrontal cortex; vFOC ventral frontal opercular cortex; ATL, anterior temporal lobe; STG, superior temporal
gyrus. (Copyright © 2017 Benjamin Wilson, William D. Marslen-Wilson and Christopher I. Petkov, CC BY 4.0.) (b) Predicted combinatorial codes illustrated as neural
patterns implemented by coordination between different regions. (Online version in colour.)
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this framework by suggesting that models should also offer
insights into learning processes and the evolutionary path
that yields the system [46]. Although advances have been
made in understanding many neuropsychological phenomena
at individual levels of description, it remains desirable to
advance understanding on multiple levels through holistic
modelling approaches [47].

The fields of neuroscience andmachine learning have been
converging, in particular through the use of models incorpor-
ating functionally and anatomically distinct subpopulations
of artificial neurons [48]. Artificial neural networks (ANNs),
including deep and recurrent neural networks (DNNs and
RNNs), are the dominant connectionist modelling paradigm
in use today, using iterative training procedures to tune
synaptic weights between artificial neurons and establish
network-level computations. RNNs are relevant to sequence
learning since recurrent feedback allows them to integrate
information over time [49], while DNNs have revolutionized
machine learning, increasingly informneuroscientific analyses,
and can generate neural correlates [50].

A likewise informative, but paradigmatically distinct
approach is to model the brain at an algorithmic level, explain-
ing behaviour and cognition in terms of computational
processes that combine and transform cognitive symbols
(see [51]). Reconciling neural and cognitive perspectives is a
longstanding challenge, but there exists a computational
modelling subfield that has made considerable strides in this
direction: symbolic connectionism. This approach seeks to
produce ANN models with explicit support for combinatorial
and symbolic operations (neural–symbolic networks). This is the
subfield we look to in furthering our modelling aims, specifi-
cally using vector symbolic architectures (VSAs; see below),
which can be used alone, in ANNs, or in dynamic spiking
neural networks. Our use of VSAs has the benefit of generating
predictions on neural mechanisms of combinatorial binding
throughout the fronto-temporal system involved in structured
sequence processing.
3. Computationally modelling structured
representations in neural systems: an
overview of approaches

There exist a number of symbolic connectionist solutions, and
many non-symbolic or non-connectionist cognitive architec-
tures, each addressing various aspects of neural binding.
Here, we briefly overview symbolic connectionist approaches
before justifying our use of VSAs. For brevity, we restrict
discussion here only to approaches that specify ways to
build structured representations while explicitly supporting
neurobiologically plausible implementation.

Three distinct methods of modelling binding predominate,
although they can in many ways be viewed as complementary
[52]. The first uses coordinated temporal synchrony (see LISA
[53,54] and SHRUTI [55]) or asynchrony (see DORA [56]) to



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190304

4
unify constituents. The second uses uniform grids of integrat-
ing circuits to create a stable memory for bindings (neural
blackboard architectures, NBAs [57]). The third, encom-
passing VSAs, principally uses conjunctive spatial coding of
abstract vector representations to associate items, via tensor
products [58–60], circular convolution [61] or other defined
transforms [62,63].

Although commonly contrasted, spatial and temporal
binding mechanisms are not mutually exclusive. Conjunctive
spatial coding and temporal synchrony/asynchrony are
known to be complementary and can be thought of as different
perspectives on the same dynamic process [64]. Furthermore,
conjunctive coding is considered appropriate for long-term
storage in temporally coordinating models [52,65], whilst
vector-based methods can operate within dynamic frame-
works likewise subject to temporal influences [22], which we
will consider in more detail later. Thus, spatial and temporal
binding approaches are not diametrically opposed but
rather place different emphases and explanatory burdens on
mutually informing aspects of neural coding. Although VSAs
tend to be conceived of as static systems, we specifically advo-
cate their use within a dynamic framework (for example,
Nengo [21,22]) to incorporate advantages of both temporal
and population coding.

The neural population codes employed by these models
vary. In this regard, localist representations (which exhibit
one-to-one or many-to-one mappings between features and
neural activation) are typically contrasted with distributed
representations (which exhibit many-to-many mappings).
Distributed representations may be dense or sparse, which in
the latter case means that a low proportion of neurons are
active within a population at any one time. There is evidence
that both localist [66,67] and sparse distributed represen-
tations are used by the brain [68–70], and there are
advantages to both encoding strategies for neural systems.
For instance, localist representations exhibit the lowest
possible interference between encodings, whilst sparse
distributed representations exhibit graceful degradation in
performance in the presence of increasing noise [71]. Sparse
distributed vectors exist on a representational continuum
that allows them to demonstrate characteristics of either local-
ist or distributed encodings depending on their sparsity [72].
This flexibility motivates the use of abstract vector systems
that define combinatorial operators over sparse distributed
representations. VSAs [73], which we use to implement
VS-BIND, accomplish this.

These models also differ in terms of how semantic rep-
resentations are instantiated [74]. Some define the semantic
structure of relational encodings at the neural level, generating
explicit role–filler [53,55] or symbol–argument bindings [59].
These models provide clear mechanisms to support compo-
sitional relational encodings of semantic knowledge, where
the whole perfectly reflects its parts, a feature considered
important for linguistic modelling [53–56]. By comparison,
VSAs do not inherently specify neural implementations at
all, but are rather supported in this regard by broad theoretical
frameworks that specify mappings between abstract vectors
and neural population codes (for example, the semantic
pointer architecture [22], used in Nengo [21], or integrated
connectionist/symbolic architecture, ICS [75]).

Structured sequence processing typically focuses on ordering
relationships and can refer to operations on meaningless
items (e.g. nonsense words or abstract visual shapes). We
consider cognitive architectures incorporating VSAs
[58,61–63] to have particular strengths appropriate to their
use in a neurobiologically plausible model of structured
sequence processing. Firstly, using existing tools, VSAs can
act as a bridge to multiple modelling paradigms. For example,
Nengo, a library for large-scale dynamic neural simulation [21],
supports VSA encodings within spiking neural networks
through the use of the Semantic Pointer Architecture. Bayesian
computations [76] and attractor dynamics [77] have also
been instantiated within this spiking neural network system.
Secondly, VSAs are highly scalable solutions possessing sub-
stantial storage capacity for high-dimensional information
[78]. Thirdly, as we describe shortly, VSAs permit the definition
of relationships at the algorithmic level using an easily inter-
pretable algebra. Finally, VSAs remain neurocomputationally
plausible [22] whilst being relatively straightforward to
implement [61,62,79]. To describe our approach, we next out-
line VSA principles and operators, before explaining how
temporal dynamics can control such operations. We conclude
by describing the role of these mechanisms within a neurobio-
logically plausible model of structured sequence processing,
VS-BIND.
4. Combinatorial population coding with vector
symbolic architectures

In VSA models, the basic units of representation are high-
dimensional vectors. These typically sparse representations
(figure 2, vectors A and B) can be visualized directly (figure 2,
top left panel) or encoded as neural activity usingmultidimen-
sional tuning functions (figure 2, top right panel) [21,83].

Symbolic vectors can be recombined using specific, revers-
ible combinatorial operators to create new representations
containing information on their constituents and the relations
between them [58,61,62]. Inputs to these operations can
either be atomic vectors (those that are not compound rep-
resentations) or the results of previous operations. Atomic
vectors are often randomly generated in VSA models, but
can also be generated by compressing even higher dimensional
input. Using this latter approach, semantically similar concepts
cluster together in vector space [22].

The power of VSA approaches lies in their combinatorial
operators. Although these are broadly common to all VSAs,
here we use only one VSA, that of Plate [61]. This VSA uses
the following operators: superposition (or bundling; point-wise
vector addition of inputs), binding (a conjunctive operator)
and its inverse, unbinding (also termed release, which here
relies on inversion, equivalent to logical ‘not’), and a vector com-
parison operator for readout of results. Note that within VSA
terminology, only the conjunctive operation is known as bind-
ing, but both this specific operator and superposition fit the
wider definition of binding in the broad context of neural bind-
ing problems [5]. The more specific VSA nomenclature, which
we adhere to hereafter, is helpful because it imposes constraints
on the potential neural mechanisms involved in each of these
combinatorial processes.

Using the full set of VSA operators, algorithmic mani-
pulations are undertaken easily. The operators are best
demonstrated with just two inputs (here A and B; typical VSA
operators are illustrated in the top left panel of figure 2). A+B
(superposition) yields a vector correlated with both A and B.
This is simple vector addition, essentially overlaying the
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(middle left panel) through control by interacting, antisynchronous oscillations (P1 and P2). Likewise, common driving signals can synchronously strengthen rep-
resentations in disparate regions (middle right panel, P1 multiplicatively modulating P2 and P3) for downstream processing such as feature binding. Finally, the
phase of an oscillator, rather than its amplitude (rightmost panel) can drive downstream encodings such as those of relative position. (Online version in colour.)
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sparse inputs. A ⊗ B (binding) is a conjunctive operator that
yields a vector approximately orthogonal to both A and B, and
as such is poorly correlatedwith either input. In this VSA, bind-
ing is calculated through circular convolution [61], which is just
onepossibleway to create anoutput vectorof the same length as
one input alone [62,63]. This feat is possible because the operator
encodes a reduced representation of both inputs, which can be
unbound as described below.

Reduced representations are an important feature of a
number of VSAs. Without them, conjunctive operations on
input vectors of length N each result in output vectors of
length N2 (leading to exponential increases in vector size, a
combinatorial explosion). This is a characteristic of the ancestral
VSA, Smolensky’s tensor product binding model [58,75].
Plate’s [61] VSA, by contrast, overcomes this scaling problem
by making use of compressive representations known as
holographic reduced representations (HRRs). Reduced repre-
sentations allow a single model to support repeated (or
recursive) operations on vectors without dimensionality
increasing; the limiting factor in using reduced representations
is instead that the process is lossy, so repeat operations cumu-
latively degrade the output vector. It is partly for this reason
that this approach cannot be considered classically symbolic
or perfectly compositional. However, lossy encoding
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recapitulates natural limits on working memory and the depth
of recursively nested structures that can be constructed or
comprehended in natural language [84].

Here, unbinding is in essence binding, but with a change to
one of the operands. Valuesmay be unbound or released from a
bound representation by computing a new binding between it
and the approximate inverse of one of the original inputs with
respect to the binding operator (from hereon in, just named
the inverse, ‘¬’; see ¬B, figure 2). Inversion is accomplished
by simply permuting all but the first dimension of B, which
at a neural level means rerouting input dimensions using a dis-
tinct pattern of synaptic weights. It is easier to understand the
inversion operator by demonstrating its use in unbinding; the
vector symbolic formula (A ⊗ B) ⊗ ¬B shown in figure 2
depicts this process. Here, we bind the bracketed represen-
tation with a ‘key’ containing the inverse of the element we
know to be linked to the vector we wish to recover. Without
such a key it is impossible to retrieve the contents of a binding
via circular convolution. This means that VSA operations must
be configured carefully to ensure that bound information can
be retrieved in a plausible way.

To interrogate the result of unbinding, or any VSA oper-
ation, we can use the comparison operator to assess the
similarity of the output to a defined vocabulary of represen-
tations. This can be useful as part of an autoassociative
memory, or to control downstream actions or operations. For
example, let R = (A ⊗ B) ⊗ ¬B. Here, undertaking a compari-
son between R and a set of two vectors {A, B} would reveal
that R is highly similar to A and highly dissimilar to B. Com-
parisons can be conducted on real-valued vectors using
correlation or the vector dot product (where a smaller angle
between input vectors indicates stronger similarity). The dot
product in particular could be implemented by any neuron;
it is equivalent to simply summing all presynaptic potentials
weighted by their respective synaptic weights over a short
period of time [70].

Use of VSA operations is by no means restricted to
elementary computations. Mathematically, the superposition
(+) and binding (⊗) operators are designed to exhibit associa-
tivity, commutativity and distributivity akin to their scalar
analogues, addition and multiplication [61]. For example, if
A, B and C each represent vectors, the vector symbolic for-
mula A ⊗ (B +C) is equivalent to (A ⊗ B) + (A ⊗ C), just
as one would expect algebraically. This makes the results of
multiple VSA operations predictable and transparently inter-
pretable. In a similar fashion, unbinding still functions if we
superpose multiple bindings, as in R = (A ⊗ B) + (C ⊗ D).
In this case, R ⊗ ¬D will result in the value (C + noise),
recovering a representation highly similar to C.

Are such operations neurobiologically plausible? Plausi-
bility of the neuronal arithmetic at a basic level is well
supported; additive andmultiplicative functions,which are suf-
ficient to compute all of the VSA operations described here,
including circular convolution, are established neural processes
[85]. Multiplicative and divisive functions abound in the cogni-
tive neurobiological literature, as feedback influences on neural
responses [86,87]. The circular convolution operator could also
be substituted for a number of alternative conjunctive distribu-
ted operators, for example, vector-derived transformation
binding [63]. There is a good deal of evidence consistent with
the presence of conjunctive distributed encodings in associative
areas such as retrosplenial cortex [88], the ventral visual stream
[89], and hippocampal CA1 and CA3 subregions [90].
How do we distinguish superposition from multiplicative
[72] operations like convolutional binding in high dimensions?
We expect that neurons instantiating additive operations
should demonstrate linear responses to linear combinations
of features of constituent representations, whilst multiplicative
operations should result in nonlinearly selective responses.
Empirical evidence already suggests that superposition
cannot be the only combinatorial function, since linear and
nonlinearmixed selectivity are both prevalent within the lateral
prefrontal cortex and elsewhere [91,92]. Thus, there is evidence
for the broad classes of functions to which the VSA operators
belong in regions supporting cognitive function.

Simulations likewise demonstrate plausibility; Plate’s VSA
operators, discussed here and shown in figure 2 [61], form the
combinatorial backbone of Eliasmith’s Semantic Pointer Archi-
tecture, a neurobiologically plausible representational
framework underlying Nengo, a Python library supporting
the construction of spiking neuralmodels [21,22]. The SPApro-
poses that high dimensional representational vectors arising in
sensory cortex are compressed by similarity-preserving dimen-
sionality reduction, and that the brain undertakes vector
symbolic operations on these reduced representations. Nengo
supports the transcoding of these cognitive representations
into spiking neural representations by applying a set of funda-
mental neural encoding and decoding principles, the Neural
Engineering Framework (NEF) [21], summarized with refer-
ence to the original paper in figure 2 (upper right panel and
figure legend). Under this system, each spiking neuron contrib-
utes to a distributed encoding of an underlying latent vector
representation; that is, there is a many-to-many mapping
between the dimensions of a cognitive vector (itself already a
distributed representation) and individual neurons. The result-
ing spiking activity is inherently dynamic, and thus suitable for
manipulation over time by temporal mechanisms within the
same dynamic framework.
5. Dynamically coordinating combinatorial
operations with temporal mechanisms

Aswe have seen, population coding and temporalmechanisms
are both functionally important to any account of domain-
general structure-building [26,72]. Here, we introduce basic
oscillatory principles that serve as temporal mechanisms
within VS-BIND.

Neural oscillations in the brain reflect temporally coordi-
nated responses of neural populations [93,94]. Oscillatory
signals can also result in oscillatory coupling across frequency
bands that reflects coordinated interactions within and
between brain regions [94,95]. Theta-gamma coupling, for
example, is associated with cognitive function and is also
seen during structured sequence processing tasks [94,96].

We can instantiate dynamic relationships, including coup-
ling, within a spiking neural model such that they undertake
functionally useful coordinating or multiplexing roles in
neurobiologically plausible ways (figure 2, bottom row). For
example, a self-connected population (leftmost panel, P1) can
generate oscillatory dynamics that, when thresholded, serve
as the trigger for discrete vector symbolic operations on mul-
tiple inputs (P2). Likewise, interacting oscillators (P1 and P2,
middle left) can exhibit antisynchrony, segregating discrete
operations such that they do not interfere. Temporal synchrony
can also be simulated (middle right) through top-down
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influences onmultiple neural populations, for example by con-
trolling gain, such that downstream operators (for example,
VSA operators) act on coordinated inputs. Here, temporal
coordination serves to functionally associate two vector
representations that would otherwise remain separate.

The dynamic context in which these spatial operators act
is crucial, because it serves to mitigate the concern that,
owing to their multiplicative interactions, such spatial bind-
ings are too variable to support generalization over classes
of their inputs, and thus insufficient as relational encodings,
a problem characterized in the literature as violation of role–
filler independence [72]. The explicit segregation of represen-
tations in space (figure 2, A versus B) and time (figure 2,
top left panel, upstream/downstream) means that multiple
neural ensembles concurrently instantiate different com-
ponents of a combinatorial representation. Variability in the
downstream binding of A and B would not prevent either
of these two populations from generalizing over their
inputs. Constituents may be dynamically bound or unbound
as needed to segregate or aggregate information.

Finally, oscillatory signals can unidirectionally coordinate
activity elsewhere, for example on the basis of phase (figure 2,
bottom row, rightmost panel), thus potentially exhibiting
phase–amplitude coupling effects. This produces behaviour
consistent with conceptual models on the role of theta–
gamma coupling [97] observed in the brain [94,98]. VS-BIND
exhibits phase–amplitude coupling as an explicit functional
property of relative position coding.
6. Network-level mechanistic hypotheses derived
from VS-BIND

Our objective within the remainder of this paper is to outline
the specific combinations of operations required to support
dependency encoding during sequence processing, generat-
ing neurobiological hypotheses for adjacent, non-adjacent
and hierarchical dependency encoding. The MATLAB demo
provided at doi:10.5281/zenodo.3464607 further illustrates
key principles outlined here.

(a) Adjacent dependencies
We first consider the binding of two items following each other
closely in time. At the vector symbolic level, ordered sequences
can be unambiguously represented using one of two principal
methods. The first is by encoding elements with respect to
each other (chaining). However, behavioural findings inmultiple
species do not convincingly support this approach [99]. An
alternative method, encoding each element with respect to a
serial positional tag (Sequence = 1st * Item1 + 2nd * Item2, and so
on), has found greater support. Behavioural results in songbirds
suggest a reliance on positional cues during sequence recog-
nition [100]. Likewise, during recall, humans and non-human
primates are more likely to confuse items in different memor-
ized sequences if those items share the same ordinal position
across sequences [9]. Positional influences on recall provide
behavioural evidence that ordinality is incorporated into the
encoding of sequences even when position is not explicitly
featured in a task, offering support for positional tagging.

Detection of ordinal serial position, an essential component
of sequence encodings within VS-BIND, we posit involves
DLPFC, and motor and premotor cortex. Electrophysiological
findings in non-human primates alignwith this account, reveal-
ing populations of cells in each of these regions involved in
consistently encoding serial position irrespective of stimulus
identity [101,102]. Studies of the hippocampus likewise reveal
temporal coding relative to stimuluspresentation, hypothesized
to formpart of the context for later retrieval [103]. There is thus a
neurobiological basis for the crucial role played by explicit
positional tags within our model (figure 3, light blue–grey
boxes). Within VS-BIND, positional tags are considered to be
deterministically but flexibly generated by the brain.

Here, tags follow the nomenclature ‘primary’ and ‘sec-
ondary’ (1° and 2°) rather than the ordinal absolutes ‘first’
or ‘second’, in line with human and non-human primate
behavioural [104–106] and electrophysiological [101,103] evi-
dence suggesting that, within sequences of words or actions,
ordinal position is encoded relative to sequence boundaries
rather than in absolute terms. Within our model, positional
tags are anchored to the boundaries of perceptual chunks
(figure 3, box inset) by decoding stimulus-entrained oscil-
latory phase (figure 2) such that both the sequence items
and their relative positional tags are derived from the sensory
input. It is important that each tag remains orthogonal to the
last, which is a requirement for later unambiguous recovery
of specific elements in a sequence.

To encode a sequence, continuous input over time is first
discretized. These discrete sensory items are bound to distinct
positional tags (to form position–item representations) and
superposed in a decaying, recurrently connected working
memory buffer. This sequence buffer, likely supported by SMA
and pre-SMA [107], therefore maintains a linear, ordered rep-
resentation of the input sequence (i.e. Sequence = 1° ⊗ Item1 +
2° ⊗ Item2 + 3° ⊗ Item3). From this, individual sensory
representations can subsequently be retrieved (via Item ≈
Sequence ⊗ ¬Position) and recoded to reflect dependencies
between items or chunks (figure 3, bottom row, showing
retrieved items). During this recoding process, maintained rep-
resentations (A, B, or irrelevant intervening items, X) serially
accumulate within a dependency buffer over time (i.e. moving
rightwards) where they can be used in increasingly complex
binding operations (moving upwards). The SMA encoding
steps are comparable to the VSA approach in the ordinal
serial encoding (OSE) working memory model of Choo &
Eliasmith [99], which is capable of modelling behavioural
characteristics of serial recall such as working memory primacy
and recency effects. However, unlike the OSE model, VS-BIND
incorporates centrally coordinating oscillatory activity and uses
boundary-relative (rather than absolute) ordinal codes. More-
over, subsequent to serial encoding within working memory,
VS-BIND describes the encoding of various dependencies,
which need not be linear in organization (figure 3).

To encode dependencies, items are retrieved from sequence
memory and bound with new positional tags (figure 3, light
blue–grey boxes). As in sequence memory, bindings form
over time between tags and corresponding items, which are
superposed to form representations of specific dependencies
(figure 3, topmost representation, all diagrams). The timing
of each binding operation is associated with and coordinated
by stimulus-related oscillatory activity (figure 2) [29,31].

(b) Non-adjacent dependencies
To support efficient encoding, and permit generalization from
learned adjacent dependencies, simple non-adjacent relation-
ships may be encoded in an equivalent manner to adjacent
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Figure 3. Neurobiologically informed vector symbolic encoding of sequence structure. Vector symbolic operators can account for the processing of a variety of
sequencing dependencies. The solid arrows in these charts indicate the flow of information during encoding of a stimulus sequence only. These describe trans-
formations of latent vector symbolic representations, as opposed to neural activation patterns. Representation strength is denoted by the shading and
thickness of each box border. For clarity, representations are shown separated along the horizontal axis, though separate boxes do not necessarily imply separate
neural populations are engaged, especially if describing identical computations, which could be undertaken by neurons of a single region. We suggest sensory
representations (bottom row) are maintained within the supplementary motor area (not shown) and retrieved as needed. Operations unfold dynamically following
principles outlined in figure 2. The final encoded sequence representation is found at the top of each diagram. Each is a reduced representation whose constituents
can be inspected without serially unpacking all bindings; the superposed final result of the adjacent relationship encoding (leftmost diagram), for example, can be
interrogated to recover its secondary element by simply binding it with ¬2°I. Serial elements packaged into a single representation are considered to be chunked in
the traditional sense (inset box), but identical operations can be applied to non-adjacent (middle diagram) or nested pairs of elements (rightmost diagram), using
separate item (I) and chunk (C) position encodings. Selective fading along the vertical axis represents salience filtering in the non-adjacent example (middle). Finally,
the dashed, curved arrow shows just one case in which sub-symbolic feedback from a cognitively abstract cortical region might ultimately influence the represen-
tation of individual elements in sensory cortex (there may be many such pathways, but one exemplar is shown). Thus, although the figure, for simplicity, suggests
VS-BIND is largely a feedforward model, feedback influences feature and can, for example, allow certain areas to influence sensory cortical representations. (Online
version in colour.)
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dependencies. To accomplish this, all constituent items must
be maintained in the sequence buffer long enough to be inte-
grated, and maintained representations need to be selectively
propagated to thedependencybuffer. This process involves sal-
ience filtering (e.g. by repetition suppression, expectancy or
attentional processes [108]; figure 3, centre diagram), possibly
supported by regions such as ventral frontal cortex including
the frontal operculum. This is based on findings that the frontal
operculumappears to bemore active during the presentation of
infrequent or novel auditory cues [109] and responds preferen-
tially to violations of adjacent dependencies [38]. We suggest
that this region integrates information from working memory
as soon as it is available, but only maintains it over a relatively
short timeperiod. In this case, preferential responses to adjacent
dependency violations could be explained by frontal opercu-
lum actively inhibiting representations of both low
probability items and short, low probability n-grams of contig-
uous elements (for example, those in which the constituent
elements are not suitably ordered).

Salience filtering enables non-adjacent dependencies to
be encoded into representations identical to their adjacent
counterparts, for any length of dependency fitting intoworking
memory. That is, for any salient A and B and n irrelevant X
elements, the sequence A-Xn-B may be rendered into the same
encoding as AB alone by selectively inhibiting downstream
encodings of irrelevant X representations (figure 3, identical
top representations, left andmiddle diagrams). Discarding irre-
levant items results in a more efficient representational code,
and in state-transition terms allows for grammaticality judge-
ments to be made on nth-order non-adjacent dependencies
using only a first-order Markov process.
(c) Hierarchical dependencies
As shown, within our model a dependency comprises multiple
superposed position⊗ item bindings. Although the dependency
can incorporate items retrieved from either contiguous or dis-
contiguous positions in serial working memory, the recoded
dependency representation can in both cases be considered a
chunk (in figure 3, left diagram, the chunk is A-B; in the right
diagram, the two chunks areA1-B1 andA2-B2). To encodehier-
archical dependencies (figure 3, right diagram, showing nested
dependencies), every dependency needs to be bound with a
unique positional tag, as for individual items. Like individual
items, these can also be superposed, forming a superchunk con-
taining a higher-order dependency representation. This process
can be recursively repeated to form a single reduced represen-
tation of the hierarchical structure of the entire input
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sequence, integrating progressively increasing amounts of
information at higher hierarchical levels of encoding.

The above system is sufficient to compress hierarchical
structure into a reduced representation. However, we must
encode the reduced representation using more than item pos-
itional tags if we are to support unambiguous recovery of
specific constituents and comfortably discard the original rep-
resentations. To avoid generating identical codes for dissimilar
structures, we can define sets of positional tags specific to each
level of the hierarchy, for example 1I° and 2I° for the first and
second items, 1C° and 2C° for the first and second chunks, and
so on (figure 3, right diagram). For this reason, it can be com-
putationally beneficial to define all positional tags as
convolutional powers (i.e. baseexponenent) of a given base vector
through repeated self-binding (i.e. 2° = 1°⊗1° = (1°)2). This, or
a similarly invariant function, can be learned by a network
such that tags are encoded as a function of not just position
(by varying the exponent), but also context (by varying the
base vector). Crucially, by binding items only to a finite set of
deterministically generated positional tags, the modelled
system can always undertake unbinding by re-instantiating
the same set of keys; by iterating through every possible tag,
all constituent items can be retrieved in sequence.

A given dependency coding network can retrieve and
recode items from arbitrary positions in the linear sequence
buffer, provided it has sufficient integrative power. Therefore,
this representational scheme is capable of encoding not just
nested dependencies, but other types of hierarchical depen-
dency such as crossed dependencies. For example, figure 3
(right diagram) illustrates retrieval of items 1 and 4 (A1 and
B1) from sequence memory, which are chunked through bind-
ing and superposition; and retrieval of items 2 and 3 (A2 and
B2), which are likewise chunked. These two chunks form a
superchunk representing a nested dependency. Cross-serial
dependencies between words are notably also present in
some human languages. Like nested dependencies, these can
also be readily represented by our model. We could, for
example, have retrieved and bound items 1 and 3, and 2 and
4, respectively, to form a crossed dependency structure.
This is illustrated within our coded demonstration (doi:10.
5281/zenodo.3464607). The inclusion of cross-serial depen-
dencies alters the minimum computational requirements for
any parsing agent [110], and thus it is important that a
domain-general representational model has the potential to
account for them as well as other language-like hierarchical
constructions.

Having recoded a linear sequence in terms of its dependen-
cies, it is possible to recover one or more specific items from the
representation of hierarchical structure by unbinding using
keys that specify context-specific position(s). With reference
to figure 3 and using this method: the key ¬1C° will recover
all position–item bindings of the first chunk; the key ¬2I°
will recover the second item of every chunk (with each still
bound to information on the requisite chunk position);
and the key ¬(2I° ⊗ 1C° ) will recover the second item of
the first chunk. This flexible decoding scheme is important
because it readily supports manipulation of entire chunks
and generalization of dependencies to multiple timescales.

A natural consequence of the above encoding scheme is
that the superposition of many dependency representations
over time can gradually give rise to a memory trace. This
trace will be influenced by the probabilistic distribution of
dependencies over the set of input sequences, analogous to
implicit learning. It is now possible to computationally
model functional characteristics of hippocampal subregions,
and by this method, it has been proposed that a monosynaptic
(entorhinal cortex to CA1) pathway possesses the relevant
properties to support implicit learning [40]. This is relevant
for sequence learning, where dependencies are established
over many trials. Single-trial learning, by contrast, requires
processing by further hippocampal subregions. This suggests
a prominent role for parts of the hippocampal system in
sequence processing, in line with recent findings [39,40]. How-
ever, this is not to say that we should expect activation of the
hippocampus to be constant throughout. Indeed, the human
neurobiology literature suggests that there is a decrease in hip-
pocampal involvement over time when learning an artificial
grammar [111], or acquiring a novel semantically meaningful
lexicon [112]. These observations can be interpreted by way
of a predictive coding account, in terms of the degree of mis-
match between stored and incoming sensory encodings [113].
We can relate this associative mismatch account of hippocam-
pal involvement to the idea of a superposed memory trace.
Namely, any newly presented sequence is likely to be more
similar to a superposition of encountered sequences (weighted
to simulate rehearsal) as time progresses and the number of
constituents in the superposition grows. Thus, the degree of
mismatch, and any activation requisite for such an encoding,
is likely to decrease over time.

We propose that hierarchical structure-building is one of
the key roles of the dorsal aspect of ventrolateral prefrontal
cortex (dorsal VLPFC, incorporating Brodmann areas
44 and 45). This position is supported by human neurobiologi-
cal evidence on syntactic processes prominently featuring
hierarchical dependencies [34,38]. It has been proposed that
at least BA44 supports a recursive, multi-dependencymanage-
ment process, a fact that would explain increases in its
activation observed with increasing depths of hierarchical
dependency nesting [114]. The recursive reuse of a consistent
architecture by VLPFC would be consistent with our recursive
use of vector symbolic operations during the encoding of
hierarchical dependencies. Repeated superposition of sparse
dependency representations will manifest as an increase in
local activity as increasing numbers of neurons support the
representation; as an example of this effect, consider the
increased activity represented at the top of figure 3, relative
to the bottom. A ‘reset’ (or re-sparsification) of the buffer will
result in a sudden drop in population activity. Such neural
accumulation and reset activity has been identified within
human intracranial recordings in subjects listening to sentences
containing words that accumulate into phrases [28]. Further-
more, representations of constituents might not persist
beyond the need to encode the reduced dependency represen-
tation, a fact that highlights an interesting property of the
model: detectable neural delay activity does not need to persist
throughout working memory maintenance of the input
sequence, consistent with recently reported findings on the
neurobiology of working memory [115].

It must be emphasized that the flow diagrams in figure 3
only show symbolic information flow. There are likely to be
sub-symbolic influences acting over time to hone the associated
neural activation patterns, requiring feedback and feedforward
interactions between neural ensembles in the model. These are
briefly alluded to in figure 3 as a single exemplar (curved,
dashed arrow, left) denoting top-down influences acting on
sensory cortical representations. These sub-symbolic influences
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may be investigated further by instantiating a dynamic neural
implementation of the model via the NEF [83], where learning
algorithms employing, for instance, spike-timing-dependent
plasticity can be applied to learn functions over time [116].
ietypublishing.org/journal/rstb
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7. In conclusion: predictions emerging from the
structure of VS-BIND

Vector symbolic operations implemented in artificial neural
networks, as we have established, have the potential to further
our understanding of combinatorial binding at neural, cogni-
tive and behavioural levels, generating site-specific neural
correlates ripe for testing. Testing falsifiable predictions made
by this model is important to provide evidence about
the plausibility of the combinatorial operators and processes
modelled here.

The components of VS-BIND we have outlined here
suggest the following predictions:

— Superposition of sparse vectorsmanifests as steadily increas-
ing net activation [28].

— Binding produces orthogonal vectors by re-coding, which
might be observed as reductions in neural responses,
for example, reductions in high gamma activity during
neural local field potential recordings [28].

— Chunking operations are intrinsic to linguistic bracketing
and both produce and depend upon dynamic patterns
of both increasing and decreasing oscillatory activity [26].

— Relative ordinal position is a crucial neural code when bind-
ing serial input in artificial and biological neural systems,
indicating that time-sensitive or serial-position-sensitive
cells, wherever they reside [101], are indispensable for
complex combinatorial binding in sequence processing.

— Hippocampal system involvement is not only required for
recurrent activity to establish associations during Heb-
bian learning, but components of this system are also
involved in structured sequence processing, establishing
rules and dependencies across temporal scales through
interactions with at least inferior frontal cortex.

In summary, the VS-BIND model describes how
sequences can be processed and represented using estab-
lished VSA representations and operations, with the main
goal of generating falsifiable predictions of neural correlates.
While it was beyond the scope of this paper to model the
learning processes, VSA-based models such as ours could
now be extended with spike-timing-dependent plasticity or
other learning and memory algorithms.

It is also important to note that, although our model can
represent novel sequences of arbitrary items, the model does
not bind arbitrary items together, which risks producing unin-
terrogable or unrecoverable bound representations. Instead,
VS-BIND only uses the binding operator to combine an item
with a known positional or contextual tag. Critically, these pos-
itional tags are known to the model, being drawn from a small,
stable set of codes that are deterministically re-instantiated by
dlPFC neurons or hippocampal ‘time cells’. This process
allows retrieval of arbitrary items without the need for model-
ler-specific knowledge or a look up table: all that is needed is
the set of positional tags and the sequence representation.
Such models could, in the future, be combined with systems
that explicitly support the binding together of arbitrary
items, for example, to flexibly manipulate linguistic relations
in working memory [52].

We have here presented a blueprint for a neurobiologically
plausible computational model, VS-BIND, outlining its princi-
palmechanisms for encoding sequence dependencies.We have
also highlighted aspects of VS-BIND that support ongoing
efforts to simulate cognitive functions relevant to segmenta-
tion, chunking, recall and prediction using VSAs within
spiking neural networks. Further developments, in conjunc-
tion with other models, such as those that are classically
compositional approaches aimed at modelling language-
specific or linguistic properties, carry tremendous potential to
better understand fundamental aspects of cognition and to
guide the pursuit of neurobiological correlates of complex
mental structures.
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