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ABC efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a
biochemical barrier against drug penetration and contribute to detoxification.Their overexpression is linked tomultidrug resistance
issues in a diversity of diseases. Breast cancer resistance protein (BCRP) is themost expressedABCefflux transporter throughout the
intestine and the blood-brain barrier, limiting oral absorption and brain bioavailability of its substrates. Early recognition of BCRP
substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous system conditions, and
overcome BCRP-mediated cross-resistance issues. We present the development of an ensemble of ligand-based machine learning
algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and nonsubstrates compiled from the
literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The
models were developed through application of linear discriminant analysis to random subsamples of Dragonmolecular descriptors.
Simple data fusion and statistical comparison of partial areas under the curve of ROC curves were applied to obtain the best 2-model
combination, which presented 82% and 74.5% of overall accuracy in the training and test set, respectively.

1. Introduction

ATP-binding cassette (ABC) efflux transporters comprise
a diversity of active carriers which provide an efficient
mechanism of defense against foreign chemicals (i.e., xenobi-
otics), among them drugs. To elicit the therapeutic response,
drugs must often cross a number of cellular barriers, such
as the gut wall and the capillaries endothelial cells. ABC
efflux transporters limit drug absorption and distribution by
translocating drugs from the cytoplasm to the cell exterior.
These transporters are preferentially expressed at tissues that

present barrier and/or excretory functions, for example, the
intestinal wall, the canalicular membrane of hepatocytes
in the liver, or the luminal membrane of the tubular cells
in the kidney [1, 2], reducing the bioavailability of their
substrates. Moreover, due to their wide substrate specificity,
overexpression of such transporters is associated with cross-
resistance phenomena to structurally unrelated drugs (mul-
tidrug resistance) in a wide range of diseases, from cancer
to epilepsy [3–5]. Efflux transporters and metabolic enzymes
seem to act in a coordinated or synergic manner, with the
biotransformation products being often substrates for these
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drug carriers [1]. Furthermore, metabolizing enzymes and
efflux transporters are also upregulated in a coordinatedman-
ner by common nuclear receptors that, upon environmental
chemical triggering agents, induce the expression of host
defense systems towards potentially toxic chemical agents
[1, 6, 7].

Even though P-glycoprotein (also known as ABCB1 or
MDR1) was the first identified and is the most extensively
studied member of the ABC superfamily, recent studies
suggest that the effect of anothermember, breast cancer resis-
tance protein (BCRP, or ABCG2) might have been underes-
timated in the past. A number of reports indicate that BCRP
is the most abundantly expressed ABC efflux transporter in
different segments of human intestine, both at mRNA [8, 9]
and protein levels [10]. Similar observations have been found
at the blood-brain barrier, where BCRP mRNA levels are
around 8 times above those of P-glycoprotein and represent
85% of the total ABC transporters mRNA [11], while at the
protein level, BCRP levels are about 1.6 times higher [12, 13].
Therefore, regulation of BCRP and/or early recognition of
BCRP substrates are critical aspects to optimize oral drug
absorption, increase drug bioavailability, and design novel
therapeutics aimed at brain conditions and diseases linked to
BCRP-mediated multidrug resistance issues (e.g., cancer).

The most advanced research regarding ABC transporters
modulation relates to add-on therapies of specific inhibitors
of ABC transporters, a strategy that was originally conceived
for cancer treatment. Although preclinical and initial clinical
results with first- and second-generation inhibitors have been
encouraging, some trials stopped at phase III due to serious
adverse effects [3, 5, 14–16]; such outcomehas put in doubt the
strategy of overcoming cellular drug resistance by the use of
transporters inhibitors, even though trials continue in order
to find more effective and safe inhibitors for P-glycoprotein
and other drug carriers [16]. It is worth highlighting that ABC
transporters comprise a concerted, complex transport system
whose substrates are not only drugs, but also endogenous
compounds (e.g., waste products, bile salts) and toxins.
Thus, their permanent impairment or disruption is likely to
result in severe side effects (especially in those therapeutic
backgrounds that demand long-term treatment). Recent
research has then focused on elucidating intracellular signal-
ing pathways that control ABC transporters (their expression,
intracellular trafficking, activation, and inactivation). It is
proposed that finding the molecular switches of these trans-
porters will allow selective modulation of transporters func-
tion and/or expression for therapeutic purposes in different
clinical scenarios [17], which includes turning off the efflux
mechanisms for short, controlled periods of time. Other
alternatives, probably safer approaches propose avoidance
of substrate-transporter interaction by the encapsulation of
therapeutic agents within nanosystems (a “Trojan horse”
approach) [18], or designing drugs or prodrugs which are not
recognized by drug carriers [16, 19, 20].

At present, limited studies have been done to develop
high throughput in silico models for the early identification
of BCRP substrates, in order to assist virtual screening
and computer-aided design of novel BCRP nonsubstrates
therapeutics. Recently, Hazai et al. obtained a support vector

machine model based on 5 Dragon descriptors [21]. To that
purpose, they compiled a 263-compound wild-type BCRP
substrates and nonsubstrates dataset which was randomly
partitioned into a 167-compound unbalanced training set
(it contained far more substrates than nonsubstrates), a
56-compound test set, and a 40-compound independent
external set. The model showed an overall accuracy of 76%
on the training set, 75% on the test set, and 72.5% on the
external set; moreover, it presented much more accuracy
in the identification of substrates than nonsubstrates (a
possible consequence of the unbalanced training set). Some
of the descriptors incorporated into this model were 3D
(conformation dependent) structural features, which implies
that considerable preprocessing (conformational analysis)
of the predicted structures is needed before proceeding to
prediction itself, which may hamper the screening efficiency
of the algorithm, especially if we take into account that
available public databases for virtual screening purposes (e.g.,
Drugbank, ZINC database) compile thousands to millions of
chemical compounds. This same issue can be envisaged for
the 17-descriptor model reported by Zhong et al. [22], who
combined genetic algorithms and support vector machines
to obtain, from a more limited unbalanced 177-compound
dataset of BCRP substrates and nonsubstrates (again, ran-
domly partitioned into training and test sets), a model with
85% overall accuracy. Once more, this model is majorly
composed of 3D descriptors.

It has been pointed out that the polyspecificity/broad
substrate specificity of ABC transporters due to multiple
separate binding sites or “binding zones,” binding sites
accommodating more than one ligand and high protein
flexibility determine a complex phenomenon which can only
be partially addressed by current methods in the computa-
tional drug design field [23, 24]. This explains why many
modeling efforts to identify ABC transporters substrates have
resorted to ensemble learning or locally weighted methods
[25–28]. In fact, BCRP presents at least two binding sites
[29–31]. Here, we present the development of an ensemble of
linear classificatory models capable of differentiating BCRP
substrates and nonsubstrates.

Contrasting the previously discussedmodels, our ensem-
ble is entirely based on conformation independent descrip-
tors, whichmakes it an adequate in silico filter to assist virtual
screening campaigns in a highly efficientmanner.Themodels
have been derived from a relatively large 262-compound
dataset which was rationally partitioned—through combined
hierarchical and k-means clustering—into a representative
and balanced 164-compound training set (85 substrates and
79 nonsubstrates) and a 98-compound test set (71 substrates
and 27 nonsubstrates). Furthermore, on the basis of receiving
operating characteristic (ROC) curves analysis, the score
threshold can be optimized to prioritize the accuracy in the
prediction of either substrates or nonsubstrates, depending
on background-dependent criteria. In order to minimize
the early selection of BCRP substrates as drug candidates,
we have prioritized substrate accuracy. Such decision was
supported by statistical comparison of the partial area under
the curve (AUC) of ROC curves.
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2. Materials and Methods

2.1. Dataset. A 305-compound diverse dataset containing
BCRP substrates and nonsubstrates was compiled from the
literature. It is known that a single-nucleotide substitution
at R482 can modify the affinity of BCRP for substrates [32–
39]; however, the clinical consequences of such variant are
not clear to the moment [40]. Therefore, from the original
305-compound dataset, we selected 262 compounds which
are substrates and nonsubstrates of human wild-type BCRP,
the subject of this modeling effort. BCRP substrates or
nonsubstrates of BCRP homologs from other species with
no evidence of human BCRP-mediated transport were not
included to avoid noise due to inter-species variability in sub-
strate specificity. The dataset was split into a 164-compound
balanced training set (85 substrates, 79 nonsubstrates) and
a 98-compound independent test set reserved for external
validation. In order to obtain representative partitions of
the dataset compounds, a combined hierarchical and 𝑘-
means clustering approachwas applied.TheLibraryMCS v0.7
(ChemAxon) hierarchical clustering approach was applied
in combination with the 𝑘-means clustering as implemented
in Statistica 10 cluster analysis module (Statsoft Inc., 2011).
LibraryMCS relies on the maximum common substructure
(MCS, i.e., the largest subgraph shared by two chemical
graphs) to cluster a set of chemical structures. The algorithm
applies similarity search to the pool of molecules, and the two
structures with the highest similarity coefficient are consid-
ered more likely to share a large MCS. Once this probable
MCS has been established, substructure search is carried out
in order to find the MCS of multiple structures efficiently,
without exhaustive pairwise comparison. Certainly, it is pos-
sible that the two structures with highest similarity coefficient
are not the ones that share the largest MCS; thus, library
MCS leads to reproducible but approximate solutions [41].
As suggested by Everitt et al. [42], hierarchical clustering has
been applied here to define an initial partition of 𝑛 objects
into 𝑔 groups, selecting the smallest common substructure of
9 atoms. The groups of compounds were later optimized by
𝑘-means algorithm,minimizing the Euclidean distance to the
group centers. A series of descriptors computed with Dragon
4.0 (Milano Chemometrics, 2003) representing different
aspects of molecular structure (namely, molecular weight,
log 𝑃, polar surface area, number of H bonds acceptors
and donors, total information index of atomic composition,
sum of atomic van der Waals volumes, sum of atomic
Sanderson electronegativities, and 2D Petitjean shape index)
were normalized and applied to calculate such distance. Once
the clusters were separately identified in the substrates and
nonsubstrates classes, around 50% of each cluster from the
substrates category and 25% of each cluster in the nonsub-
strates category were assigned to an independent test set for
validation purposes, while the remaining percentage of the
clusters was retained as training set for modeling purposes.
This scheme allowed obtaining a balanced training set where,
unlike in previous modeling efforts, neither the substrates
nor the nonsubstrates were markedly overrepresented. The
structures of both training and test set compounds are
provided as pdf files in Supplementary information available

online at http://dx.doi.org/10.1155/2013/863592 so that the
reader can appreciate the structural diversity of the dataset.
Representative members of each cluster in the substrate and
non-substrate categories are shown in Figure 1.

2.2. Molecular Descriptor Calculation and Modeling Method.
Dragon software for molecular descriptors calculation, ver-
sion 4.0 (Milano Chemometrics, 2003) was used for the
calculation of 867 low-dimensional (0D–2D) descriptors,
distributed along 12 blocks of descriptors, for example, con-
stitutional descriptors, topological descriptors, connectivity
indices, Galvez topological charge indices, functional groups
count, and others. Since such a high number of descriptors
may result in chance correlations between the modeled
property and a subset of descriptors, 102 subsets of descriptors
obtained from random combinations of the blocks of Dragon
low-dimensional descriptors were considered as independent
pools of descriptors, each combination containing around
200 molecular descriptors. For example, the first pool of
descriptors (180 descriptors) emerged from combination of
the following Dragon blocks of descriptors: constitutional
descriptors, eigenvalue-based indices, 2D autocorrelations
andmolecular properties; the second pool of descriptors (195
descriptors) combined walk and path counts, connectivity
indices, functional group counts and BCUT descriptors, and
so on. The use of this strategy, called random subspace, has
proved to be effective for ensemble learning to combine
weak learners in order to obtain strong learners [43, 44].
Descriptors with constant or near-constant values for the
training set associated to low information content were
removed from descriptors pools.

A binary, dummy variable codifying the category of each
compound was used as dependent variable (class = 1 for
substrates and class = −1 for nonsubstrates). Stepwise forward
multiple linear regression was used to select the descriptors
from each random pool that best discriminated the category
of the compounds. Obtaining all possible descriptors subsets
would demand 𝐷!/[𝑑!(𝐷 − 𝑑)!], where 𝐷 is the number
of descriptors in a given descriptor pool and 𝑑 is the
number of descriptors included in a given model. This is
very computationally demanding or even unfeasible when
𝐷 is large, as in the present work. Therefore, we resort to a
stepwise approachwhich, although faster, leads to suboptimal
solutions.

Linear discriminant analysis (LDA) was used to charac-
terize the correspondent linear discriminant functions (dfs).
Dfs assume the following general form:

df value = 𝑎
0
+∑

𝑖

𝑎
𝑖
− 𝑑
𝑖
, (1)

where 𝑎
0
is constant and 𝑎

𝑖
is the coefficient associated with

molecular descriptor𝑑
𝑖
. Due to the values arbitrarily assigned

to substrates and nonsubstrates, substrates will tend to have
positive df values, and nonsubstrates will tend to assume
negative values.

The binary classification scheme reduces the error associ-
ated with combining data obtained in different labs and con-
ditions [45]. Multiple regression and discriminant analysis
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Figure 1: Representative BCRP substrates (left) and nonsubstrates (right) from the six most populated clusters in the dataset.

modules from Statistica 10 were used for modeling purposes.
Tolerance values no lower than 0.1 were used in order to
avoid inclusion of highly correlated pairs of descriptors. The
minimum cases to predictors ratio allowed was 11 (11 or
more cases in the training set for each descriptor included
in the model) in order to reduce chances of overfitting; thus,
models including at most between 10 and 15 descriptors
were obtained through a stepwise forwards procedure. Only
descriptors with significant coefficients at an alpha level of
0.05 are allowed into the model. Randomization, stratified
leave-group-out (LGO) cross-validation and external valida-
tion (predicting the class for the independent 98-compound
test set) were used to assess all models robustness and
predictive ability. 50 randomized models were built in the
randomization test. In each LGO row, 10 compounds were
randomly removed from the training set, and the resulting
LGOmodels were used to assess the category of the removed
compounds; this process was repeated 50 times, checking that
all the compounds in the training set had been removed in at
least one LGO round.

2.3. Combining Models. Two important indicators of the
performance of a given QSAR model are sensitivity (Se) and
specificity (Sp).They are defined by the following expressions:

Se = TP
TP + FN

,

Sp = TN
TN + FP

,

(2)

where TP refers to true positives, FN refers to false negatives,
TN refers to true negatives, and FP refers to false positives.
Here, since we are looking for compounds that are not
transported by BCRP (BCRP nonsubstrates) and we want to
discard BCRP substrates, the previous expressionsmay be re-
written as follows:

Se = True nonsubstrates
True nonsubstrates + False substrates

,

Sp = True substrates
True substrates + False nonsubstrates

.

(3)

By modifying the selection threshold from the lowest to
the highest score provided by the individual models or the
model ensemble, Se and Sp will evolve in opposite ways.
Consequently, it is not possible to optimize both parameters
simultaneously, and a tradeoff has to be found. ROC curves
are a wide-used tool to assess and compare the performance
of different models [46]. They are graphical plots of the
sensitivity (true positives rate) versus 1 minus specificity (i.e.,
1 less the false positives rate), for a binary classifier system, as
its discrimination cutoff value changes. ROC curves provide
a rational and user-friendly basis to balance type I and type
II errors, selecting optimal models and optimal cutoff values.
TheAUC can be used for general comparison purposes of dif-
ferent models or methodologies. An ideal model will present
an area under the ROC curve of 1 (equivalent to perfect
classification, i.e., a sensitivity of 1 and a specificity of 1 for a
given cutoff value), while random classification is represented
by a line of slope 1 and corresponds to an area under the
ROCcurve of 0.5.Here, we have built ROCcurves to compare
the performance of the individual models developed and the
performance of 2-model ensembles obtained through simple
data fusion schemes.

It has been pointed out that there is no general rule
for balancing errors [46]. Balancing FP and FN depends
on pragmatic considerations that are to be judged by the
researcher [47]. We are interested in adopting a conservative
attitude anddeveloping highly specificmodels, that is,models
capable of discarding practically all BCRP substrates. This is
strongly related to our background: a small academic research
group from a developing country with limited resources
to invest in drugs acquisition and pharmacologic testing.
Therefore, we will privilege Sp over Se. At the risk of losing
some valuable scaffolds when applying our models in virtual
screening campaigns, we will choose to avoid acquiring or
synthesizing a drug candidate that, once send to pharmaco-
logical testing, will prove to be a FP (a drug that was predicted
as a BCRP nonsubstrate but which is actually transported
by BCRP). Taking into account that BCRP is characterized
by broad substrate specificity (probably because, in part, of
the existence of multiple binding sites in the protein), we
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have chosen to look for combinations of dfs that provide
the lowest rate of FP in the external validation. Substrate
polyspecificity indicates that it might be difficult to obtain a
single model that is capable of identifying the entire set of
BCRP substrates. We have combined the models by the very
simple strategy of exhaustively looking for all the possible
2-model combinations of the models built from each of
the pools of descriptors. The maximum (MAX operator)
values among the values provided for each compound by the
independent classifiers that compose the ensemble and the
average (AVE) of the two values provided for each compound
by the two independent models that compose the ensemble
were used as data fusion schemes.

2.4. Statistical Analysis of ROC Curves. It has been suggested
that AUC of the ROC curves may not be the best parameter
to compare different models, especially if the modeler is
interested in comparing a particular region of the ROC curve
instead of the entire curve (in our case, e.g., we are interested
in the early zones of the curves corresponding to high Sp).
A key requirement for the success of virtual screening is
the ability of the combination of a scoring function to rank
actives early in a large set of compounds; this has been
referred as the early recognition problem [48]. Therefore, to
compare the performance of the individual models and the
model ensembles, we have applied, along with the total AUC
comparison, partial AUC (pAUC) statistical analysis [49] and
the calculation of othermetrics (enrichment descriptors) that
have been proposed to address the early recognition problem
in virtual screening [48, 50, 51].

To fit ROC curves to the three sets of data, a nonparamet-
ric approach [52, 53] was used. The analysis was performed
using roc.jar [54] and pROC packages for R [55].

The empirical Se and Sp were derived by dichotomizing
the observed (empirical) values into positive or negative test-
results for each observed cut point of the variable (y). As 𝑦
varies over the observed values of the variables, the empirical
ROC curve is defined as the discrete set of Se(y) and [1 −
Sp(𝑦)] values joined by straight lines [56]. The curve passes
through point (0, 0)when y is larger than themaximum value
observed, and itmonotonically increases to the point (1, 1), as
y decreases to the smallest observed value. To be informative,
the curve should be above the 45∘ line at least for some of the
values, where Se(y) is equal to 1 − Sp(𝑦) [57].

In the nonparametric approach, the AUC is estimated by
the trapezoid defined by the empirical set of Se(y) and [1 −
Sp(𝑦)] values, and its value is related to the 𝑈 statistic for the
two-sample Mann-Whitney/Wilcoxon rank-sum test [52, 53]
and can be estimated accordingly, as well as the confidence
intervals (CI) and the variance-covariance matrix [58]. Since
the three ROC curves were built on variables observed on
the same sample, they were paired, and therefore the null
hypotheses of equal AUC’s between two of them (𝐴 and 𝐵
in the formula) were tested with a two-sample z-test:

𝑧 =
(AUC

𝐴
− AUC

𝐵
)

√Var
𝐴
+ Var
𝐵
− 2 ⋅ Covar

𝐴𝐵

. (4)

For a pAUC estimation between two given Sp values,
pROC package [56] was used.The numerical value of pAUC
is estimated by the trapezoidal rule, whereas significance
testing and confidence interval computation is performed
by bootstrap with nonparametric stratified resampling (𝑛 =
2000). In stratified bootstrap, each replicate contains the
same number of cases and controls than the original sample.
Stratification is especially useful if one group has only little
observations, or if groups are not balanced [59].

For the evaluation of the model performance, several
enrichment descriptors were calculated for each model: area
under the accumulation curve (AUCc) [60], enrichment
factor (EF) [61], robust initial enhancement (RIE) [62] and
Boltzmann-enhanced discrimination of ROC (BEDROC)
[48]. All of these metrics were calculated with the enrichvs
package for R [63].

2.5. Simulated Virtual Screening Campaign. An issue that
emerges from using a reduced dataset (such as our 98-
compound test set) is that the enrichment metrics derived
exhibit a higher variance compared to significantly large
datasets. Experiments conducted by Truchon and Bayly [48]
show that the standard deviations associatedwith enrichment
metrics such as ROC or AUCc are higher for small datasets
and converge to a constant value when the size of the dataset
increases.

The other problem is related to the high ratio of actives
which mainly hinders the early recognition ability in what
is known as the “saturation effect.” That is, for datasets with
a high ratio of hits (in our case, BCRP nonsubstrates), once
hit compounds saturate the early part of the ordered list,
the enrichment metric cannot get any higher. To estimate
in a more realistic way the utility of our model in a real
virtual screening approach, we have dispersed our test set
among 479 putative substrates acting as decoys. Such putative
substrates are substrates of BCRP from other species rather
than human or highly similar compounds to human BCRP
substrates which have been retrieved from either ZINC
database or Pubchem. This simulated database thus contains
27 known nonsubstrates among 550 known or putative
substrates among 550 known or putative substrates; that is,
the nonsubstrates ratio is less than 0.05, representing a more
challenging set to assess the enrichment ability of ourmodels.
Note that some of these putative substrates (decoys) might
actually be nonsubstrates; thus, the true performance of our
models may be even higher than the one obtained through
this simulated experiment.

3. Results and Discussion

Based on the considerations exposed in the previous section,
varying tolerance values between 0.1 and 0.5 and the max-
imum number of steps in the stepwise forward procedure
between 10 and 15, we obtained 196-individual models from
the 102-descriptor pools. Exhaustive 2-model combinations
of these 196 models were performed by applying the MAX
and AVE data fusion strategies. Table 1 presents the statistics
and validation outcome for those individualmodels that were
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Table 2: Features of the best individual model (Model 1) and the best ensembles selected.

Model/ensemble AUC ROC curve
training set

AUC ROC curve
test set

Sp training
set∗

Se training
set∗

Overall accuracy
training set∗

Sp test
set∗

Se test
set∗

Overall accuracy
test set∗

Model 1 0.796 0.748 78.8% 68.3% 74% 63.4% 74% 66%
Ensemble 1 0.850 0.785 83.5% 74.7% 79% 70.4% 74% 71.4%
Ensemble 2 0.902 0.804 84.7% 79.7% 82% 76% 70.4% 74.5%
∗Considering zero as a cutoff value between substrates and non-substrates.
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Figure 2: ROC curves of the training set for the best individual model plus the two best model ensembles.

later selected in the best 2-model ensembles. All the individ-
ual models that take part in the best 2-model combinations
present an excellent cases per predictor ratio (from 13.7 to
32.8) indicating very low chance of overfitting. They present
tolerances between 0.1 and 0.2, suggesting low pairwise
correlation between the descriptors included in the models.
As expected, the explanatory power of the randomized
models is significantly below that of the actual (nonrandom-
ized) model, since the correlation between the molecular
structure and the modeled property is abolished when the
dependent variable (in our case, the class label) is scrambled
among the training set compounds. All models present
conformation independent descriptors; thus, they may be
applied to assist virtual screening campaigns, detecting (and
discarding) potential BCRP substrates at the early stages of
drug development projects, so that the retained candidates
do not present low bioavailability or drug interactions issues
due to their efflux transport by BCRP. The results of both
the internal cross-validation and the external validation show
adequate predictive power, especially considering the broad
substrate specificity of BCRP. Nevertheless, these results have
been remarkably improved when combining the individual
models into 2-model ensembles, as shown in Table 2.

The AVE data fusion scheme outperformed the use of
the MAX operator. This is in line with previous reports
empirically showing that consensus prediction by simple
averaging of outputs of individual models is an efficient way
to enhance predictive performances [64–69].

The statistical comparison of the ROC curves (Figure 2)
proved that ensemble 2 outperforms the best individual
model (model 1) in the high Sp region in both the training

set and the simulated 577-compound database.The results are
summarized in Tables 3 and 4. We are particularly interested
in the high Sp regions in order to assure discarding BCRP
substrates in the early stages of the drug discovery process.
The results confirm the utility of ensemble learning to identify
ABC transporters substrates and nonsubstrates. ROC curves
may also be applied to optimize the score threshold of the
model or model ensemble, in order to select the best possible
balance between Sp and Se, taking into account the active
yield and other background-dependent considerations (e.g.,
budget, need to identify novel scaffolds).

4. Conclusion

We have developed a 2-model ensemble based on conforma-
tion independent Dragon descriptors for the identification
of BCRP substrates and nonsubstrates. Since the descriptors
incorporated into the models do not require preprocessing of
the predicted chemical structure, the ensemble is particularly
suitable to be applied in virtual screening campaigns of large
chemical libraries in a highly efficient manner. Statistical
comparison of ROC curves indicates that the best 2-ensemble
model outperforms the best individual models generated.
One should keep in mind that the broad substrate specificity
of BCRP (and, in general, ABC transporters)makes it difficult
to find a single linear relationship capable of accurately
classifying substrates and nonsubstrates, a fact that justifies
the application of more complex strategies such as ensemble
learning or locally weighted regression methods. Unlike
previously developed modeling efforts towards recognition
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Table 3: Results of the calculation of the total and partial areas under ROC curve for the best individual model and the 2 best 2-model
ensembles.

Model 1 Ensemble 1 Ensemble 2
Training set

Total ROC curve AUC (95% CI) 0.7964 (0.7284–0.8643) 0.8503 (0.7917–0.9089) 0.9022∗ (0.8578–0.9466)
Partial ROC curve AUC (±SD)

From 1 to Sp = [1 to 0.70] 0.1612 (±0.0199) 0.1877 (±0.0199) 0.2218 (±0.0163)∗

From 1 to Sp = [1 to 0.75] 0.1252 (±0.0171) 0.1459 (±0.0178) 0.1771 (±0.0145)∗

From 1 to Sp = [1 to 0.80] 0.0917 (±0.0147) 0.1059 (±0.0149) 0.1337 (±0.0122)†

Simulated 577-compound database
Total ROC curve AUC (95% CI) 0.7321 (0.6413–0.8229) 0.7357 (0.6418–0.8297) 0.7707 (0.6746–0.8669)
Partial ROC curve AUC (±SD)

From 1 to Sp = [1 to 0.70] 0.1035 (±0.0213) 0.1127 (±0.0223) 0.1421 (±0.0223)
From 1 to Sp = [1 to 0.75] 0.0708 (±0.0183) 0.0794 (±0.0189) 0.1075 (±0.0208)†

From 1 to Sp = [1 to 0.80] 0.0458 (±0.0140) 0.0504 (±0.0148) 0.0765 (±0.0162)†
∗The value is different from the best individual model (model 1) (𝑃 < 0.001).
†The value is different from the best individual model (model 1) (𝑃 < 0.01).

Table 4: Results of the enrichment parameters calculation for the best individual model and the best 2-model ensemble.

Model 1 Ensemble 2
Training set

Accumulation curve AUC (AUCc)‡ 0.6458 0.6938
Enrichment factor (EF) 1.9294 1.9294
Robust initial enhancement (RIE) 1.8338 1.9261
Bedroc 0.9505 0.9983

Simulated 577-compound database
Accumulation curve AUC (AUCc)‡ 0.7212 0.7581
Enrichment factor (EF) 2.9630 5.9259
Robust initial enhancement (RIE) 2.9455 4.6663
Bedroc 0.2268 0.3593

‡It verifies that ROC AUC = AUCc/𝑅i − 𝑅a/(2 ∗ 𝑅i), where 𝑅i and 𝑅a are the ratios of inactives and actives, respectively.

of BCRP substrates and nonsubstrates, our models have
been derived from a relatively large dataset which was split
into representative training and test set through clustering
analysis; the obtained training set presents a fair balance
between the number of substrates and nonsubstrates. The
studied ensemble is a potentially valuable tool to assist virtual
screening and computer-aided drug design campaigns, as
suggested by the outcome of the simulated virtual screening
campaign. With the help of the constructed ROC curves, Sp
and Se may be balanced to attend specific user requirements.
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