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A B S T R A C T   

This paper presents a new stochastic-based method for modelling and analysis of COVID-19 spread. A new 
deterministic Susceptible, Exposed, Infectious, Recovered (Re-infected) and Deceased-based Social Distancing 
model, named SEIR(R)D-SD, is proposed by introducing the re-infection rate and social distancing factor into the 
traditional SEIRD (Susceptible, Exposed, Infectious, Recovered and Deceased) model to account for the effects of 
re-infection and social distancing on COVID-19 spread. The deterministic SEIRD(R)D-SD model is further con-
verted into the stochastic form to account for uncertainties involved in COVID-19 spread. Based on this, an 
extended Kalman filter (EKF) is developed based on the stochastic SEIR(R)D-SD model to simultaneously esti-
mate both model parameters and transmission state of COVID-19 spread. Simulation results and comparison 
analyses demonstrate that the proposed method can effectively account for the re-infection and social distancing 
as well as uncertain effects on COVID-19 spread, leading to improved accuracy for prediction of COVID-19 
spread.   

1. Introduction 

At the end of 2019, the novel coronavirus, SARS-CoV-2 (COVID-19), 
firstly appeared in Wuhan, the city of Hubei province in the People’s 
Republic of China and spread rapidly around the world. The patho-
genesis of the virus is characterized by respiratory tract infection, which 
directly leads to pneumonia showing ground glass alveolar angiography. 
The COVID-19 virus is contagious from the people infected even though 
they may not show symptoms (asymptomatic infections). Although 
China, United States, Italy, Australia and other countries have succes-
sively adopted various containment and detection measures, the cu-
mulative number of diagnoses is still increasing every day. The 
occasional rebound has also hampered the implementation of economic 
recovery plans. In order to better control and monitor the epidemic, 
mathematical modelling of COVID-19 becomes an area of active 
research. 

Predictive mathematical models for epidemics are essential to un-
derstand the propagative characteristics of COVID-19 and to implement 
the intervention and preparedness measures for controlling the disease 
spread. The current existing research efforts on prediction of infectious 
diseases are mainly dominated by the agent-based and compartmental 

models. The agent-based model involves a complex process to define 
agent behaviours together with their associated interaction mechanisms 
and intervention rules, leading to expensive computations. Chang et al. 
developed an agent-based model to study the effect of social distancing 
(SD) compliance on COVID-19 spread [28]. Kerr et al. proposed a 
methodology of COVID-19 agent-based simulator, which is used to 
explore different intervention scenarios [29]. However, both methods 
depend on a large number of samples and rules, leading to the difficulty 
of parameter identification. They also require an expensive sensitivity 
analysis to determine the prediction robustness. Therefore, these two 
methods can only use a relatively small number of agents for COVID-19 
modelling, leading to the limited modelling accuracy. 

Comparing to the agent-based model, the compartmental model is 
simple and correlated to observation [28]. It involves a dynamic process 
based on how the population is divided into different compartments to 
describe the transmission state [1]. The SIR (Susceptible, Infectious and 
Recovered) model divides the population into the susceptible, infectious 
and recovered compartments to describe the state of disease spread, 
where people who are susceptible to infection will possibly be infected, 
and the infected people will be recovered with a certain rate. The SEIR 
(Susceptible, Exposed, Infectious and Recovered) model introduces the 
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exposed compartment into the SIR model to describe the intermediate 
state between the susceptible and infected people. Since the ferocity of 
the epidemic has claimed many lives, its lethality cannot be ignored. 
However, neither SIR nor SEIR considers the lethality of the disease. The 
deceased compartment is thus introduced in parallel to the recovered 
compartment to describe the possibility of disease transmission from 
infected people via the transmitting rate from the infected to deceased 
compartment [2]. The SIRD (Susceptible, Infectious, Recovered and 
Deceased) model introduces the deceased compartment into the SIR 
model to consider the fatal condition. Similarly, the SEIRD (Susceptible, 
Exposed, Infectious, Recovered and Deceased) model introduces the 
deceased compartment into the SEIR model to describe disease trans-
mission between humans. 

Since the outbreak of COVID-19 pandemic, especially in the absence 
of vaccines, various SD measures such as flight restriction, school 
closure, indoor activity restrictions and quarantine [28] have been 
widely adopted by governments to reduce the cross-infection possibility 
[3,4]. Therefore, it is necessary to account for the effect of SD compli-
ance on COVID-19 spread in epidemiological modelling. Further, pa-
tients cannot develop the lifelong immunity after recovery and the 
SARS-CoV-2 virus mutates over time, causing immune evasion [5,8]. 
Therefore, it is also necessary to take into account the deceased 
compartment and the re-infection rate from the recovered to susceptible 
compartment into epidemiological modelling. Hagger et al. studied a 
social cognition model by taking into account the distance between in-
dividuals in the SEIR model [6]. However, this model does not consider 
the deceased people and re-infection effect. Malkov studied how the 
possibility of reinfection shapes the epidemiological dynamic based on 
the SEIR model [31]. However, the lethality of COVID-19 is not 
considered. Further, all containment measures are integrated into the 
transmission rate, unable to characterize the effects of various kinds of 
containment measures on COVID-19 spread. 

Distinct from other infectious diseases, COVID-19 has a randomly 
variable incubation period. It mutates with varying infectivity and 
pathogenicity (e.g. the B.1.1.7 and B.1.617.2 variants have increased 
infectivity and shorter incubation period of about 24 h), making the 
incubation period of COVID-19 and its associated infection rate involve 
randomness [8,27]. Moreover, since the potential sources of infection 
are unknown, asymptomatic infections are difficult to detect, resulting 
in uncertainties in reported infection cases [7]. The inadequate contact 
tracing, lack of population-wide PCR testing and short-term policy 
changes also cause the uncertainties in reported data on COVID-19 [32]. 
However, the existing studies on COVID-19 modelling are dominated by 
deterministic epidemiological models for describing the epidemiological 
evolution deterministically via ordinary differential equations, unable to 
model the stochastic behaviours of the COVID-19 epidemic [9,10]. 
Therefore, it is also necessary to develop a stochastic epidemiological 
model to account for random or stochastic events involved in the 
COVID-19 transmission system. 

In addition to an epidemiological model, dynamic modelling of 
COVID-19 pandemic also requires a real-time algorithm to estimate the 
transmission state online. The recursive least square (RLS) is a tradi-
tional method for online parameter estimation in epidemiological 
modelling [1,11]. It can generate optimal state estimation via mini-
mizing the linear least-squares cost function related to system observa-
tions. As an improvement of RLS, the Kalman filter (KF) introduces the 
system state equation in RLS to calculate the propagation of system state 
via a prediction process. It can achieve optimal state estimation in the 
accuracy of minimum mean square error, even in the absence of ob-
servations. Kumar et al. developed a KF based on a linear forest 
regression model that describes the correlations between infected in-
dividuals to predict the future trend of COVID-19 [11]. Arroyo-Marioli 

et al. used KF to estimate the basic reproduction number of COVID-19 
based on a linearized form of the SIR model [2]. Nevertheless, RLS 
and KF can be applied to linear systems only [12], while the existing 
epidemiological models for COVID-19 forecast are nonlinear. The con-
strained least-squares (CLS) [13] and Markov chain Monte Carlo 
(MCMC) [14] are the commonly used estimation method for nonlinear 
epidemiological models. However, since CLS and MCMC are based on 
maximum posteriori estimates of probability density function, the ac-
curacy of both methods heavily depends on the sample size [13]. 
Further, both methods also involve expensive computations and can 
only be conducted in an offline manner. Accordingly, they are unsuit-
able for characterising random uncertainties involved in epidemiolog-
ical model parameters for COVID-19 prediction. 

As an improvement of KF for nonlinear systems, the extended Kal-
man filter (EKF) dynamically linearizes the nonlinear system model to 
employ the traditional KF for online state estimation. Comparing to CLS 
and MCMC, EKF is a simple iterative algorithm with significant 
computational efficiency for nonlinear epidemiological modelling [15, 
16]. So far, there has been very limited research on using EKF for 
epidemiological modelling, especially in COVID-19. Just recently, Has-
san et al. developed an EKF based on the SEIR model for modelling of 
COVID-19 spread, but without considering the exposed patients and 
incubation period [17]. Younes and Hassan developed an EKF based on 
the Lotka-Volterra model to estimate COVID-19 spread [18]. However, 
the predator-prey interaction mechanism described by the 
Lotka-Volterra model has a very limited capacity to model the complex 
characteristics of the natural transmission process of COVID-19. Song 
et al. studied a novel maximum likelihood based EKF to estimate 
COVID-19 spread [9]. However, since this method is based on a deter-
ministic epidemiological model, it is incapable of characterizing the 
stochastic characteristics of COVID-19 spread. Further, it does not 
consider the re-infection and SD effects either. 

This paper presents a new stochastic-based method for estimation 
and prediction of COVID-19 spread. This method introduces the 
deceased compartment with the death rate, and the re-infection rate that 
characterizes the transmission from the infected back to susceptible 
compartment, into the SEIRD model, leading to a new deterministic 
Susceptible, Exposed, Infectious, Recovered (Re-infected) and Deceased- 
based Social Distancing model, named SEIR(R)D-SD, to account for both 
re-infection and the SD effects of COVID-19. Subsequently, the sto-
chastic version of the deterministic SEIR(R)D-SD model is constructed 
according to the probabilities of independent random changes occurred 
in the system to account for the stochastic characteristics of COVID-19 
spread. Based on this framework, an EKF algorithm is developed for 
online estimation of the spreading behaviours of COVID-19, where the 
system state equation and system observation equation are constructed 
and the model parameters of SEIR(R)D-SD are also augmented into the 
system state to simultaneously estimate both model parameters and 
system state. Simulation results are consistent with the COVID-19 
epidemic in Australia, where the multiple outbreak waves are accu-
rately captured by the proposed method [33]. They also reveal that SD 
restriction can postpone the COVID-19 outbreak and the re-infection 
rate can reflect the non-lifelong immunity characteristic of COVID-19. 

2. Methodology 

2.1. SEIR(R)D-SD model 

The SEIRD model has an additive deceased compartment associated 
with the death rate [19,20]. It constitutes the following time-continuous 
deterministic system 
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

=
− βS

N
I

dE
dt

=
βS
N

I − αE

dI
dt

= αE − γI

dR
dt

= γI

dD
dt

= μI

(1)  

where S, E, I, R and D denote the susceptible, exposed, infectious, 
recovered and deceased compartments, N is the total population; and α, 
β, γ and μ are the model parameters, where α is the infection rate which 
is the inverse of the incubation period, β is the exposing rate, γ is the 
recovery rate, and μ is the death rate. For simplicity and consideration of 
the limited immigration-emigration effect on population due to border 
restriction policies, N is generally considered as a constant for COVID-19 
modelling [30,33]. 

Suppose that the community of all the compartments is closed, i.e., 

S+E + I + R + D = N (2) 

By introducing the SD factor ρ into the deterministic SEIRD model to 
study the SD effect and by introducing a factor κ in S and R to represent 
the rate from the recovered to susceptible compartment to account for 
the re-infected population [20], the deterministic SEIR(R)D-SD model 
can be written as 

dS
dt

=
− ρβIS

N
+ κR (3)  

dE
dt

=
ρβIS

N
− αE (4)  

dI
dt

= αE − (γ + μ)I (5)  

dR
dt

= γI − κR (6)  

dD
dt

= μI (7)  

where κ is the re-infection rate, and ρ is the SD factor which is dynam-
ically changed with the compliance levels of various SD policies such as 
travel restriction, lockdown or semi-lockdown, self-quarantine and 
school closures [28]. 

Fig. 1 illustrates the structure of the SEIR(R)D-SD model. The 
deceased compartment is outside the loop of disease spread to leave the 
community with the death rate μ, while the rest of the compartments 
form a loop, where the susceptible compartment which is initially pre-
sumed as the total population size, is transferred to the exposed 
compartment with the exposing rate β and the SD factor ρ, and the 
recovered compartment will return to the susceptible compartment to 
cyclically transmit the disease in the community. 

2.2. Stochastic SEIR(R)D-SD model 

In this section, we discuss how to convert the above deterministic 
SEIRD(R)D-SD model into a stochastic model according to the possi-
bilities of all the independent random changes occurred in the system. 

According to (2), 

R(t)=N − (S(t)+E(t) + I(t)+D(t)) (8) 

Substituting (8) into (3)–(7), the deterministic SEIR(R)D-SD model 
becomes 

dS(t) / dt =( − ρβI(t)S(t)) /N + κ[N − (S(t)+ I(t) +E(t)+D(t))] (9)  

dE(t) / dt = ρβI(t)S(t)/N − αE(t) (10)  

dI(t) / dt= αE(t) − (γ + μ)I(t) (11)  

dD(t) / dt = μI(t) (12) 

Equation (9)~(12) can be combined into the following form 

dx(t)= f (x(t))dt (13)  

where x(t) = [ S(t) E(t) I(t) D(t) ]T is the four-dimensional system 
state consisting of the susceptible, exposed, infected and death com-
partments, and f( ⋅) is the nonlinear system function. 

Discretizing (13) in time domain, we can have the following discrete- 
time SEIR(R)D-SD model 

xk+1 = xk + f (xk) (14)  

where xk is the system state at time point k. 
The deterministic discrete system (14) involves four random changes 

with each occurred to at least one of the state parameters. Define the jth 
random change as 

rj =

{
λj with  probability  pj
04×1 with  probability  1 − pj

(j= 1, 2, 3, 4) (15)  

where pj denotes the probability of the jth change and λj denotes the 
transition of the system state under the jth change, both of which are 
obtained from (9)~(12) and given in Table 1. 

By summing each random change for the system state, a simple 
stochastic form of (14) can be written as 

xk+1 = xk +
∑4

j=1
rj (16)  

where it is known from (15) that 
∑4

j=1rj obeys the normal distribution 

with expectation f(xk) =
∑4

j=1pjλj and variance G(xk) =
∑4

j=1pjλjλj. 
Approximating the random changes rj using a normal random vector 

σj ∼ N (0, 1) via the central limit theorem [21,22] yields 

xk+1 = xk + f (xk) + g(σk) (17)  

where σ = [ σ1 σ2 σ3 σ4 ], and g(σk) = G1/2σk which is subject to the 
Gaussian distribution. 

Fig. 1. Structure of the SEIR(R)D-SD model.  

Table 1 
Random changes involved in the SEIR(R)D-SD model where Δt 
denotes the time step.  

Transition of change Probability 

λ1 = [ − 1 1 0 0 ]
T  p1 = βSkIkN− 1Δt  

λ2 = [0 − 1 1 0 ]
T  p2 = αEtΔt  

λ3 = [ κ 0 − 1 0 ]
T  p3 = (γ + μ)ItΔt  

λ4 = [ − κ 0 0 1 ]
T  p4 = μDtΔt   
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2.3. System state and observation equations 

Simplifying (17) yields 

xk+1 =ϕ(xk) + wk (18)  

where ϕ(xk) = xk + f(xk) and wk is the system noise. 
Since the reported data are in terms of the infectious, recovered and 

dead compartments only, the system observation is constructed as 

zk =Hkxk + vk (19)  

where zk is the system observation (i.e., the reported data); vk is the 
observation noise which is assumed to be white noise with covariance R 
and is independent of wk; and Hk is the observation matrix which is 
expressed as 

Hk =

⎡

⎣
0 0 1 0
1 1 1 1
0 0 0 1

⎤

⎦ (20) 

The nonlinear function ϕ(xk) can be linearized as  

where Fk is the Jacobian matrix, which is expressed as 

Fk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −
ρβIk

N
0 −

ρβSk

N
− κ

(
N −

∑
(Sk,Ek, Ik,Dk)

)
0

−
ρβIk

N
1 − α ρβSk

N
0

0 α 1 − (γ + μ) 0

0 0 μ 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22) 

Since the epidemiological model parameters are random unknowns, 
they must also be estimated in the filtering process to account for their 
randomness. Accordingly, we augment the model parameters into the 
system state as 

Xk =

[
xk
θk

]

(23)  

where Xk is the augmented system state and θk. collects the model pa-
rameters including the infection rate α, exposing rate β, recovery rate γ, 
death rate μ , re-infection factor k and SD factor ρ. 

Correspondingly, the system state equation (18) becomes 

Xk+1 =ΦkXk + Wk. (24)  

where Wk is the process noise which is assumed as a white noise with 
covariance Q, and Φk is the augmented system function which is rep-
resented as 

Φk =

[
Fk 0
0 I

]

(25)  

where I is the 6 × 6 unit matrix. 
The EKF procedure for estimating the model parameters and trans-

mission state involves the following steps:  

i) Set the initial system state and its associated covariance 

X̂0 =E[X0] (26)  

P̂0 =E
[(

X0 − X̂0

)(

X0 − X̂0

)T]

(27)    

ii) Calculate the predicted state and its associated covariance 

X̂
−

k+1|k =ϕ
(

X̂k

)

(28)  

P−
k+1|k =ΦkPkΦk + Qk (29)    

iii) Calculate the Kalman gain 

Kk =P−
k+1|kHT

(
HP−

k+1|kHT +Rk

)
(30)    

iv) Update the estimated state and its associated covariance 

X̂k+1 = X̂
−

k+1|k + Kk

(

ẑk − HX̂
−

k+1|k

)

(31)  

P̂k+1 =(I − KkHk)P−
k+1|k(I − KkHk)

T
+ KkRkKk (32)    

v) Repeat (28)–(32) until all iterations are processed. 

3. Performance evaluation 

Simulations were conducted to comprehensively evaluate the per-
formance of the proposed method for COVID-19 modelling in terms of 
the following aspects: (i) the effectiveness of the proposed deterministic 
SEIR(R)D-SD model in comparison with the classical SEIRD model; (ii) 
the effectiveness of the proposed EKF based on the stochastic SEIR(R)D- 
SD model in comparison with the numerical solution of the deterministic 
SEIR(R)D-SD model; and (iii) the effectiveness of the proposed EKF 
based on the stochastic SEIR(R)D-SD model in comparison with the 
numerical solution of the classical SEIRD and the proposed deterministic 
SEIRD(R)D-SD models based on CLS parameter identification for 
modelling of the pandemic in Australia from daily reported data. It 
should be noted that the COVID-19 pandemic in Australia is considered 
for verification and validation purposes only, while the proposed 
method is generic and independent of application cases and thus it can 
also be used to predict COVID-19 pandemics in any other countries/ 

Table 2 
The values of the model parameters.   

α  β  γ  μ  κ  ρ  

SEIRD model 0.14 0.6 0.12 0.01 0 0 
Deterministic SEIR(R)D-SD model 0.14 0.6 0.12 0.01 0.005 0.6  

ϕ(xk)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk − β
SkIk

N
+ κ

(
N −

∑
(Sk,Ek, Ik,Dk)

)

Ek + β
SkIk

N
− αEk

Ik + αEk − (γ + μ)Ik

Dk + μDk

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

≈ Jacobian(ϕ(xk))

⎡

⎢
⎢
⎣

Sk
Ek
Ik
Dk

⎤

⎥
⎥
⎦=Fkxk (21)   
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regions. 
The modelling accuracy is evaluated in terms of the root mean- 

squares error (RMSE), which is defined as 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
k=1

(

X̂k − Xtrue

)2

N

√
√
√
√
√

(33)  

where Xtrue denotes the ground truth and N the number of samples. 

3.1. Deterministic SEIR(R)D-SD model 

Simulation tests were conducted to evaluate the performance of the 
deterministic SEIR(R)D-SD model in comparison with the classical 
SEIRD model. The simulation time was set to 200 days. The model pa-
rameters are given in Table 2. 

Fig. 2(a) illustrates the numerical solution of the classical SEIRD 

model. The susceptible population decreases and the recovered popu-
lation increases exponentially from day 40–100, whereas both exposed 
and infected populations quickly increase and then decrease after day 
50. After day 100, the populations of all the compartments remain sta-
ble, where the susceptible, infected and exposed populations decrease to 
zero while the deceased population remains at a constant. For the 
deterministic SEIR(R)D-SD model, as shown in Fig. 2(b), due to the SD 
effect, the peaks of the exposed, infected and recovered populations are 
lower than those of the classical SEIRD model. 

Despite the steep drop, the susceptible population does not drop to 
zero and slightly increases after day 100 due to the re-infection effect. 
Due to the SD effect, the peaks of the exposed and infected populations 
are delayed from day 50–100, comparing to those of the SEIRD model. 
Due to the transfer from the recovered to infected compartment via the 
re-infection rate, the infected population gradually increases after the 
steep decrease from day 50–100, while the recovered population grad-
ually decreases after the steep increase from day 50–100. The results 

Fig. 2. The population ratios of the susceptible, exposed, infected, recovered and deceased compartments calculated by the numerical solutions of (a) the classical 
SEIRD model; and (b) the proposed deterministic SEIR(R)D-SD model (ρ = 0.5 and κ = 0.005). 

Fig. 3. The population ratios of the infected (a) and recovered (b) compartments calculated by the numerical solution of the deterministic SEIR(R)D-SD model under 
three different re-infection rates (κ = 0, κ = 0.005 and κ = 0.01). 
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show that SD restriction can postpone the disease outbreak and the re- 
infection rate can reflect the non-lifelong immunity characteristic of 
COVID-19. 

Simulations were also conducted to evaluate the effects of the re- 
infection rate κ and SD factor ρ. 

Fig. 3(a) illustrates the variations of the infected populations under 
three different κ values, i.e., κ = 0, κ = 0.005 and κ = 0.01, without 
involving the SD effect (i.e. the natural spread case of ρ = 1). In the case 
of κ = 0 (lifelong immunity), the infected population rises steeply from 
zero to the peak and then quickly reverts to zero and eventually remains 
at zero after day 120. In the case of κ = 0.005, the infected population 
has a similar trend as that in the case of κ = 0. before day 140, while it 
gradually increases after day 140 since the re-infected people cause the 
disease to spread in the community. In the case of κ = 0.01, the infected 
population has a similar trend as in the cases of κ = 0 and κ = 0.005 
before day 130, whereas it gradually increases again after day 130. It 
can be seen that the larger the κ value is, the more the infected popu-
lation will rebound, leading to the higher chance that the disease will 
break out again in the future. 

Fig. 3(b) illustrates the trends of the recovered population ratio 
under the three different re-infection rates. Before day 50, the recovered 
populations for all the three cases have a similar trend and all rise 
quickly. This is because the recovered population is too small at the 
beginning of disease spread, leading to a similar re-infection effect for 
the three cases. After day 50, the recovered population becomes stable 
for the cases of κ = 0, while the recovered populations for both cases of 
κ = 0.005 and κ = 0.01gradually decrease, where the decrease in the 
case of κ = 0.01 is almost the twice of that in the case of κ = 0.005. The 
larger the re-infected rate is, the more the recovered population will 
decrease. The resultant increase of the infected population and the 
resultant decrease of the recovered population after day 130 indicate 
that future COVID-19 outbreaks may occur. 

Simulation tests were also conducted to evaluate the SD effect. As 
shown in Fig. 4, both exposed and infected populations decrease 
significantly, and their peaks are also postponed when the SD factor ρ is 
changed from 1 to 0.5. The peak population ratios for both populations 
in the case of ρ = 0.6 are only about 20% and 40% smaller than those in 
the case without SD restriction (i.e., ρ = 1). Further, in the case of ρ =

0.5, the ratios of both populations are about 40% and 50% smaller than 
those in the case of natural spread (i.e., ρ = 1). This is because SD re-
striction directly reduces the transmission rate from the susceptible to 
exposed compartment. However, since SD restriction does not affect the 
total exposed population, the cases of SD restriction (i.e., ρ = 0.6 and 
ρ = 0.5) postpone the peaks of both exposed and infected populations 
for about 40 days and 60 days comparing to the case without SD re-
striction (i.e., ρ = 1). It can be seen from the results that the smaller the 
SD factor is, the lower the risk of disease outbreak will be. However, SD 
restriction can only keep the transmission rate from the susceptible to 

exposed compartment at a low level to delay disease outbreaks, while 
unable to prevent them. 

3.2. EKF based on stochastic SEIR(R)-D model 

To evaluate the stochastic SEIR(R)D-SD model and its associated 
EKF, the observation data were generated by adding a random white 
noise of covariance Q = 0.001 in the numerical solution of the deter-
ministic SEIR(R)D-SD as shown in Fig. 2(c) to simulate the actual re-
ported data of COVID-19 spread that involve uncertainties. 

Based on the observation data shown in Fig. 5, both model param-
eters and transmission state are estimated by the proposed EKF based on 
the stochastic SEIR(R)D-SD model. Fig. 6 illustrates the model param-
eters estimated by EKF with reference to their true values given in 
Table 2. It can be seen that the EKF estimations of the model parameters 
closely approximate their true values. As shown in Table 3, the esti-
mation RMSEs (Root Mean Square Errors) are 0.0032, 0.011, 0.0018, 
0.00085, 0.0036 and 0.012 for parameters α, β, γ, μ, κ and ρ, respec-
tively, demonstrating that the proposed EKF based on the stochastic 
SEIR(R)D-SD model can effectively estimate the model parameters. 

Fig. 7 illustrates the errors of the compartment populations esti-
mated by the proposed EKF from the noisy observation data. The esti-
mations of each compartment population resulted from the noisy 
observation data converge to their true values quickly, with the RMSE of 
0.0032 for the susceptible, 0.0021 for the exposed, 0.0035 for the 
infected, and 0.00064 for the deceased population. This demonstrates 
that the proposed EKF based on the stochastic SEIR(R)D-SD model can 
effectively predict the transmission state from noisy observation data. 

To further evaluate the stochastic SEIR(R)D-SD model, the non-noisy 
measurement data, i.e., the numerical solution shown in Fig. 2(b), were 
also used as observations to estimate the compartment populations by 
the proposed EKF based on the stochastic SEIR(R)D-SD model. As shown 
in Fig. 7, the estimations of each compartment population from the non- 
noisy observation data converge to their true values within a very short 
time period, demonstrating the stochastic SEIR(R)D-SD model is a 
particular case of the deterministic SEIR(R)D-SD model in the ideal 
condition. Table 4 lists the RMSEs of the compartment populations 
estimated by the proposed EKF based on the stochastic SEIR(R)D-SD 
model from both noisy and non-noisy observation data. 

3.3. COVID-19 pandemic in Australia 

In Australia, a hotspot of the COVID-19 pandemic, as of September 
30, 2020, the Australian government reported 27,078 total confirmed 
cases and 886 deaths [23]. The pandemic started in January and reached 
the first peak on April 6, 2020. Its second wave started at the end of June 
2020 and reached the peak on 9th August. The Australian government 
adopted a series of SD measures such as travel restriction policies, school 

Fig. 4. The population ratios of the exposed, infected and deceased compartments calculated by the numerical solution of the deterministic SEIR(R)D-SD model.  
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closure, indoor activity restrictions and quarantine to control the virus 
spread. The infected cases were almost vanished in the mid of June 
2020. However, when the compliance level of SD restriction was relaxed 
at the end of May 2020 due to a good progress in controlling the first 
outbreak and the urgent desire for economic recovery, the second 
outbreak occurred at the end of June 2020. 

Simulation trials were conducted by tracking and analysing the 
COVID-19 spread in Australia during the outbreak period of 230 days 
from 22nd January to September 8, 2020. According to the report of 
United Nations Population Division [24], the Australian population were 
about 25.5 million during the COVID-19 pandemic. We collected the 
reported cases within 230 days from 22nd January to September 8, 2020 
from the World Health Organization (WHO) Novel Coronavirus Situa-
tion Report [25]. As shown by the reported data in Fig. 8, the COVID-19 

spread in Australia has two outbreaks from 22nd January to September 
8, 2020, where the first outbreak was occurred on about day 75 and the 
second outbreak started from day 160. 

Since the true values for the actual cases are unknown, the reported 
data were taken as reference for calculation of estimation error. The 
initial state and noise covariances were set based on the observation 
data on the first day of the simulation analysis. The initial values of the 
model parameters are given in Table 5. For comparison analysis, the 
transmission state was also calculated from the SEIRD and deterministic 
SEIR(R)D-SD models based on parameter identification via the offline 
CLS algorithm [1,26] under the same conditions. 

Fig. 8 illustrates the infected, recovered, and deceased populations 
calculated by the numerical solutions of the SEIRD model and deter-
ministic SEIR(R)D-SD models based on CLS as well as those estimated by 
the proposed EKF based on the stochastic SEIR(R)D-SD model. As shown 
in Fig. 8(a), the numerical solution of the SEIRD model presents only one 
peak (i.e., only one outbreak). The maximum infected population 
calculated from the SEIRD model is about 850 more than and about 10 
days earlier than that in the report data. Further, the infected population 
quickly drops to zero after the only peak, leading to a significant error. 
Different from that of the SEIRD model, the numerical solution of the 

Fig. 5. Simulated observation data generated by adding a white noise in the numerical solution of the deterministic SEIR(R)D-SD model.  

Fig. 6. Model parameters estimated by the proposed EKF based on the stochastic SEIR(R)D-SD model.  

Table 3 
RMSEs of the model parameters estimated by the proposed EKF based on the 
stochastic SEIR(R)D-SD model.   

α β γ μ κ ρ 

EKF 0.0032 0.011 0.0018 0.00085 0.0036 0.012  
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deterministic SEIR(R)D-SD model for the infected population presents 
two outbreaks. Although the first outbreak is occurred closely to that in 
the report data, due to the inability to account for uncertainties involved 
in COVID-19 spread, the numerical solution of the deterministic SEIR(R) 
D-SD model for the infected population involves an obvious error, 
leading to the second outbreak with a delay of about 20 days and a 
deviation of 1237 infections comparing to that in the reported data. In 
contrast, the solution of the proposed EKF based on stochastic SEIR(R)D- 
SD model for the infected population is much closer to the report data 

than that of the deterministic SEIR(R)D-SD model, and the estimated 
two outbreaks are in a good agreement with those in the report data. 

As shown in Fig. 8(b) and (c), the solutions of the recovered and 
deceased populations by the three methods have a similar trend as those 
of the infected population. The numerical solutions of the SEIRD model 
for the recovered and deceased populations remain at a constant value 
after day 120 and 110, respectively, both of which miss the second 
outbreak. Although the solutions from the deterministic and stochastic 
SEIR(R)D-SD models follow the report data and present the two out-
breaks, the solution estimated by the proposed EKF based on the 

Fig. 7. Estimation error by the proposed EKF based on the stochastic SEIR(R)D-SD model.  

Table 4 
RMSEs of the proposed EKF based on the stochastic SEIR(R)D-SD model.   

Susceptible Exposed Infected Recovered Deceased 

Without 
noise 

3.2 × 10− 3 2.1 ×
10− 3 

1.2 ×
10− 3 

3.5 × 10− 3 6.4 ×
10− 4 

With noise 8.2 × 10− 3 4.4 ×
10− 3 

3.1 ×
10− 3 

5.5 × 10− 3 1.2 ×
10− 3  

Fig. 8. The infected, recovered and deceased populations by the numerical solutions of the SEIRD and deterministic SEIR(R)D-SD models based on CLS and the 
estimation solution of the proposed EKF based on the stochastic SEIR(R)D-SD model for the COVID-19 pandemic in Australia: (a) the infected population; (b) the 
recovered population; and (c) the deceased population. 

Table 5 
The initial values of the model parameters for the COVID-19 pandemic in 
Australia.  

Parameters β0  α0  γ0  μ0  κ0  ρ0  

Value 0.63 0.24 0.03 0.01 0.001 0.5  
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stochastic SEIR(R)D-SD model approximates the reported data more 
closely than the numerical solution of the deterministic SEIR(R)D-SD 
model for both recovered and decreased populations. 

The RMSEs for the infected, recovered and deceased populations are 
shown in Table 6. The RMSEs of the infected, recovered and deceased 
populations obtained by the numerical solution of the SEIRD model are 
5064, 6614 and 311. The corresponding RMSEs of the deterministic 
SEIR(R)D-SD model are 472, 556 and 35, which are about 10 times 
smaller than those of the SEIRD model, whereas the corresponding 
RMSEs of the proposed EKF based on the stochastic SEIR(R)D-SD model 
are 203, 225 and 17, which are more than twice smaller than those of the 
deterministic SEIR(R)D-SD model and more than 20 times smaller than 
those of the SEIRD model. Thus, it is evident that the proposed EKF 
based on the stochastic SEIR(R)D-SD model has much higher accuracy 
than the SEIRD and deterministic SEIR(R)D-SD models for modelling of 
COVID-19 spread. Table 6 also compares the prediction means of the 
three methods with reference to the means of the reported data, which 
further verifies the above conclusion. 

4. Conclusion 

This paper presents a new method for COVID-19 modelling. The 
novelties of this method are: (i) a deterministic SEIR(R)D-SD model is 
developed to account for the re-infection and SD effects on COVID-19 
spread; (ii) a stochastic SEIR(R)D-SD model is developed from the 
deterministic SEIR(R)D-SD model to account for uncertainties involved 
in COVID-19 spread; and (iii) based on the stochastic SEIR(R)D-SD 
model, an EKF algorithm is developed to simultaneously estimate both 
model parameters and transmission state. Simulations and comparison 
analyses demonstrate that the proposed method can effectively account 
for the re-infection and SD effects as well as uncertainties on COVID-19 
spread, leading to increased accuracy for COVID-19 modelling. 

The future research work will focus on improvement of the proposed 
method to account for the vaccination effect especially due to the 
vaccination rollout on COVID-19 spread. A new compartment and its 
associated rate will be introduced into the proposed SEIR(R)D-SD model 
to characterize the behaviours of vaccination, leading to a new sto-
chastic epidemiological model and its associated real-time estimation 
algorithm for COVID-19 modelling. 
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