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Abstract

Motivation: Chloroplasts are organelles found in plants and involved in several important cell

processes. Similarly to other compartments in the cell, chloroplasts have an internal structure com-

prising several sub-compartments, where different proteins are targeted to perform their functions.

Given the relation between protein function and localization, the availability of effective computa-

tional tools to predict protein sub-organelle localizations is crucial for large-scale functional

studies.

Results: In this paper we present SChloro, a novel machine-learning approach to predict protein

sub-chloroplastic localization, based on targeting signal detection and membrane protein informa-

tion. The proposed approach performs multi-label predictions discriminating six chloroplastic

sub-compartments that include inner membrane, outer membrane, stroma, thylakoid lumen, plas-

toglobule and thylakoid membrane. In comparative benchmarks, the proposed method outper-

forms current state-of-the-art methods in both single- and multi-compartment predictions, with an

overall multi-label accuracy of 74%. The results demonstrate the relevance of the approach that is

eligible as a good candidate for integration into more general large-scale annotation pipelines of

protein subcellular localization.

Availability and Implementation: The method is available as web server at http://schloro.biocomp.

unibo.it

Contact: gigi@biocomp.unibo.it.

1 Introduction

The eukaryotic cell hosts different compartments that play differen-

tiated functional roles into the cell life cycle. Chloroplasts are organ-

elles found in viridiplantae cells and involved in crucial functions

including photosynthesis, fatty acid synthesis and immune response.

Similarly to other compartments in the cell, such as the nucleus or

mitochondria, in-depth experimental studies have identified at least

six different chloroplastic sub-compartments in which proteins are

targeted to perform different functions (Cooper and Hausman,

2009): the inner membrane, the outer membrane, the stroma, the

thylakoid lumen, the plastoglobule and the thylakoid membrane.

Few proteins found in the chloroplast are encoded by the organ-

elle genome whereas the vast majority of them are nuclear encoded,

synthesized by cytoplasmic ribosomes and then post-translationally

targeted into the chloroplast by means of different mechanisms

(Schleiff and Becker, 2010). Generally, targeting signals are present

in the precursor protein and are used by the transport machinery to

correctly direct the protein to its final destination. Most proteins
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directed to the stroma or to the envelope carry a single cleavable N-

terminal signal, while proteins directed to the thylakoid lumen and

membrane are endowed with a bipartite signal, which provides in-

formation for the subsequent sorting of the protein from the stroma

to the thylakoid. Furthermore, several non-cleavable sequence sig-

nals may also be present at any position along the sequence (typic-

ally membrane proteins are endowed with this type of signals)

(Schleiff and Becker, 2010). In general, the import and sorting ma-

chinery is able to recognize these signals and to transport both sol-

uble proteins (directed to the stroma or to the thylakoid lumen) and

membrane proteins (directed to the thylakoid membrane or to the

envelope) with single or multiple trans-membrane domains to their

final working compartment (Schleiff and Becker, 2010).

So far, several computational tools have been developed to pre-

dict protein subcellular localization, given the impact of the feature

on protein function characterization (Imai and Nakai, 2010).

The vast majority of available computational methods routinely

discriminate macro compartments such as nucleus, cytoplasm, or-

ganelles and membranes (Emanuelsson et al., 2007; Goldberg et al.,

2014; Marcotte et al., 2000; Nakai and Horton, 1999; Nair and

Rost, 2005; Savojardo et al., 2015). However, the prediction of

more detailed sub-localizations, such as the different sub-

chloroplastic compartments, is challenging considering the paucity

of detailed experimental annotations in publicly available databases

(e.g. UniprotKB). For instance, only half of the currently available

chloroplastic proteins with experimental evidence have also a sub-

chloroplastic experimental annotation. Nonetheless, there has been

a renewed interest in developing computational tools that are able

to correctly identify very specific cellular sub-compartments (Kumar

et al., 2014; Lin et al., 2013; Wang et al., 2015).

The prediction of sub-chloroplastic localization has been mainly

addressed in two ways: (i) single-label approaches, which associate

to the query protein a single localization compartment (Du et al.,

2009; Hu and Yan, 2012; Shi et al., 2011; Tung et al., 2010) and (ii)

multi-label approaches that can predict multiple localizations

(Wang et al., 2015).

Generally, single-label methods consider four main chloroplastic

sub-compartments: envelope, stroma, thylakoid lumen and thyla-

koid membrane. All of them are based on similar features extracted

from protein sequence, which are then processed by different algo-

rithms to perform the final prediction. SubChlo (Du et al., 2009),

one the first released methods, is based on a variant of the k-nearest

neighbor classifier and Chou’s pseudo amino-acid composition

(PseAAC) (Chou, 2001). In ChloroRF (Tung et al., 2010), a random

forest classifier is fed with a protein encoding based on physico-

chemical properties extracted from the AAindex (Kawashima et al.,

2008). SubIdent (Shi et al., 2011), which can also predict sub-

mitochondrial localizations, performs predictions using SVMs and

an alternative formulation of the PseAAC based on discrete wavelet

transform. Finally, BS-KNN (Hu and Yan, 2012) is based on bit-

score k-nearest neighbor and standard amino acid composition.

The only available multi-label method is MultiP-SChlo (Wang

et al., 2015). It extends the set of possible compartments in which a

protein can be found, by including plastoglobules, lipoprotein par-

ticles present in all plastids. Then, using an algorithm based on

multi-stage SVMs and PseAAC, the method performs multi-label

predictions. MultiP-SChlo scores with an overall accuracy of 56%

on a benchmark of a multi-label dataset introduced in the same

study (Wang et al., 2015).

In this paper we present SChloro, a novel machine-learning

method to improve the prediction of protein sub-chloroplastic local-

ization. The basic idea of our approach is to exploit the recognition

of high-level topological and sorting features to improve the accur-

acy of the prediction of sub-chloroplastic localization. We adopt a

two-stage prediction algorithm: first, we identify into the query pro-

tein, chloroplastic and/or thylakoid sorting signals and second, we

determine possible membrane interactions (suggesting membrane-

related localizations). In the final step, these predicted features are

integrated with global protein features to predict the final sub-

chloroplastic localization, in a multi-label fashion. Differently from

any previous approach, our method is able to provide predictions to

six distinct compartments: inner membrane, outer membrane,

stroma, plastoglobule, thylakoid lumen and thylakoid membrane.

When compared to other state-of-the-art approaches, SChloro is

able to significantly improve the prediction performance, scoring

with a 74% overall multi-label accuracy. The method is available as

web server at http://schloro.biocomp.unibo.it.

2 Methods

2.1 Datasets
In this study, three different datasets were used to evaluate the per-

formance of our method and to compare it with previously de-

veloped approaches.

2.1.1 The SCEXP2016 dataset

The first dataset, referred to as SCEXP2016, was specifically com-

piled for this study and collects updated experimental data extracted

from UniprotKB/SwissProt release 2016_01 (The UniProt

Consortium, 2014). In order to retain only high-quality data, the

following procedure was adopted. Firstly, all chloroplastic proteins

with experimentally annotated sub-cellular localization were ex-

tracted from UniprotKB/SwissProt. Only proteins with evidence at

the protein level and longer than 50 residues were selected. From

this initial set, to obtain very clean data, we filtered-out proteins

that were annotated with additional localizations outside the chloro-

plast and retained only those with experimental annotation in at

least one of the following six chloroplastic sub-compartments: inner

membrane, outer membrane, stroma, plastoglobule, thylakoid

lumen and thylakoid membrane. With this procedure, we ended up

with 367 protein sequences, 309 of which are nuclear encoded

whereas 26 are encoded by the chloroplastic genome (we decided to

retain these proteins given the small number). Twenty-three out of

367 proteins are annotated with multiple chloroplastic sub-

compartments (22 found in two compartments and 1 in three

compartments).

The distribution of proteins into the six different chloroplastic

sub-compartments is summarized in Table 1. Furthermore, in

Table 2 we also list the statistics of targeting signal and membrane

interaction annotations (which will be used to train/test specific clas-

sifiers, as described in Section 2.4). It is worth to point out that, as

detailed above, experimental evidence has been checked only for the

primary annotation of proteins into subcellular compartments. In

contrast, secondary protein annotation concerning targeting signals

and membrane interaction were all retained and used as they were

annotated for the selected proteins. As a consequence, these second-

ary annotations could be partially incomplete

In order to avoid any training/test bias, cross-validation sets

were built by confining any possible local sequence homology into

the same validation set. To achieve this, we firstly searched each

protein sequence against the whole dataset using the psi-blast pro-

gram with e-value threshold set to 1e-3. Sequence clusters were then

built using the psi-blast output. In particular, two sequences fell into
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the same cluster if psi-blast detected at least one hit between them

(no identity threshold was set for cluster generation). These clusters

were finally used to compile 10 cross-validation sets for method

evaluation.

2.1.2 The MSchlor578 dataset

The second dataset adopted in this study is the MSchlo578 dataset,

previously released by Wang et al. (2015). This dataset contains 578

multi-compartment proteins distributed into the five following sub-

chloroplastic localizations (in parenthesis the number of proteins):

envelope (199), stroma (105), thylakoid lumen (34), thylakoid mem-

brane (233) and plastoglobule (30). Twenty-two proteins are anno-

tated with multiple sub-compartments (21 into two different

compartments and 1 in three compartments). We used the

MSchlo578 dataset to compare our method with the state-of-the-art

method MultiP-Schlo (Wang et al., 2015).

2.1.3 The S60 dataset

Finally, a third dataset, referred to as S60 and introduced by Du

et al. (2009), was used to compare our method with other methods

in the single-label setting. The 262 proteins in this dataset are dis-

tributed among 4 different classes: envelope (40), stroma (49),

lumen (44) and thylakoid membrane (129). No multiple annotations

are reported for these proteins.

2.2 Sorting signals to chloroplast and its

sub-compartments
Nuclear encoded chloroplastic proteins are targeted toward the or-

ganelle by means of biological pathways involving the molecular

recognition of specific sorting signals (Schleiff and Becker, 2010). At

a higher level, precursor proteins synthesized by cytoplasmic ribo-

somes, are endowed with the well-known transit peptide, a variable-

length stretch of sequence located at the N-terminus of the nascent

protein (Bruce, 2001; Patron and Waller, 2007; Schleiff and Becker,

2010). Once the protein reaches its destination into the chloroplast

(typically the stroma), the transit peptide is cleaved by specific pro-

teins. Some chloroplastic proteins of the thylakoid lumen and mem-

branes are endowed with an additional signal located immediately

after the transit peptide. This thylakoid transit peptide is used for

the subsequent protein sorting from the stroma to the thylakoid

(Bruce, 2001; Schleiff and Becker, 2010).

In addition, a subset of nuclear-encoded chloroplastic proteins

was found as not having the classic transit peptide. These proteins

are mainly outer-membrane proteins (and also inner-membrane and

inter-membrane space proteins, although to a lesser extent) with

alpha helical membrane anchors, which also carry targeting infor-

mation (Schleiff and Klösgen, 2001; Soll, 2002).

In this paper we try to exploit the knowledge about these mech-

anisms by defining signal-specific detectors and integrating them

into our localization prediction system (see Section 2.4 for details).

2.3 Membrane interaction
The structure of the chloroplasts comprises three different mem-

brane systems: the inner and outer membranes and the thylakoid

membrane system. The inner and outer membranes form the chloro-

plast envelope, which borders the stroma, and separates it from the

cytoplasm. Inside the stroma, it is found the thylakoid, an additional

membrane-bounded structure. The thylakoid membrane separates

the stroma from the lumen. Several membrane proteins with diverse

topologies can be found as either directly or indirectly interacting

with the three membrane systems. According to the type of inter-

action, three major classes can be distinguished:

1. Integral single-pass membrane proteins, which spans the mem-

brane with a single trans-membrane domain.

2. Integral multi-pass membrane proteins, which spans the mem-

brane with multiple trans-membrane domains.

3. Peripheral membrane proteins, which do not span the mem-

brane and interact with it through different mechanisms includ-

ing lipid anchoring, direct interaction with the phospholipid

bilayer through specific domains or indirect interaction though

integral membrane proteins.

From the point of view of protein sub-chloroplastic localization

prediction, knowing whether a protein interacts or not with a mem-

brane may directly restrict the number of possible compartments it

may be found in. Furthermore, the precise knowledge of the inter-

action type (single-, multi-pass or peripheral) may give some add-

itional insight about the final destination of the protein. In this

paper, we exploited these considerations by integrating membrane-

interaction specific classifiers into our localization prediction system

(see Section 2.4 for details).

2.4 Overview of the prediction method
The proposed multi-label prediction system, depicted in Figure 1,

consists of two layers of Support Vector Machines (SVMs).

Classifiers of the first layer are devised to predict the occurrence

probabilities of chloroplast and/or thylakoid sorting signals as well

as the probabilities for the protein to be in one of three possible

interaction states with a membrane (single-, multi-pass trans-

membrane or peripheral membrane protein). Therefore, five differ-

ent classifiers were defined: two for the sorting signals and three for

the membrane interaction. Each classifier was trained using avail-

able experimental evidence and slightly different input features opti-

mized for the specific prediction task. In particular the following

input features are used here:

1. The average composition of the Position Specific Scoring Matrix

(PSSM) as computed from the multiple sequence alignment ob-

tained using the psi-blast program (Altschul et al., 1997) to

search the query sequence against the UniprotKB/SwissProt

Table 1 Distribution of proteins in SCEXP2016 into the six different

chloroplastic sub-compartments

Compartment Number of proteins

Inner membrane 47

Outer membrane 24

Stroma 119

Plastoglobule 32

Thylakoid lumen 37

Thylakoid membrane 131

Table 2 Distribution of annotated targeting and membrane features

of SCEXP2016 proteins

Feature Number of annotated proteins

Chloroplastic targeting 317

Thylakoid targeting 60

Single-pass membrane 34

Multi-pass membrane 62

Peripheral membrane 41
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database (The UniProt Consortium, 2014). Raw PSSM values

are rescaled before averaging into the range [0,1] using a stand-

ard logistic function 1/((1þê(-x))). In this way, the average

PSSM consists of a 20-valued vector with elements ranging be-

tween 0 and 1.

2. The average hydrophobicity computed along the protein se-

quence using the Kyte-Doolittle scale (Kyte and Doolittle,

1982). Hydrophobicity values are firstly linearly rescaled before

averaging into the range [0,1] so that the highest and the lowest

values, namely 4.5 and -4.5 for isoleucine and arginine, map to

0 and 1, respectively. Hence, the average hydrophobicity feature

consists of a single real value between 0 and 1.

For the chloroplast and thylakoid targeting classifiers, consider-

ing that the two targeting signals are located at the N-terminus of

the protein, the first 90 and 120 residues were used to compute the

average values, respectively. In contrast, the entire protein sequence

has been used for the three membrane interaction classifiers.

Altogether, the first layer outputs are collected into a 5-valued vec-

tor defined as follows:

p cð Þ; p tð Þ; p sð Þ; p mð Þ; pðrÞ½ � (1)

where the first two values are, respectively, the probabilities of hav-

ing a chloroplastic-targeting signal (p(c)) and thylakoid-targeting

signal (p(t)), while the last three values are the probabilities for the

protein to be, respectively, a single-pass (p(s)), a multi-pass (p(m))

and a peripheral (p(r)) membrane protein.

The second layer of SVM classifiers computes the membership

probability for the query protein to be located into one or more sub-

chloroplastic compartments. The number of independent SVMs of

the second layer is determined by the number of the predicted

localization classes. The final version of SChloro is able to predict

six different sub-chloroplastic localizations. As a consequence, one

separate SVM classifier was defined for each one of the six compart-

ments. Each second-layer classifier was trained using a 26-valued

feature vector consisting of: (i) the 5-valued vector as defined in

Equation 1 and (ii) the average PSSM and hydrophobicity both com-

puted on the entire protein sequence.

Finally, the individual SVM output probabilities are integrated

into the final multi-label prediction of the target sequence. In par-

ticular, the protein is predicted as belonging to one localization class

if the corresponding SVM probability output is greater or equal to

0.5. The multi-label prediction is simply obtained by the union of all

the individual localization predictions.

Adopting this two-layered architecture allows a better exploit-

ation of different basic features that are computed over different

portions of the sequence. By this, an intermediate representation of

the protein in terms of presence/absence of sorting signals as well as

interaction with the membrane, is computed.

2.5 Model selection and implementation
The method evaluations are carried-out using either a 10-fold cross-

validation procedure (to train/test our method on the SCEXP2016

dataset), or by adopting a jackknife test (to compare with other

methods in literature on the MSchlor578 and S60 datasets).

Regardless of the performed actual evaluation setting, the bench-

mark procedure needs to be carefully tuned to deal with the specific

structure of our prediction system that comprises two cascading lev-

els of classifiers.

To achieve this, we applied the following procedure. First of all,

for each cross-validation or jackknife run, a fraction of the training

set was extracted and used as a validation set. This set was used to

adjust hyper-parameters as well as to identify the optimal input fea-

ture encoding for both first- and second-layer classifiers. Once se-

lected, these hyper-parameters were frozen and used to predict the

remaining testing data.

SVM classifiers were implemented using the standard libsvm

software package (Chang et al., 2011). Each classifier is based on a

non-linear Radial Basis Function (RBF) kernel and is trained/tested

to provide probabilistic outputs using the standard model imple-

mented by the software library.

Concerning the cascading structure, optimal first-layer classifiers

(found through validation sets) were used to generate both training/

testing data for second-layer classifiers. In this way, SVMs of the

second-layer were trained/tested on predicted values and this

allowed evaluating the entire pipeline taking into account the poten-

tial error propagation between the two layers.

2.6 Scoring measures
For sake of comparison with different methods available in litera-

ture, our system was evaluated using either multi-label or single-

label scoring measures. More formally, let yi and pi be the set of

observed and predicted labels (compartments) for the ith protein,

and let n be the total number of proteins in the dataset. To score the

prediction performance in the multi-label setting, we adopted the

following scoring indexes (Wang et al., 2015):

• The multi-label Accuracy (mlACC), defined as:

mlACC ¼ 1

n

Xn

i¼1

yi \ pij j
yi [ pij j (2)

Fig. 1 Overview of the SChloro system architecture
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• The multi-label Recall (mlREC), defined as:

mlREC ¼ 1

n

Xn

i¼1

yi \ pij j
yij j

(3)

• The multi-label Precision (mlPRE), defined as:

mlPRE ¼ 1

n

Xn

i¼1

yi \ pij j
pij j

(4)

• The multi-label F1 (mlF1), defined as:

mlF1 ¼ 2�mlREC�mlPRE

mlRECþmlPRE
(5)

• The overall multi-label accuracy (ACCml), defined as:

ACCml ¼ 1

n

Xn

i¼1

1 yi � pið Þ (6)

where 1ðyi � piÞ is an indicator function that equals to 1 if the two

sets are identical, 0 otherwise.

To score the prediction performance in the single-label setting

we used the following scoring indexes (Du et al., 2009):

• The single-label accuracy of label l (ACCsl(l)), defined as:

ACCsl lð Þ ¼ TPl

TPl þ FNl
(7)

• The overall single-label accuracy (ACCsl), defined as:

ACCsl ¼ 1

n

Xm

l¼1

TPl (8)

where TPl and FNl are true positive and false negatives for the label

l, respectively, and m is the number of different labels.

Finally, each classifier in the first layer was scored using the

Matthews Correlation Coefficient (MCC) and the Area Under the

ROC Curve (AUC), defined as:

MCC¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ�ðTPþFNÞ�ðTNþFPÞ�ðTNþFNÞ

p (9)

AUC ¼
X

ti

SenðtiÞ � D FPRðtiÞ (10)

where TP, TN, FP and FN are true positives, true negatives, false

positives and false negatives, respectively, Sen(t) and FPR(t) are

standard sensitivity and false positive rate values, respectively, com-

puted fixing the prediction threshold to t (the outputs of each classi-

fiers are probabilities).

3 Results

3.1 Single- and multi-label performance of SChloro on

the SCEXP2016 dataset
Table 3 lists the 10-fold cross-validation results obtained using

different input features and evaluated on the SCEXP2016 data-

set. Both single- and multi-label scoring indexes are reported.

The baseline predictor (first row in Table 3) does not include in-

formation about targeting signals and membrane interaction and

it was trained/tested using the basic feature encoding (consisting

of average PSSM and hydrophobicity computed on the entire

protein sequence. In this case, only the second layer of the SVM

system is used).

The individual contributions of the two feature types (targeting

signals and membrane interactions) are reported in rows 2 and 3 of

Table 3, respectively. As expected, the inclusion of the targeting fea-

ture has a major impact in predicting targeting-related localizations

(i.e. stroma, lumen and thylakoid membrane). On the contrary,

membrane interaction features are more effective in predicting

membrane-related localizations (in particular inner and outer

membranes).

When predicted probabilities of targeting signals and membrane

interaction are both included, the prediction performance becomes

more balanced and generally improves (compare rows 1–4, in

Table 3). In particular, we observe a general improvement in per-

formance, with ACCml increasing up to 0.63 and ACCsl up to 0.91.

Furthermore, also individual single-label accuracies improve, sug-

gesting a general positive contribution of the five predicted features.

For sake of comparison, we also report results obtained when

the real information about targeting signals and membrane inter-

action is included in the second step of the procedure (i.e. in both

training and testing, predicted probabilities are replaced by binary

features derived from the true annotation of each protein). The re-

ported performance scores represent the maximum theoretical ac-

curacy that can be achieved on this dataset assuming a perfect

targeting and membrane interaction prediction. This theoretical pre-

dictor achieves very high overall accuracies (ACCml¼0.73 and

ACCsl¼0.96), suggesting that the proposed approach builds on top

of sound bases and that the prediction performance might be further

improved by providing more accurate first-level feature predictors.

Finally, for sake of completeness, in Table 4 we also report the

performance of individual first-layer classifiers devised to predict

sorting signals and membrane interaction. Considering the results

and the inherent difficulty of each prediction task, it appears that

the effectiveness of individual predictors is strongly affected by the

corresponding abundance of the annotated data in the dataset (com-

pare Tables 2 and 4).

3.2 Comparison with other single- and multi-label

methods
In Table 5 we report a comparative benchmark of different methods

on the S60 dataset (Du et al., 2009). For sake of comparison, results

of SChloro were computed using a jackknife test, while performance

scores for other methods were taken from literature (Wang et al.,

2015). In particular, we report overall single-label accuracies using

the same annotation scheme consisting of four different labels

(E¼ envelope, S¼ stroma, L¼ lumen, M¼ thylakoid membrane),

respectively, for our method and for other five different single-label

methods available in literature: SubChlo (Du et al., 2009),

ChloroRF (Tung et al., 2010), SubIdent (Shi et al., 2011), BS-KNN

(Hu and Yan, 2012) and MultiP-Schlo (Wang et al., 2015). The re-

sults indicate that SChloro provides in general more balanced pre-

dictions compared to others. Other methods tend to over-predict the

more abundant labels in the dataset (i.e. thylakoid membrane and

stroma), whereas SChloro scores, on average, better on overall ac-

curacy and in all the remaining compartments (e.g. compare accur-

acy results for the lumen and envelope labels).

Finally, multi-label prediction performances are reported in

Table 6. Here we compare SChloro with MultiP-Schlo (Wang et al.,

2015). In this case, results reported for our method are computed

using the same annotation scheme of MultiP-Schlo, including five

compartments: envelope, stroma, lumen, thylakoid membrane and
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plastoglobule. In this benchmark, we obtain a significant improve-

ment. SChloro outperforms MultiP-Schlo in all scoring indexes re-

ported, achieving an improvement of about 12% in overall multi-

label accuracy.

4 Conclusion

Assessing the protein sub-cellular localization is an important step

toward protein function prediction. The rapid pace at which new

proteomes become available through NGS technologies requires the

availability of effective computational tools for assessing protein lo-

calization and function to fill the gaps of the experimental

knowledge.

In this paper we presented SChloro, a novel approach to predict

protein sub-chloroplastic localization into six main compartments

including inner and outer membranes, stroma, plastoglobule, lumen

and thylakoid membrane. Our method is based on the recognition

of sequence signals that define target specificity (chloroplast and

thylakoid targeting signals) as well as on the prediction of the poten-

tial type of interaction with chloroplast membranes (single-pass,

multi-pass and peripheral interaction). We show that this informa-

tion can be profitably incorporated into a two-level SVM-based al-

gorithm to predict both single and multiple protein sub-

chloroplastic localizations with high accuracy. In fact, SChloro sig-

nificantly outperforms the available state-of-the-art methods, both

in single and multi-label settings. Furthermore, regardless of the spe-

cific dataset and evaluation setting adopted, the performance of

SChloro resulted rather stable throughout all the experiments per-

formed, showing that our approach is sufficiently robust and not so

sensitive to the specific dataset chosen. This fact makes SChloro a

good candidate for the integration into a more comprehensive pipe-

line for the annotation of sub-cellular localization of protein in plant

organisms.

The complete prediction system is available as web-server at

http://schloro.biocomp.unibo.it.
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