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Abstract
Background: A better understanding of the mechanisms involved in gas-phase fragmentation of
peptides is essential for the development of more reliable algorithms for high-throughput protein
identification using mass spectrometry (MS). Current methodologies depend predominantly on the
use of derived m/z values of fragment ions, and, the knowledge provided by the intensity
information present in MS/MS spectra has not been fully exploited. Indeed spectrum intensity
information is very rarely utilized in the algorithms currently in use for high-throughput protein
identification.

Results: In this work, a Bayesian neural network approach is employed to analyze ion intensity
information present in 13878 different MS/MS spectra. The influence of a library of 35 features on
peptide fragmentation is examined under different proton mobility conditions. Useful rules
involved in peptide fragmentation are found and subsets of features which have significant influence
on fragmentation pathway of peptides are characterised. An intensity model is built based on the
selected features and the model can make an accurate prediction of the intensity patterns for given
MS/MS spectra. The predictions include not only the mean values of spectra intensity but also the
variances that can be used to tolerate noises and system biases within experimental MS/MS spectra.

Conclusion: The intensity patterns of fragmentation spectra are informative and can be used to
analyze the influence of various characteristics of fragmented peptides on their fragmentation
pathway. The features with significant influence can be used in turn to predict spectra intensities.
Such information can help develop more reliable algorithms for peptide and protein identification.

Background
Mass spectrometry (MS) has emerged in recent years as
one of the most powerful tools for protein analysis avail-
able to proteomics research. MS-based protein identifica-
tion strategies typically involve the digestion of protein
samples prior to introduction into the mass spectrometer
by a site-specific protease such as trypsin. The derived pep-

tides are subsequently ionized at entry into the mass spec-
trometer and measured as intact fragment (parent) ions.
Subsets of these ions can then be selected on the basis of
their mass-to-charge ratio (m/z) and subject to further
fragmentation, most commonly using collision induced
dissociation (CID), in a process known as tandem mass
spectrometry (MS/MS). Under the conditions utilized in
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CID, peptides fragment in predictable patterns resulting
in a series of signature spectra. Identification of the pro-
tein components in an analyzed sample can then be
achieved by correlating the observed signature spectra of
individual peptides with the predicted MS/MS spectra of
the amino acid sequences derived from protein databases
such as Swiss-Prot and TrEMBL http://www.ebi.ac.uk/.

Over the past few years, computer-assisted database
searching using mass spectrometry data has become the
standard method for high-throughput protein identifica-
tion. Unsurprisingly, the performance of computer search
algorithms, for example Sequest http://bart.scripps.edu/
wiki/index.php/SEQUEST, Mascot http://www.matrix sci-
ence.com/ and others, has a dramatic influence on the
accuracy and reliability of the protein identification proc-
ess [1]. In general terms, such algorithms use a built-in
fragmentation model to construct theoretical fragmenta-
tion spectra for candidate peptides derived from data-
bases, and then evaluate the match of these theoretical
spectra with observed spectra from MS/MS experiments
using defined scoring criteria. The candidate peptide
whose predicted fragmentation spectra best matches the
experimental MS/MS spectra is selected as representing
the true identity of the analyzed peptide [2-5].

Unfortunately, the performance of computer algorithms
currently available is still less than ideal. Generally, these
algorithms tend to only utilize the positional information
(mass-to-charge ratios; m/z) contained in MS/MS spectra,
whereas fail to systematically incorporate the additional
intensity information available in the same spectra. The
intensity information is usually applied in an indirect
way, for example in Mascot, peaks are selected based on
intensity for peptide matching, and in Sequest peaks for y/
b ions are supposed to be higher than peaks for other ions.
Previous published work indicates that some efforts have
been made to try to utilize spectrum intensity information
more effectively [6-8], but they have predominantly
focused on the design of better scoring methods. Further-
more, the application of these previous studies was lim-
ited by the oversimplification of the peptide
fragmentation models which were applied to construct
the theoretical spectra. This is probably due to our insuffi-
cient understanding of the complex mechanisms involved
in peptide fragmentation during MS/MS analysis, which
makes accurate prediction of spectra intensities in MS/MS
very difficult.

Recently, a number of research groups have proposed
novel fragmentation models in attempts to better under-
stand the mechanisms involved in MS/MS. For example,
Wysocki, et al. proposed the "Mobile Proton" hypothesis
in which protons added to a peptide can transfer along its
backbone from the initial site of protonation and subse-

quently induce fragmentation [9-11]. According to the
hypothesis, peptides can be classified as "mobile" or
"non-mobile" by the ratio of charge to Arginine number.
They also statistically examined the effect of particular
amino acid residues such as asparagine, proline and histi-
dine on fragmentation patterns, with the aim of deducing
rules for the influence of these residues on spectra intensi-
ties [12-14]. The "Mobile Proton" model was later
expanded by Kapp, et al. into the "Relative Mobile Proton"
(RMP) model [15], in which peptides are classified as
"mobile", "non-mobile" and "partial mobile" based on
their charge number and basic residue number. Schutz, et
al. used a linear model based on RMP hypothesis to calcu-
late the influence of sequence context effects on fragmen-
tation [16]. A kinetic model was developed by Zhang
[17,18] to simulate the fragmentation process of a peptide
undergoing low-energy CID, and further used to predict
the spectra intensity patterns of given peptides. Machine-
learning techniques such as Bayesian decision trees have
also been used to investigate peptide fragmentation
behaviour [19] and from this work a group of features that
may influence peptide fragmentation have been pro-
posed. This was the first attempt to our knowledge to sys-
tematically utilize intensity information of peptide
fragmentation. However, the machine learning approach
used in [19] discovered only a limited number of features
to have significant effect on peptide fragmentation and
many of these features have already been revealed by
other researchers, for example, the presence of basic resi-
dues in a peptide sequence, the charge state of the peptide
and the presence of proline residue in peptide sequence,
etc [10,11,20-22]. Whether many other putative determi-
nants are of relevance, and the extent of their influence on
fragmentation, is still in question.

In this work, we present a probabilistic machine-learning
approach designed to analyze the intensity information
contained in MS/MS data, with the aim of developing a
better understanding of the rules involved in peptide frag-
mentation events. A library of peptide-relevant features as
listed in Table 1 was examined and a score was assigned to
each feature to represent the magnitude of its influence on
peptide fragmentation. This information was then used to
develop a more sophisticated model to predict the inten-
sity patterns of spectra generated in MS/MS with the
expectation that this will improve the reliability of peptide
identification. Overall, we attempted to find answers for
three basic questions: What factors influence peptide frag-
mentation during CID? What is the relationship between
the features that influence peptide fragmentation and the
resulting intensity pattern of fragmentation spectra? And
finally, how can we accurately predict the spectrum inten-
sity pattern of a given peptide and use this information to
improve peptide identification?
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Results
The experimental design following development of our
peptide fragmentation model comprised two phases: a
feature selection stage for the determination of peptide
characteristics that have significant influence on fragmen-
tation, and a model development stage that trained a
Bayesian neural network with features identified from the
first stage. The performance of the model was then tested
by using it to predict spectra intensity patterns for given
peptides and subsequently compared with experimental
data. Different data and data filtering algorithms were
applied during the different phases.

Experiment stage 1
In this part of the study, MS/MS spectra data as described
in [23] were acquired from Wysocki VH. The intensity
information contained within the spectra was then used
to verify a library of features that are supposed to influ-

ence peptide fragmentation (Table 1). The values of rele-
vant amino acid properties that were used for calculating
these features can be found in Table 2. This feature set is a
modified version of what was used by Elias, et al. [19]. We
aimed to determine a group of features that genuinely
influence the intensity patterns of MS/MS spectra. For this
purpose, a Bayesian neural network model was devel-
oped. The structure of the network model is illustrated in
Figure 1 and more details can be found in the method sec-
tion of the paper.

In brief the data comprised peptide MS/MS spectra from
two micro organisms, Shewanella oneidensis and Deinococ-
cus radiodurans. The datasets were derived using LC/MS
analysis with ion trap instrumentation (further details can
be found in the original paper [23]). Peptide sequences
were assigned to these spectra using the Sequest algorithm
with a minimum XCorr score of 1.5 for peptides with

Table 1: Features that potentially influence peptide fragmentation.

ID Features Abbreviation

1 Identity of residue C-terminal to fragmentation site RB_C
2 Identity of residue N-terminal to fragmentation site RB_N
3 Distance from fragmentation site to peptide N-terminus DB_N
4 Distance from fragmentation site to peptide C-terminus DB_C
5 Distance from fragmentation site to peptide center DB_M
6 Whether fragmentation site is at either end of peptide B_E
7 Basicity of residue N-terminal to fragmentation site BaRB_N
8 Basicity of residue C-terminal to fragmentation site BaRB_C
9 Average basicity of residues N/C terminal to fragmentation site BaRB_A
10 Difference in basicity of residues N/C terminal to fragmentation site BaRB_D
11 Basicity of fragmented y-ion BaYI
12 Basicity of whole peptide BaP
13 Helicity of residue N-terminal to fragmentation site HeRB_N
14 Helicity of residue C-terminal to fragmentation site HeRB_C
15 Average helicity of residues N/C terminal to fragmentation site HeRB_A
16 Difference in helicity of residues N/C terminal to fragmentation site HeRB_D
17 Hydrophobicity of residue N-terminal to fragmentation site HyRB_N
18 Hydrophobicity of residue C-terminal to fragmentation site HyRB_C
19 Average Hydrophobicity of residues N/C terminal to fragmentation site HyRB_A
20 Difference in Hydrophobicity of residues N/C terminal to fragmentation site HyRB_D
21 Hydrophobicity of fragmented y-ion HyYI
22 Hydrophobicity of whole peptide HyP
23 pI value of residue N-terminal to fragmentation site PIRB_N
24 pI value of residue C-terminal to fragmentation site PIRB_C
25 Average pI of residues N/C terminal to fragmentation site PIRB_A
26 Difference in pI of residues N/C terminal to fragmentation site PIRB_D
27 Length of whole peptide LP
28 Length of fragmented y-ion LYI
29 Ratio of length of fragmented y-ion and peptide RLIP
30 Number of basic residues in whole peptide NBaR_P
31 Number of basic residues in fragmented y-ion NBaR_YI
32 Mass of whole peptide MP
33 Mass of fragmented y-ion MYI
34 Ratio of mass of fragmentated y-ion and peptide RMIP
35 Distance from fragmentation site to basic residues DBBa

All features listed above are supposed to exert influences on the gas-phase fragmentation of peptides. They are subject to further examination by 
the Bayesian neural network model.
Page 3 of 17
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:325 http://www.biomedcentral.com/1471-2105/9/325
molecular weight < 1000, and 2.0 for all other peptides.
Using the same chromatographic conditions, accurate
masses of the precursor ions detected at the same reten-
tion time by FT-ICR were used to confirm the assigned
sequences. Finally, a total of 28330 spectra of unique
sequence and charge state (16008 from Shewanella and
12322 from Deinococcus) were acquired and subject to fur-
ther analyses.

In our work, we wished to analyse only spectra with non-
biased peptide intensities so that the genuine influences
of all the features can be determined. For this purpose, the
following filtering criteria were applied to the available
28330 spectra:

1. Only doubly charged peptide spectra were retained for
the study.

2. For a given peptide, the intensities of detected b/y ions
(plus ions resulting from degradation events) according to
the assigned sequence, should be no less than 25% of the
total intensities of all peaks within the particular spec-
trum. This criterion came from our belief that a correctly
identified peptide should be able to explain all peaks in
the corresponding spectra reasonably well. Accordingly all
spectra with this correlation lower than an arbitrary
threshold were considered to be either mismatches or
biased spectra due to undetected degradation/modifica-
tion events.

3. For a given peptide, the total intensities of the detected
b/y ions should be no less than the intensity of the parent
ion of the peptide. Application of this criterion was
intended to ensure that all selected peptides are fully frag-
mented.

4. Finally, all candidate peptides were classified according
to the "Relative Mobile Proton" (RMP) hypothesis [15].
Applying the RMP model as a classification criterion ena-
bles us to analyze peptides with different relative mobility
separately, and also makes it easier for the machine learn-
ing algorithm to identify correct rules involved in peptide
fragmentation.

As a result, a total number of 13878 spectra were analysed
in this study, comprising 5768 mobile peptides, 7154 par-
tially mobile peptides and 956 non-mobile peptides. The
length of these peptides ranges from 5 to 40 with a mean
value of 16. The data provided 208563 input patterns
(peptide bonds) for the training of our network model.

The first stage of our experiment, a feature selection stage
as described above, began with training the Bayesian neu-
ral network 100 epochs using the features listed in Table
1. Details of network structure and training method can
be found in the method section. The importance of each
individual feature was evaluated by updating its "rele-
vance coefficient" α as in Eq. 8. The results of coefficients
were ranked and normalized, with their mean values

Table 2: Values of amino acid property used in the study.

Residue Mass Hydrophobicity Helicity Basicity PI value

A 71.0788 0.16 1.24 206.4 6
C 103.1388 2.5 0.79 206.2 5.02
D 115.0886 -2.49 0.89 208.6 2.77
E 129.1155 -1.5 0.85 215.6 3.22
F 147.1766 5 1.26 212.1 5.48
G 57.0519 -3.31 1.15 202.7 5.97
H 137.1411 -4.63 0.97 223.7 7.47
I 113.1594 4.76 1.28 209.6 5.94
K 128.1741 -5 0.88 221.8 9.59
L 113.1594 4.76 1.28 209.6 5.98
M 131.1926 3.23 1.22 213.3 5.74
N 114.1038 -3.79 0.94 212.8 5.41
P 97.1167 -4.92 0.57 214.4 6.3
Q 128.1307 -2.76 0.96 214.2 5.65
R 156.1875 -2.77 0.95 237 11.15
S 87.0782 -2.85 1 207.6 5.68
T 101.1051 -1.08 1.09 211.7 5.64
V 99.1326 3.02 1.27 208.7 5.96
W 186.2132 4.88 1.07 216.1 5.89
Y 163.176 2 1.11 213.1 5.66

The values of different peptide property used in the study are listed in the table. Values for all the features listed in Table 1 are calculated with these 
property values during network training. The values for mass, hydrophobicity, helicity and basicity are cited from [19] and the values for PI are cited 
from http://www.bioscience.org/urllists/aminacid.htm
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defined as 'irrelevance' scores. The greater an irrelevance
score is, the less significant the influence of the corre-
sponding feature is. The irrelevance scores of each feature
of different peptide mobility status are compared in Fig-
ure 2, and the values of the original scores can be found in
Additional file 1.

As shown in Figure 2, the features that influence the frag-
mentation pathway of peptides vary considerably depend-
ing on peptide mobility status. Peptides of mobile or
partial-mobile status generally share similar influential

feature sets, but for peptides of non-mobile status, the fea-
tures that influence fragmentation appear to be com-
pletely different. Such an observation implies that
peptides of mobile- and partial-mobile status do not have
fundamental differences in their fragmentation mecha-
nism, whereas non-mobile peptides appear to possess
their own unique method of fragmentation.

The results in Figure 2 indicate that the ion intensity pat-
tern under non-mobile status depends highly on the
sequence context of the fragmented peptide. It is well

Structure of the Bayesian neural network used to explore the mechanism of gas-phase fragmentation of peptidesFigure 1
Structure of the Bayesian neural network used to explore the mechanism of gas-phase fragmentation of pep-
tides. The network is fully connected and feed-forward with three layers including one hidden layer. 73 nodes are used in the 
input layer representing 35 features. 40 nodes in binary are used to represent the presence of 20 different residues at N and C 
terminus to the target peptide bond. Every node in the input layer has an independent coefficient to reveal its "relevance" to 
the network output. The hidden layer has 40 nodes and the activation function of the hidden layer is sigmoidal.
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known that the identities of residues at the either side of a
cleavage site play a very important role in determining
whether cleavage can occur at this site, and the extent of
this cleavage; but their influence are especially prominent
for non-mobile peptides, who's spectra are often observed
to be dominated by a limited number of ions. For mobile
and partial-mobile peptides, however, fragmentation
pathways appear to be determined by a mixture of factors
including sequence context, position of cleavage site,
mass and length of fragmented peptide, and many others.

The results show that cleavage is more likely to occur at
the middle of a peptide rather than at the two ends, as
mentioned before by Kapp, et al. [15,16]. We speculate
that the specificity of tryptic digestion may contribute to
this. It is also conceivable that the low mass cut-off inher-
ent in ion trap mass spectrometers play a role in this posi-
tion-selective phenomenon. It is observed that this
phenomenon is less significant for non-mobile peptides,
most likely because of the dominant residue-specific frag-
mentation pathway. Our analysis also reveals that the

presence of basic residues can hinder fragmentation at
peptide bonds close to them, as reported in other publica-
tions [14]. The influence of individual residue will be dis-
cussed in details in the next section.

It does not appear from our results that the basic nature of
specific residues can influence the fragmentation pathway
directly. Although the presence of basic residues within a
peptide can result in marked changes in spectra intensity
patterns, the basic nature of a particular residue (BaRB_N/
C/A/D) appears to have little relevance to the fragmenta-
tion pattern (Figure 2). However, the basic characteristic
of the whole peptide (BaP) does appear to play an impor-
tant role in fragmentation irrespective of peptide mobility
status, and the basic characteristics of fragmented y ions
(BaYI) can influence peptides of mobile and partial-
mobile status.

In general, the tendency of amino acid residues to contrib-
ute to the helicity nature of a peptide correlates with
medium to high irrelevance scores, indicating that these

Verification of the features that potentially influence peptide fragmentationFigure 2
Verification of the features that potentially influence peptide fragmentation. The importance of the features listed 
in Table 1 is evaluated by the Bayesian neural network and the results are shown: Red circles: normalized irrelevance scores of 
the features under non-mobile status. Blue squares: normalized irrelevance scores of the features under partial-mobile status. 
Green triangles: normalized irrelevance scores of the features under mobile status. The higher an irrelevance score is, the less 
important the corresponding feature is. The threshold of each mobility status is shown in dashed line and the features proven 
to be influential on peptides' fragmentation (below threshold) are highlighted with filled circles/squares/triangles.
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characteristics do not have significant influence on pep-
tide fragmentation, especially for non-mobile peptides
(HeRB_N/C/A/D). Specific hydrophobicity-related fea-
tures (HyRB_N, HyRB_C, HyYI), however, appear to be
important in the fragmentation of both mobile and par-
tial-mobile peptides, but they show little influence on
peptides of non-mobile status. To the best of our knowl-
edge there is no published theory suggesting a mechanism
to explain how peptide hydrophobicity may influence
fragmentation events in MS/MS, and, we are unsure
whether our results stem from a causal relationship or
simply a numerical correspondence. Indeed, this may be
a topic worthy of future study. The PI values of residues
show little direct influence on fragmentation of peptides
(PIRB_N/C/A/D). The features "number of basic residues
in the whole peptide" (NBaR_P) and "number of basic
residues in the fragmentation ion" (NBaR_YI) were unsur-
prisingly ranked as having little influence on mobile pep-
tides, because in the great majority of cases doubly
charged mobile peptides contain only one single basic res-
idue, which will be located at the C-terminus given the
sequence specificity of trypsin. Accordingly these features
are of little relevance for mobile peptides. In contrast,
these two features do appear to be influential on peptides
under other mobility status because variable numbers of
basic residues are usually present in those cases. It is also
apparent that the distance from the fragmented bond to
basic residues has little influence on fragmentation path-
ways (DBBa). This feature indeed appears to influence
mobile peptides, but such an effect is more likely to be a
numerical correspondence only, because the sole basic
residue in a doubly charged mobile peptide is located at
its C-terminus, making this feature effectively synony-
mous with the feature "distance from fragmented bond to
peptide C-terminus" (DB_C) that has been shown to
influence peptide fragmentation. Finally, we find that the
mass and length of fragmented ions/whole peptide can
influence the overall fragmentation pattern (LP, LYI, MP,
MYI). Comparatively, the ratio of mass/length are more
influential (RLIP, RMIP) than absolute values of the two.
This result agrees with findings reported elsewhere [24].

Many studies have been conducted to find out how the
presence of a particular residue influences the subsequent
fragmentation pathway of a whole peptide. A series of
rules has been derived from both statistical analysis and
manual interpretation of MS/MS spectra
[9,12,14,16,17,19,23,24]. In our model, every residue has
2 separate nodes which represent its presence on the N- or
C-terminus of a peptide bond. We are able to determine
the influence of each residue by evaluating the weight val-
ues assigned to these nodes. The results are illustrated in
Figure 3. As can be seen, many of the defined features
appear to influence fragmentation, and most of them con-
form to the established rules. This correlation lends cre-

dence to the effectiveness of our approach, and supports
the validity of the influence of the features as we suggest
above.

When a free proton is available within a peptide (i.e. in a
"mobile" peptide according to the RMP model), we
unsurprisingly find that proline (P) has a significant influ-
ence on fragmentation. As has previously been extensively
documented [9,14,16,17,19,23,24], proline markedly
enhances cleavage at its N-terminal peptide bond while
greatly inhibiting C-terminal cleavage. Conversely, aspar-
tic acid (D) and glutamic acid (E) residues appear to
inhibit cleavage at their N-termini, and similarly, asparag-
ine (N) is found to have the same inhibitory effect on pep-
tide fragmentation but to a less significant degree.
Isoleucine (I) and valine (V) are found to promote C-ter-
minal cleavage most, whereas glycine (G) and asparagine
(N) residues have the greatest inhibitory effect (besides
proline) on cleavage at the C-terminus.

However with non-mobile peptides, for example those
containing multiple arginine (R) residues, protons are
sequestered by the basic amino acids, and as a result the
peptide fragments in a totally different manner (Figure 3-
C). In this situation proline still has the greatest influence
on cleavage on N- terminal cleavage, but in comparison to
the situation in mobile peptides, this effect is much
reduced. Aspartic acid is now the most influential residue
in respect to enhanced C-terminal cleavage (as has been
reported by many other researchers [12,16,17,23,24]),
although its ability to inhibit cleavage at its N-terminal
peptide bond is reduced. It is clear from the figure that the
influence of aspartic acid is almost twice as much as that
of proline, so even if they appear in the same peptide, the
resulting spectra will be dominated by ions derived from
aspartic acid-derived fragmentation. Glutamic acid (E)
favours peptide cleavage at its C-terminus, a characteristic
which probably results from the presence of a similar side
chain to that of aspartic acid. Glycine-dependent inhibi-
tion of cleavage at its C-terminus is observed in all mobil-
ity status. Arginine (R) is observed to strongly promote
cleavage at its C-terminus, and the other two basic resi-
dues Lysine (K) and Histidine (H) also present the same
favour but in a less significant way. The rules defined
above have also been reported previously by Wysocki
group in work using a statistical method and the same
MS/MS spectra dataset [23], and by Zhang, using his
kinetic model [17,18].

We also observed a number of novel peptide sequence-
context effects. Firstly arginine (R) residues show a mark-
edly inhibited cleavage at their N-termini in non-mobile
peptides. Secondly Histidine (H) appears to favour cleav-
age at its N-terminus, and such effect is observed in all
mobility status. Besides these, previous studies have pro-
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posed that leucine (L) residues promote cleavage to their
C-terminal peptide bonds, irrespective of the mobility sta-
tus of the peptide [23]. This effect is not apparent from

our study, with the presence of leucine only having a rela-
tively minor effect (enhancement) on C-terminal cleavage
(Figure 3.)

Influence of each residue on fragmentation at its N/C terminal peptide bondFigure 3
Influence of each residue on fragmentation at its N/C terminal peptide bond. The influence of each residue on 
cleavage at its N-terminus is illustrated in the left panel (blue dots), and the influence on cleavage at its C-terminus is illustrated 
in the right panel (red dots). The most influential residues are marked with arrows. Down arrows indicate inhibition whereas 
up arrows indicate enhancement. Figure 3-A: Mobile status. Figure 3-B: Partial-mobile status. Figure 3-C: Non-mobile status.
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In the classical proton mobility theory peptides are classi-
fied into 2 distinct groups, designated as either mobile or
non-mobile, according to the number of arginine residues
present within the peptide. In addition, Kapp, et al. [15]
have since proposed another class: an intermediate or
'partial' mobility state. We have also analyzed the frag-
mentation behaviour of peptides belonging to this third
mobility class, and the results are indicated in Figure 3-B.
We find that peptides falling into this notional group frag-
ment according to a combination of rules predominant
only to either mobile or non-mobile peptides. Effectively
the mechanism of fragmentation in partially mobile pep-
tides appears to obey a hybrid rule set. In this rule set, the
influence of residues on fragmentation at their N-terminal
peptide bonds is similar to that for peptides of mobile sta-
tus, in which proline has a dominant enhancing effect,
and aspartic acid and glutamic acid inhibit cleavage most.
In marked contrast, the influence of amino acid residues
on peptide bonds at their C-terminus more closely resem-
bles that occurring in peptides of non-mobile status,
where aspartic acid has the most profound effect. At the
same time, isoleucine and valine enhance cleavage at their
C-terminal peptide bonds in partial mobility peptides, as
they do in mobile status peptides. Exceptionally, Lysine
(K) is observed to enhance C-terminal cleavage in par-
tially mobile peptides. Such an effect was not observed
under any other mobility status. Glycine and proline have
the most marked inhibitory effect on C-terminal cleavage
as they do in both other peptide mobility groups.

It is worth noting that in the earlier work of Elias, et al.
[19] using a Bayesian decision tree method, a similar fea-
ture set was examined to analyse the influence of each
component on peptide fragmentation. In that study how-
ever, only the 'proline effect' was observed, and the influ-
ences of other residues were suggested to be insignificant.
By revealing a considerably larger set of valid fragmenta-
tion rules using a similar feature set, it appears that our
machine learning model has abetter learning capacity and
is capable of identifying more subtle, yet nevertheless sig-
nificant differences, in the contribution of different amino
acid residues to peptide fragmentation during CID.

Having determined the irrelevance scores for all features
examined, a new feature set can be defined containing
only those found to markedly influence peptide fragmen-
tation. To this end, we sequentially discarded the features
with highest scores as listed in Figure 2, and then retrained
the network with the reduced feature set. Comparison of
the training results for all networks is illustrated in Figure
4. Taking non-mobile peptides as an example, the training
error increases significantly when 23 less relevant features
are removed, indicating that at most 22 features can be
removed. The remaining features are indicated with filled
circles in Figure 2.

Experiment stage 2
With the reduced feature set derived in the first stage, a
new network was trained to predict the intensity patterns
of fragmentation spectra for given peptides. Benefiting
from the application of the Bayesian theory, the network
can not only predict the absolute values of spectra inten-
sities, but also assign variances for the predictions. The
obtained results are thus more robust against noise and
system errors that unavoidably appear in the experimental
MS/MS data. Details of the prediction method used can be
found in the methods section.

A new MS/MS dataset was applied to evaluate the per-
formance of the Bayesian intensity model. The dataset is a
controlled dataset containing 18 different proteins as
described in [25]. The details of how the dataset is gener-
ated can be found in the original paper. There are in total
1656 doubly charged spectra that have been verified to be
correctly identified. Applying the same filtering method as
described in experimental stage 1, we finally obtained
1607 doubly charged peptides for model testing. The the-
oretical spectra of these peptides were predicted by the
Bayesian intensity model and then compared with the
experimental counterparts to evaluate the accuracy of the
model.

In order to compare an experimental spectrum with its
predicted counterpart, a score capable of evaluating the
similarity of two spectra has to be defined. As described in

Reduction of training errors in the feature selection phaseFigure 4
Reduction of training errors in the feature selection 
phase. Features are reduced according to their relevance to 
the fragmentation process (Figure 2). The X-axis represents 
the number of features being reduced and the Y-axis repre-
sents the average training error in percentage over 100 train-
ing times counted in percentage. The training error increases 
significantly when 23 less relevant features are removed, as 
indicated by the red arrow. It is then suggested that at most 
22 features could be eliminated.
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the method section, it is assumed that the log-transformed
intensities of a given spectrum are Gaussian distributed
with mean values and variances as predicted by our
model. Accordingly, experimental spectra were normal-
ized using the following method:

1. All peaks related to parent ions (for example 2+ parent
ion and its degradations) are removed.

2. Divide each spectrum with its intensity of total ion cur-
rent (TIC normalization) and then times 100.

3. Log-transformed and then normalized to [0, 1] scale.

It is then straightforward to design the following scoring
system (Eq. 1) to measure the degree of similarity between
the two spectra:

where np is the number of peptide bonds within peptide p,
Ipk-predict(wbest) is the predicted mean intensity value of the
peak at peptide bond k, Ipk-real is the observed intensity of

the peak at peptide bond k in the experimental spectrum,
and σpk is the standard deviation (SD) of the peak inten-
sity at peptide bond k predicted by the intensity model.
The more similar the two spectra, the higher the resulting
score is.

An example of spectrum predicted by the Bayesian inten-
sity model can be found in Figure 5 for the peptide GYS-
FVTTAER. The prediction for this peptide achieves one of
the highest scores (best fit). It can be seen that the pre-
dicted spectrum matches its experimental counterpart
very well, and the small differences between the two spec-
tra are well within the variance. Further examples using
peptides of different mobility status can be found in Addi-
tional file 2.

Similarly, the prediction for peptide VLYPNDNFFEGK is
illustrated in Figure 6. This peptide attained one of the
lowest scores (worst fit), indicating a probable failure of
spectrum prediction. Indeed, as can be seen in Figure 6-C,
none of the peaks lie within the expected ranges. It is
apparent from Figure 6-A that the experimental spectrum
of the peptide is dominated by the y9 ion resulting from
cleavage at the Y-P bond of the peptide, the other ions of
the expected y-ion series are either very low or even below
the level of detection. This pattern is characteristic of the
type of spectrum that often leads to random (false)

Score
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pkk
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− − − −
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[ ( ) ]2

2 2
1 σ

nnp

∑
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Predicting spectra intensity pattern: on peptide GYSFVTTAERFigure 5
Predicting spectra intensity pattern: on peptide GYSFVTTAER. Figure 5-A: The raw MS/MS data of peptide GYSFVT-
TAER. Unlabeled green peaks are ions degraded from labeled b/y ions by losing H2O, NH3, etc. Figure 5-B: The comparison of 
the experimental spectrum (red) versus the spectrum predicted by the network model (blue). The experimental spectrum is 
the y-ions extracted from the raw data (Figure 5-A) with intensities log-transformed. Figure 5-C: The effect of using probability 
theory. Blue dots indicate the interval [mean intensity - SD, mean intensity + SD] within which intensities of the ions are sup-
posed to lie.
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matches in database searching using current m/z based
peptide identification algorithms. However, as shown in
Figure 6-B, our model did correctly predict the general pat-
tern of the spectrum, i.e. that y9 and y10 are the highest
two peaks and the others peaks are lower and of relatively
equal height. The experimental spectrum therefore repre-
sents a greatly exaggerated version of the predicted pat-
tern.

The similarity scores were firstly calculated for spectra pre-
dicted by the Bayesian intensity model as illustrated in
Figure 7. The same scores were subsequently recalculated
with intensity information excluded, i.e. after assigning
the same intensity value to each peak within a spectrum.
Such an approach, using intensity-free spectra, is typical of
most peptide identification algorithms in current use, e.g.
Sequest. In order to compare spectra with/without inten-
sity information on an impartial basis, the similarity
scores for intensity-free spectra were firstly calculated

Predicting spectra intensity pattern: on peptide VLYPNDNFFEGKFigure 6
Predicting spectra intensity pattern: on peptide VLYPNDNFFEGK. Figure 6-A: The raw MS/MS data of peptide 
VLYPNDNFFEGK. Unlabeled green peaks are ions degraded from labeled b/y ions by losing H2O, NH3, etc. Figure 6-B: The 
comparison of the experimental spectrum (red) versus the spectrum predicted by the network model (blue). The experimental 
spectrum is the y-ions extracted from the raw data (Figure 6-A) with intensities log-transformed. Figure 6-C: The effect of 
using probability theory. Blue dots indicate the interval [mean intensity - SD, mean intensity + SD] within which intensities of 
the ions are supposed to lie.
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using the same variance values as used for scores with
intensity information, and then recalculated with the
influence of variance eliminated (set σpk = 1). The former
case was illustrated in Figure 7-A and the latter one in Fig-
ure 7-B. It can be clearly seen that the scores derived using
intensity information are consistently higher than those
derived without. This result indicates that our network
model can accurately predict fragmentation spectra for
given peptides, and the predicted spectra fit experimental

spectra much better than those generated using intensity-
free information.

In order to further validate our Bayesian intensity model,
programs for kinetic intensity model published by Zhang
[17] were used to predict the intensity patterns of the same
test dataset as mentioned above. The differences between
experimental spectra and predicted counterparts are calcu-
lated and compared with those from our Bayesian inten-
sity model. It should be noted that Zhang's kinetic model

Comparison of scores with/without intensity information on all test peptidesFigure 7
Comparison of scores with/without intensity information on all test peptides. Similarity scores are computed using 
Eq. 1. The higher a score, the more similar the predicted spectrum is to the experimental counterpart. Figure 7-A: The red line 
represents the sorted scores calculated with the predicted intensity information. The blue line represents the corresponding 
scores calculated without intensity information. The two score use the same variances predicted by the Bayesian neural net-
work model. Figure 7-B: The red line represents the sorted scores calculated with the predicted intensity information. The 
blue line represents the corresponding scores calculated without intensity information. Variances for intensity-free scores are 
set to 1.
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is able to predict intensity of b, y ions and their degrada-
tions. So only y related ions were pick out for comparison.
At the same time, the variance information predicted by
the Bayesian model was also ignored. As listed in Table 3,
the Bayesian model has a smaller prediction error in 897
spectra out of the total 1607, showing a slightly higher
accuracy than the kinetic model. However, the mean val-
ues and SD values of prediction errors from the two
approaches are rather close. It is reasonable to conclude
that the two approaches have similar performance in pre-
dicting spectra intensity values for given peptides, and our
Bayesian intensity model can potentially be more inform-
ative because extra variances can be assigned to the predic-
tions to tolerate the prediction error.

Discussion
In this work, a novel Bayesian neural network approach
was applied to examine features that were thought to
influence peptide fragmentation. The benefit of this
approach includes making the features numerically ana-
lysable so that large number of features regarding various
characteristics of fragmented peptides can be compared
directly at one time. In the experiment stage 2, a new net-
work was trained to predict intensity patterns of fragmen-
tation spectra for given peptides. Only a limited number
of features with significant influence were applied in this
stage, and the others were discarded. It is worth noting
that the discarded features are not necessarily irrelevant to
peptide fragmentation. Indeed, they may still influence
fragmentation pathways but in a less significant or indi-
rect way. However they were discarded given that results
indicated that the accuracy of spectra intensity predictions
was not significantly affected by the elimination of these
features.

The MS/MS data used in this work is dominated by spectra
from mobile and partial-mobile peptides, whereas the
number of non-mobile data is relatively small. This is
mainly because these peptides were identified by Sequest,
who rely heavily on m/z information to make identifica-
tion. Non-mobile peptides, unfortunately, usually fail to
present enough amounts of ions in the spectra, and there-
fore fail to be identified. It is worth noting that although
many reasonable rules in fragmentation have been
derived for non-mobile peptides, it is very likely that some
important fragmentation rules are missing.

To the best of our knowledge, most algorithms available
for peptide identification to date make their identification
based on spectra m/z information only. The importance
of spectra intensity information on peptide identification
have been realised by many researchers, but successful
applications in published literature are still rare: [26] is
the only one to the best of our knowledge, and it is simply
an application of Zhang's kinetic model. This phenome-
non is partially because it is difficult to predict intensity
patterns of fragmentation spectra accurately, and even if
intensity patterns are successfully predicted, how to com-
pare the predicted spectra with experimental ones still
remains a problem. The large volumes of noise and sys-
tem errors inevitably contained in experimental spectra
make it difficult to apply conventional comparison meth-
ods to evaluate the true degree of similarity between spec-
tra. Our network model provided a good way to solve the
problem by assigning variances to the predictions to
obtain certain degree of tolerance to the fluctuation of
spectra intensities. In this study, we proposed a scoring
method (Eq. 1) that combined the predicted variance
information to compare two spectra under total ion cur-
rent normalization. This method worked well in validat-
ing the intensity model and could be used for peptide
identification. However, there were still cases in which the
predicted spectra failed to match the experimental coun-
terpart even if the general pattern of spectra intensity was
predicted correctly (Figure 6). Future work will involve
development of more robust scoring methods to further
improve the performance of our intensity model in pep-
tide identification, and allow for the effect of post-transla-
tional modifications (PTMs) on peptide fragmentation
pathways. The influence of PTMs is unpredictable at
present, as modified peptides may fragment in a different
manner to unmodified ones, thereby making predictions
using current fragmentation models less reliable.

It is important to note that the intensity pattern of MS/MS
spectra for the same peptide can differ depending on the
nature of the mass spectrometer platform used for analy-
sis, e.g. whether it is an ion trap or a Q-ToF system etc.,
and the method of ionisation employed (e.g. electrospray
or MALDI etc.). In this situation, the intensity model
needs to be retrained each time to adapt to the different
machine types and peptide dissociation methods (e.g.

Table 3: Prediction error of the kinetic model and the Bayesian intensity model.

Number of spectra with higher accuracy Mean error SD error

Kinetic model 710 0.4294 0.1769
Bayesian intensity model 897 0.4094 0.1650

The intensity patterns of 1607 test data are predicted with Zhang's kinetic model and our Bayesian intensity model. The accuracy of predictions and 
mean/SD of prediction errors are listed in the table.
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CID, electron capture dissociation or electron transfer dis-
sociation)

Conclusion
In this work, we have shown that the intensity patterns of
fragmentation spectra are informative and can be used to
analyze the influence of various characteristics of frag-
mented peptides on their fragmentation pathway. The fea-
tures with significant influence can be used in turn to
predict spectra intensities given the sequences of peptides.
It has been demonstrated that the intensity pattern of frag-
mentation spectra predicted by our model fits experimen-
tal data reasonably well. It is suggested that such intensity
predictions can be used with current peptide and protein
identification algorithms to make them more reliable in
high-throughput proteomics experiments.

Methods
We proposed that ion intensities resulting from peptide
fragmentation in MS/MS can be expressed as a compli-
cated mathematical function of various features that
reflect the physical, chemical and other characteristics of
fragmented peptides. Accordingly, a Bayesian neural net-
work was constructed in an attempt to link the spectrum
intensity of a peptide and these features together. The
Automatic Relevance Determination (ARD) technique
[27,28] was applied to this network to distinguish features
(input) that significantly influence intensity patterns of
fragmentation spectra (output) from those that do not.
The structure of the Bayesian neural network used in the
study is shown in Figure 1. The network is a fully con-
nected feed-forward neural network comprising three lay-
ers: an input layer, a hidden layer and an output layer. In
our study, we used this network to analyse a library of fea-
tures that were supposed to influence peptide fragmenta-
tion, distinguishing those with significant influence from
non-influential or less-influential ones. The feature set
used in our study is a modified version of what was used
by Elias, et al. [19]. The original feature set was reduced by
eliminating features that unfit for our study, such as b/y
ion type and identity of residues at N/C terminus of pep-
tides. The descriptions and abbreviations used for the fea-
tures applied in our study are listed in Table 1, and the
values of relevant amino acid properties that were used for
calculating these features can be found in Table 2.

In this study, we considered all bonds within a given pep-
tide to represent potential sites for fragmentation. As a
consequence, the failure to observe peaks resulting from
cleavage at these sites were not considered to denote that
cleavage had not occurred at these peptide bonds, but was
instead taken to indicate that cleavage at the sites con-
cerned was poor, i.e. the relevant peaks were too low in
intensity to be separated from the background noise.
Accordingly, all bonds within a given peptide were coded

separately into the network. One set of input corre-
sponded to features derived from only one target peptide
bond. We used 73 nodes in the input layer of the Bayesian
neural network to represent the 35 features of target pep-
tide/peptide bond as listed in Table 1. In order to repre-
sent the identification of the residue at N- or C- terminus
of the target peptide bond, we used 20 nodes to cover all
the 20 alternative amino acid identifications of one resi-
due. Their values are binary such that only one of the 20
nodes that correspond to the identification of the target
residue was set to 1 during training and all others were set
to zero. Every node in the input layer has been given an
independent coefficient to reveal its "relevance" to the
network output. The hidden layer comprises 40 nodes,
making the network less complicated while simultane-
ously maintaining enough computational power. The
activation function of the hidden layer is sigmoidal: f (x)
= 1+e-ωx, where ω is the parameter used to control satura-
tion. Finally, the neural network has only one output,
defined to represent the quantity of ions generated from
fragmentation at the specific peptide bond, i.e. it repre-
sents the unnormalized spectrum intensity of the particu-
lar target peptide bond. The network and all the other
relevant programs were implemented using Matlab.

Theoretically, one peptide can fragment into a complete
series of ions of smaller mass, comprising those desig-
nated as x, y, z and a, b, c ions, among which b and y ions
are usually the most prominent [20,24]. Typically, classi-
cal protein identification algorithms rank peptide candi-
dates according to the number of matches for both the b
and y ion series. However, it has been observed that b ions
are more likely to degrade into a variety of ions with lower
mass by losing CO, NH3 or other neutral components
[24], thus introducing difficulties in accurate evaluation
of their original intensities. To allow us to take advantage
of the intensity information of spectra, we made the
assumption that a doubly charged peptide can only frag-
ment into two singly charged ions rather than (albeit rel-
atively rarely), a doubly charged ion and a neutral
counterpart. Under this assumption, y/b ions would be
generated at the same rate during fragmentation, and thus
manifest the same ion intensities (before degradation) on
MS/MS maps, enabling us to focus only on intensities of
the y ions. In practice, however, doubly charged y ions
were still taken into account. We recorded the ion inten-
sity of a certain fragmentation site by summing up the
intensities of all y-related ions, including singly and dou-
bly charged y-ions and intensities of their degraded ions
from losses of H2O and NH3, while disregarding the
intensities of the complementary b-ion series. Recorded
intensity values of a peptide were firstly normalized by
dividing its intensity of total ion current and then times
100 to unify different intensity magnitude among pep-
tides. They are subsequently subject to log transformation
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to reduce intensity-dependent variances [29] and finally
normalized to [0, 1] scale.

For the pth peptide with np peptide bonds, we have an

input set {Bp1, Bp2,..., } representing all bonds within

the peptide. We obtain a set of output {Op1,Op2,..., }

from the neural network that can be normalized to a rela-
tive scale, as shown in Eq. 2:

Ipk-predict = 100·Opk/Opmax (k = 1,�, np) (2)

where Opmax = max{Op1, Op2,..., }. The normalized

output set Ipk-predict (k = 1,..., np) can hence be viewed as

normalized spectra intensities to approximate the real
spectra intensities Ipk-real (k = 1,..., np) observed from exper-

imental MS/MS data.

In contrast to the classical back-propagation algorithm
[27], the normalization process used in the training of the
neural network, leads to a unique way of updating net-
work weights. Let Epk be the error calculated at the kth pep-
tide bond of the pth peptide,

Epk = (Ipk-predict - Ipk-real)2/2

the derivatives of Epk can be evaluated using

where Wij is the weight connecting node i and j.

A Bayesian inference is applied with the neural network by
assuming that weights of the neural network W = {Wij}
have a Gaussian prior distribution [26,27]:

where α is the parameter controlling the distribution of
weights, ZW(α) is a normalization constant, and EW is the
error function for the weights defined as: EW = ||W||2/2.
We have also assumed that the noise present in experi-
mental MS/MS data also has a Gaussian prior distribu-
tion,

where D is the experimental data, β is the parameter con-
trolling the distribution of noise, ZD(β) is a normalization
constant, ED is the summation of error for all training pep-
tide bonds:

where m is the total number of peptides used in network
training and np is the number of bonds in the pth peptide.
By applying Bayesian theory on Eq. 4, Eq. 5, we have:

We need to maximize P(W|D) to train the neural network,
which is equal to minimize

E = β·ED + α·EW (7)

where ED, EW are error evaluated for network output and
weights as defined before, parameters α, β are pre-set val-
ues donating our guess on distribution of weights and
noise. The value of α and β are periodically re-evaluated
during training by the equation:

thereby updating our initial estimates regarding the distri-
bution of weights and noise, where Y is the dimension of
weights in the network.

In our network, every input node has a separate parameter
a to control distribution of weights connecting to it.
According to the ARD theory [27,28], α can also be used
to evaluate the relevance of each input to output. In prac-
tice, we trained the neural network 100 times with ran-
dom initial values of weights, and then evaluated α for
each input feature by taking the normalized average over
all training loops. The processed values of α, denoted as
irrelevance scores, are illustrated in Figure 2 and are dis-
cussed in the experimental section. A set of features that
are most relevant to peptide fragmentation can be
acquired by gradually reducing less important features in
the input (Figure 4).

Using selected features that have been proven to have sig-
nificant influence on peptide fragmentation, another
Bayesian neural network was constructed to predict the
intensity of fragmentation spectra given the sequence of a
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peptide. Such prediction has long been recognized as a
difficulty because MS/MS data typically contains a large
volume of noise. This noise results from a variety of fac-
tors, most of which are not relevant to the fragmentation
pathway followed by the peptide itself, including differ-
ences in sample preparation methodologies, the ioniza-
tion method used, the type of mass spectrometer, etc.
Even under identical experimental conditions, the ion
intensities resulting from fragmentation of a particular
peptide bond can vary considerably from experiment to
experiment, making accurate prediction impossible.
Accordingly, it is reasonable to take the fragmentation
process as a random event, i.e. although the fragmenta-
tion pathway of a given peptide is invariable, the relative
ion intensities generated along the pathway are not fixed.
For each potential ion-type, the degree of fragmentation
can fluctuate by a limited but nevertheless significant
amount, whereas for its MS/MS map, the relative ion
intensities values may vary considerably because of nor-
malization. In this work, we assumed that the quantity of
each ion species is Gaussian distributed. This assumption
was applied by assigning variances to outputs of the new
network with the reduced input feature set. For the kth

bond within the pth unknown peptide, normalization
process (Eq. 2) becomes a linear transformation. We have:

where P(W|D) is the posterior distribution of network
weights defined by Eq. 6. By applying the Taylor expan-
sion on training error (Eq. 7) around the weights whose
values maximize (locally) P(W|D) and retain terms up to
second order, we have

where Wbest is the weights that maximize (locally) P(W|D)
and H is the Hessian matrix of error function. By applying
Eq. 5 and Eq. 10 on Eq. 9, we have

We then approximate Ipk-predict by its linear expansion
around Wbest (as defined before),

Ipk-predict = Ipk-predict (Wbest) + gT(W - Wbest) (12)

where g is the first derivative of Ipk-predict. By applying Eq. 12
on Eq. 11,

where β is the parameter defined in Eq. 5, Eq. 8. Eq. 13
informs us that the unnormalized spectra intensities pre-
dicted by our neural network are actually Gaussian dis-
tributed with mean values directly given by the output
and variances given by Eq. 13 revealing that variances
come from two factors: the average noise level contained
in the MS/MS training data and the characteristics of the
particular cleavage peptide bond.
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