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Abstract
Some properties of signaling systems, like ultrasensitivity, hysteresis (a form of biochemical

memory), and all-or-none responses at a single cell level, are important to understand the

regulation of irreversible processes. Xenopus oocytes are a suitable cell model to study

these properties. The p38 MAPK (mitogen-activated protein kinase) pathway is activated by

different stress stimuli, including osmostress, and regulates multiple biological processes,

from immune response to cell cycle. Recently, we have reported that activation of p38 and

JNK regulate osmostress-induced apoptosis in Xenopus oocytes and that sustained activa-

tion of p38 accelerates cytochrome c release and caspase-3 activation. However, the sig-

naling properties of p38 in response to hyperosmotic shock have not been studied. Here we

show, using Xenopus oocytes as a cell model, that hyperosmotic shock activates the p38

signaling pathway with an ultrasensitive and bimodal response in a time-dependent man-

ner, and with low hysteresis. At a single cell level, p38 activation is not well correlated with

cytochrome c release 2 h after hyperosmotic shock, but a good correlation is observed at 4

h after treatment. Interestingly, cytochrome c microinjection induces p38 phosphorylation

through caspase-3 activation, and caspase inhibition reduces p38 activation induced by

osmostress, indicating that a positive feedback loop is engaged by hyperosmotic shock. To

know the properties of the stress protein kinases activated by hyperosmotic shock will facili-

tate the design of computational models to predict cellular responses in human diseases

caused by perturbations in fluid osmolarity.

Introduction
Stress protein kinases are fundamental for many biological processes mediating the response of
the cell to internal or external changes. A cell under stress uses the biological machinery engag-
ing programs to overcome challenging situations. However, if the stress signal persists or
became too strong a new program is initiated leading to cell death. The environmental changes
that a cell must face are diverse, including alterations in the concentrations of nutrients, growth
factors, damaging agents, and changes in the temperature, pH or osmolarity.
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The p38 MAPK (mitogen-activated protein kinase) pathway is activated by different stress
stimuli and play important roles in the immune and inflammatory response, differentiation,
cell cycle and cell survival [1,2]. The first member of the p38 MAPK family was independently
identified by four groups [3–6] as a 38 kDa protein (p38) that was rapidly phosphorylated in
response to different stimuli, including hyperosmolarity [3]. This protein was found to be the
homologue of Saccharomyces cerevisiaeHog1, an important regulator of the osmotic response
[7]. p38 MAPKs are activated by dual phosphorylation of tyrosine and threonine residues in a
conserved Thr-Gly-Tyr motif, in the activation loop, by MKK3 and MKK6 [8–10]. In some cir-
cumstances, such as ultraviolet radiation, MKK4, an activator of JNK, may contribute to p38
activation [11].

We have reported that hyperosmotic stress induces apoptosis in Xenopus oocytes and acti-
vation of the stress protein kinases AMPK (AMP-activated protein kinase) and JNK (c-Jun N-
terminal kinase) [12]. By using this cell system we described some basic properties of kinases
that are important for the control of irreversible processes: ultrasensitivity (a very large
response to a small increase in stimulus after a threshold is crossed), hysteresis (sustained acti-
vation when the stimulus has disappeared), and digital (all-or-none) response at a single cell
level. We showed that both AMPK and JNK signaling systems were ultrasensitive and digital in
response to hyperosmotic shock, and that JNK presented hysteresis whereas AMPK did not
[12]. We also proposed a model where the integration of multiple digital signals from stress
sensors (protein kinases) would determine the life or death decision in the cell [12,13].

More recently, we have reported that sustained activation of p38 and JNK contribute, in
combination with early Smac/DIABLO release and calpain activation, to osmostress-induced
apoptosis [14]. However, the signalling properties mentioned before (ultrasensitivity, hystere-
sis, and analog/digital responses) have not been studied in detail for the p38 pathway. Here we
describe these properties in Xenopus oocytes exposed to hyperosmotic shock and we discuss
their relevance in the control of osmostress-induced apoptosis.

Materials and Methods

Oocyte isolation and treatment
Oocytes were obtained from sexually mature Xenopus laevis females (purchased from Centre
d’Elevage de Xenopes, Montpellier, France). Frogs were kept in aquariums with non chlori-
nated water at optimum temperature (18°C), with alternating periods of light and darkness (12
h), and fed with a combination of Premium Frog Food (Xenopus Express) and mealworms.
Animals were anesthetized in 0.02% benzocaine and portions of ovary were removed through a
small incision on the abdomen. The incision was sutured and the animal was returned to a sep-
arate tank until it had fully recovered from the anaesthesia. It was then returned to a large tank
in which all the frogs were kept for at least 4 weeks until the next surgery. The protocol was
approved by the Committee on the Ethics of Animal Experiments of the Universitat Autònoma
de Barcelona (Permit Number: CEEAH 439) and all efforts were made to minimize animal suf-
fering. The tissue was examined to ensure the ovaries were healthy and dissected in small
pieces. Oocytes were defolliculated for 2–3 h at room temperature with collagenase/dispase
(0.8 mg/ml (Sigma), 0.48 mg/ml (Roche)) in MBS (5 mMHEPES, 88 mM NaCl, 1 mM KCl, 1
mMMgSO4�7H2O, 2.5 mM NaHCO3, 0.7 mM CaCl2, pH 7.8) with agitation. The oocytes were
then washed thoroughly with MBS and transferred to petri dishes. Stage VI oocytes were sorted
manually and incubated overnight at 18°C in MBS supplemented with 0.1 mg/ml gentamicin
(Sigma) and 0.05 mg/ml tetracycline (Sigma) to prevent bacterial growth. The next day, healthy
survivors were selected and transferred to a petri dish containing fresh MBS with antibiotics.
Oocytes were exposed to hyperosmotic shock by transferring them to a new dish containing
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MBS with sorbitol at different concentrations, collected at different times, and treated as
described below. Pools of oocytes were treated with drugs at the concentrations and times indi-
cated, or injected with cytochrome c, and processed as described below.

Oocyte lysis andWestern blot analysis
Fresh oocytes were lysed by pippeting up and down in 200 μl (pools of 20 oocytes) of ice-cold
extraction buffer (0.25 M sucrose, 0.1 M NaCl, 2.5 mMMgCl2, 20 mMHEPES, pH 7.2) con-
taining 1 mM EDTA, 1 mM EGTA, protease inhibitors (10 μg/ml leupeptin, 1 mM PMSF,
10 μg/ml aprotinin) and phosphatase inhibitors (50 mM β-glycerolphosphate, 50 mM sodium
fluoride, 1 mM sodium orthovanadate, 5 mM sodium pyrophosphate). Samples were clarified
by centrifugation at 14,500 rpm for 5 min and supernatants were collected and processed for
immunoblotting or caspase assay as described below. The whole supernatants were denatured
with Sample Buffer (50 mM Tris HCl, pH 6.8, SDS 2%, 100 mM dithiothreitol, 10% glycerol)
and subjected to 10% or 15% SDS/PAGE and transferred to Immobilon-P membranes (Milli-
pore). Uniformity of samples loading was verified by Ponceau (Sigma) staining of the blots.
Membranes were blocked for 1 h with 5% dried skimmed milk in TBST (50 mM Tris, 150 mM
NaCl, 100 mM KCl, pH 7.4, and 0.1% Tween 20) and then incubated with the following anti-
bodies: anti-AMPKα (#2532, Cell Signaling), anti-pp38 (Thr180/Tyr182) (#9211, Cell Signal-
ing), anti-p38 (sc-7149, Santa Cruz), and anti-Cytochrome c (556432, BD Pharmingen).
Antibody binding was detected with horseradish peroxidase–coupled secondary antibody and
the enhanced chemiluminescence (ECL) detection kit (Amersham).

Assay for DEVDase activity
Caspase-3 activity was measured in terms of assayed DEVDase activity. From each cytosolic
fraction 25 μl (corresponding to 2.5 oocytes) were assayed for DEVDase activity using the syn-
thetic peptide Z-DEVD-AMC from EnzChek Caspase-3 Assay Kit (Molecular Probes). Fluo-
rescence at 360 nm for excitation and at 460 nm for emission was measured after incubation
for 1 h at 37°C.

Oocyte injection
Stage VI Xenopus oocytes were injected near their equator with cytochrome c from horse heart
(C-7752, Sigma), cytochrome c from Saccharomyces cerevisiae (C2436, Sigma), or bovine
serum albumin (BSA) (A9647, Sigma), and maintained in MBS. Pools of 20 oocytes were col-
lected for the indicated times and analyzed byWestern blot and caspase-3 activity as previously
described. Some oocytes were injected with horse heart cytochrome c plus caspase inhibitors or
with DMSO as a control, maintained in new medium and collected and processed as reported
before.

Single oocyte analysis
Xenopus oocytes are appropriate for biochemical determinations at a single cell level, since the
protein content of one oocyte is equivalent to 250,000 typical somatic cells. Single oocytes were
obtained and exposed to hyperosmotic shock following the same procedures that for pools of
oocytes. For Western blot analysis each oocyte was lysed in 16 μl of ice-cold extraction buffer
with protease and phosphatase inhibitors (instead of the 200 μl used for pools of 20 oocytes).
Each sample was clarified by centrifugation at 14,500 rpm for 5 min and the whole supernatant
was collected and processed for immunoblotting assay as described before. Therefore, for each
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oocyte only one Western blot was performed, and when pp38 and p38 levels were determined
in the same sample stripping and reproving of the membranes was necessary.

Statistical analysis
Data are expressed as means ± SEM. ANOVA followed by Dunnett’s test was used to compare
caspase-3 activity in oocytes exposed to sorbitol with non treated oocytes. Values of p<0.05
were considered to be statistically significant. The correlation between pp38 and cytochrome c
(CC) in single oocytes was performed with the data obtained after quantitation of pp38 and
CC levels by Western blot. Calculation of correlation coefficients was performed with Graph-
Pad Prism4. Both Pearson Test (assume a Gaussian distribution) and Spearman test (no
assumption about the distribution of the values) were calculated considering two-tailed P value
and 95% confidence intervals.

Results

Hyperosmotic stress induces an ultrasensitive and monostable
response of p38
Osmotic stress activates the AMPK, JNK, and p38 signaling pathways in Xenopus oocytes
[12,14,15]. As shown in Fig 1, hyperosmolar sorbitol (400 mM) induced a rapid phosphoryla-
tion of p38 at Thr181 and Tyr183 in Xenopus oocytes. The overall activity of p38 is well corre-
lated with the dual phosphorylation at these residues [16]. Therefore, we quantified the
ratio pp38/p38 and referred this value as p38 activity. The time-course experiment showed that
hyperosmolar sorbitol increased p38 activity to plateau within 1 h, remaining high through at
least 6 h (Fig 1). Cytochrome c release and caspase-3 activation, measured as cleaved caspase-3
by Western blot, were increased at 4 h after treatment (Fig 1). Accordingly, caspase-3 activity,
measured in terms of DEVDase activity, was significantly increased at 4 h after treatment (Fig
1). Next, we performed a dose-response experiment at 4 h, a clear steady-state situation. p38
showed a very high ultrasensitivity to increasing concentrations of sorbitol (100–350 mM),
with an apparent Hill coefficient of 14.4 (Fig 2). As we had previously reported, the JNK and
AMPK signaling systems are also ultrasensitive to hyperosmolar sorbitol with Hill coefficients
of 8.8 and 5.3, respectively [12]. Significant levels of cytochrome c (CC), cleaved caspase-3, and
caspase-3 activity were observed in oocytes exposed to sorbitol at concentrations ranging from
200 to 350 mM (Fig 2). When we examined the reversibility of the p38 response in pools of
oocytes incubated with 300 mM sorbitol during 4 h and washed and returned to normal buffer,
we found that p38 activity almost returned to basal levels 4 h after washing (Fig 3). Therefore,
p38 is an ultrasensitive monostable system in response to osmostress, similar to AMPK and in
contrast to the bistable response of JNK previously reported [12,17]. Note, however, that low
levels of p38 activity are still present at 4 h after washing. A significant increase of cytochrome
c release and caspase-3 activity was observed at 3 h after treatment, and their levels remained
high during the 4 h after washing (Fig 3).

Bimodal response of p38 to hyperosmotic shock in individual oocytes
The ultrasensitive responses observed at the level of a population of oocytes could be due to
either individual oocytes exhibiting graded (analog) responses or to individual oocytes with all-
or-none (digital) responses, as previously reported for AMPK and JNK [12,17]. Moreover, we
have reported that the digital response of AMPK and JNK to hyperosmotic shock is time depen-
dent (gradual at 2 h, but digital at 4 h) [12]. Thus, we examined the single cell response of the
p38 system to hyperosmolar sorbitol at different times. As we show in Fig 4A, incubation with
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an intermediate concentration of sorbitol (200 mM) for 2 h induced a homogenous response of
p38 in the individual oocytes, with a peak distribution around 20% activity and an extended tail
to the right, considering 100% activity the single oocytes treated with sorbitol 400 mM for 4 h.
Incubation of the oocytes at an intermediate concentration of sorbitol (200 mM) for 4 h pro-
duced a bimodal distribution of p38 activity, with two peaks distributed around 15% and 50%
(Fig 4B). Some variability for total p38 was observed in theWestern blots due to the stripping of

Fig 1. Hyperosmotic shock activates p38 in Xenopus laevis oocytes.Oocytes (stage VI) were treated
with sorbitol (400 mM) and pools of 20 oocytes were lysed at different times to analyze pp38, p38,
cytochrome c (CC), and cleaved caspase-3 byWestern blot. p38 activity is represented as pp38/p38 ratio,
giving 100% value to the highest activity. Results are represented as mean ± SEM of four independent
experiments. A representative Western blot is shown. Caspase-3 activity was determined at different times,
using the synthetic peptide Z-DEVD-AMC as a substrate and giving value 1 to non treated oocytes. Data are
represented as mean ± SEM (n = 3), *p<0.05 (ANOVA and Dunnett’s test) comparing with non treated
oocytes.

doi:10.1371/journal.pone.0135249.g001
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Fig 2. p38 is ultrasensitive to hyperosmolar sorbitol.Oocytes were treated with increasing concentrations
of sorbitol for 4 h and pools of 20 oocytes were collected and lysed to analyze pp38, p38, cytochrome c (CC),
and cleaved caspase-3 byWestern blot. p38 activity is represented as pp38/p38 ratio, giving 100% value to
the highest activity. Results are represented as mean ± SEM of four independent experiments. Hill coefficient
(nH) was calculated with SAS 9.2 informatics program and represented with GraphPad Prism 4 program. A
representative Western blot is shown. Caspase-3 activity was determined at different concentrations of
sorbitol as reported before. Data are represented as mean ± SEM (n = 3), *p<0.05 (ANOVA and Dunnett’s
test) comparing with non treated oocytes.

doi:10.1371/journal.pone.0135249.g002
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the membranes, which is necessary when analyzing individual oocytes. Importantly, we
observed a very good correlation between p38 activation and cytochrome c release at 4 h after
treatment (Fig 4B), but not at 2 h (Fig 4A). We quantified by densitometry the pp38 and the cor-
responding cytochrome c (CC) levels in single oocytes at 2 h (n = 50) and at 4 h (n = 50) and

Fig 3. Monostability in the p38 signaling system. Time course of p38 activation in oocytes treated with 300
mM sorbitol. After 4 h of treatment (arrow), oocytes were washed several times with MBS andmaintained in
MBSwithout sorbitol. Pools of 20 oocytes were collected at different times to determine pp38, p38, cytochrome c
(CC), and cleaved caspase-3 byWestern blot. p38 activity is represented as pp38/p38 ratio, given 100% value
to the highest activity. Results are represented asmean ± SEM of three independent experiments. A
representativeWestern blot is shown. Caspase-3 activity was determined as reported before. Data are
represented asmean ± SEM (n = 3), *p<0.05 (ANOVA andDunnett’s test) comparing with non treated oocytes.

doi:10.1371/journal.pone.0135249.g003
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Fig 4. Bimodal and time-dependent response of the p38 system to hyperosmolar sorbitol. (A) Oocytes were incubated with 200 mM sorbitol for 2 h
and pp38, p38, and cytochrome c (CC) were measured byWestern blot in individual oocytes. p38 activity is represented as pp38/p38 ratio, taking as
maximum activity (100% value) the oocytes treated with 400 mM sorbitol (M). Each box represents one individual oocyte. Results are the pool of three
independent experiments. TheWestern blot shows a representative experiment. The arrow indicates no correlation between p38 activation and cytochrome
c release at 2 h. (B) p38 activity in individual oocytes treated with 200 mM sorbitol for 4 h. Activity was measured byWestern blot, as described previously,
and the results expressed as pp38/p38, taking as maximum activity the value obtained with 400 mM sorbitol. (C) Correlation between pp38 and cytochrome c
in oocytes incubated with 200 mM sorbitol for 2 h. pp38 and cytochrome c (CC) levels were determined byWestern blot in individual oocytes (n = 50) from 5
independent experiments, giving 100% value to individual oocytes treated with 400 mM sorbitol. The data obtained for each oocyte was represented
graphically and the correlation coefficient (Pearson r, Spearman r) calculated with GraphPad Prism4. (D) Correlation between pp38 and cytochrome c in
oocytes incubated with 200 mM sorbitol for 4 h. pp38 and cytochrome c (CC) were determined byWestern blot in individual oocytes (n = 50) as reported
before, the data obtained represented graphically, and the correlation coefficients calculated with GraphPad Prism4.

doi:10.1371/journal.pone.0135249.g004
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represented graphically the results. A higher correlation coefficient was obtained in the oocytes
treated for 4 h (Pearson r = 0.7582, p<0.001) compared with the oocytes treated for 2 h (Pear-
son r = 0.4292, p = 0.0019). When we calculated the Spearman correlation coefficient, that does
not assume a Gaussian distribution of the population, the correlation coefficient at 4 h was
r = 0.7629, p<0.0001, and at 2 h was r = 0.1321 (non significant). Note that some oocytes treated
with sorbitol for 2 h presented a small amount of cytochrome c release and other oocytes with
high pp38 levels did not show cytochrome c release (Fig 2A, arrow). Recently we have reported
that other factors (JNK, calpains, and Smac/DIABLO release), in addition to p38 activation, also
regulate the early release of cytochrome c induced by osmostress [14].

Cytochrome c release activates p38, creating a positive feedback loop
The good correlation obtained between p38 phosphorylation and cytochrome c release in the
oocytes exposed to osmostress for 4 h suggests that p38 activation regulates cytochrome c
release. Indeed, we have shown that sustained activation of p38 accelerates osmostress-induced
apoptosis [14]. However, it is also possible that cytochrome c release might regulate p38 activa-
tion, thus creating a positive feedback loop. To address this issue we microinjected horse cyto-
chrome c in Xenopus oocytes, which has been reported to induce caspase-3 activation very
quickly [18]. As shown in Fig 5A, microinjection of cytochrome c induced caspase-3 activity at
30 min and high p38 phosphorylation levels at 1 h, which was blocked by the general caspase
inhibitor Z-VAD.fmk or by the specific caspase-3 inhibitor Ac-DEVD-CHO, demonstrating
that p38 activation induced by cytochrome c is caspase-3 dependent. To rule out any effect of
proteotoxic stress on p38 activation, bovine serum albumin (BSA) or cytochrome c from Sac-
charomyces cerevisiae (CC Yeast), which is unable to induce caspase-3 activation in Xenopus
oocytes [18], were injected at the same concentration that horse cytochrome c. As shown in Fig
5B, injection of horse cytochrome c induced caspase-3 activation and p38 phosphorylation
whereas yeast CC or BSA did not. Since caspase inhibitors are dissolved in DMSO, we microin-
jected DMSO at the same concentration to rule out any effect of the solvent in p38 phosphory-
lation. As shown in Fig 5C, injection of DMSO diluted 1:50 in MBS (at the same concentration
that DMSO in the inhibitors) did not induce p38 phosphorylation in the oocytes and did not
interfere with the phosphorylation induced by horse cytochrome c, whereas the inhibitors
Z-VAD.fmk or Ac-DEVD-CHO completely blocked p38 phosphorylation and caspase-3 activ-
ity. These results suggest that hyperosmotic shock induces a rapid activation of the p38 signal-
ing pathway (15 min to 2 h, independent of caspase-3) and a late activation (2–4 h) triggered
by cytochrome c release and caspase-3 activation, thus accounting for the good correlation
observed at 4 h (Fig 4B and 4D). The engagement of this feedback loop could also explain the
residual levels of p38 activity detected in oocytes washed and returned to normal medium (Fig
3). When Xenopus oocytes were exposed to 200 mM sorbitol for 4 h in the presence or absence
of the caspase-3 inhibitor Z-DEVD.fmk, cytochrome c was released at similar levels in both
conditions, whereas p38 phosphorylation was reduced in the oocytes incubated with the inhibi-
tor (Fig 6). These results indicate that caspase-3 activation induced by hyperosmotic shock reg-
ulates p38 activation. As shown in Fig 6, p38 was activated in oocytes exposed to 400 mM
sorbitol for 1h without cytochrome c release and caspase-3 activation. Therefore, hyperosmotic
shock induces an early activation of p38 independently of cytochrome c release and caspase-3
activation, in contrast to the late activation of p38.

Discussion
This study shows, for the first time, four important properties of the p38 signaling system in
response to hyperosmotic shock.
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Fig 5. Microinjection of cytochrome c (CC) induces caspase-3 activation and p38 phosphorylation. (A) Caspase inhibitors reduce p38
phosphorylation induced by cytochrome c injection. Oocytes were injected with MBS, horse cytochrome c (CC) (0.5 μM final concentration), CC (0.5 μM) plus
Z-VAD.fmk (5 μM), CC (0.5 μM) plus Ac-DEVD-CHO (100 nM), or non injected (control). Pools of 20 oocytes were collected at different times and caspase-3
activity was determined as the concentration of fluorescent AMC formation from Z-DEVD-AMC substrate, and represented as arbitrary units of caspase-3
activity, giving value 1 to MBS injected oocytes. pp38, p38 and AMPK (loading control) were analyzed byWestern blot. The result presented is representative
of three independent experiments. (B) Injection of BSA or cytochrome c from Saccharomyces cerevisiae (CC Yeast) does not induce caspase-3 activation
and p38 phosphorylation. Oocytes were injected with MBS, horse cytochrome c (CC) (0.5 μM), yeast cytochrome c (CC Yeast) (0.5 μM), BSA (0.5 μM), or
non injected (control). Pools of 20 oocytes were collected at different times and caspase-3 activity was determined as described before. pp38, p38 and
AMPK were analyzed byWestern blot. (C) DMSO injection does not interfere with p38 phosphorylation and caspase-3 activation induced by cytochrome c.
Oocytes were injected with MBS plus DMSO (diluted 1:50 in MBS), horse cytochrome c (CC) (0.5 μM) plus DMSO (diluted 1:50 in CC), CC (0.5 μM) plus
Z-VAD.fmk (50 μM), or CC (0.5 μM) plus Ac-DEVD-CHO (1 μM). Pools of 20 oocytes were collected at different times and caspase-3 activity was determined
as described before. pp38, p38 and AMPK were analyzed byWestern blot.

doi:10.1371/journal.pone.0135249.g005
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First, p38 signaling pathway is highly ultrasensitive (nH�14.4) to hyperosmolar stress. This
allows rapid activation of the sensor after a certain threshold level is surpassed, and emphasizes
the importance of the p38 pathway as a primary response to osmostress. The response is even
higher that for JNK (nH� 8.8) or AMPK (nH� 5.3) signaling pathways, which we had previ-
ously reported [12]. It is remarkable that in Xenopus oocytes there is not transcriptional activity
and, therefore, all biological effects as a consequence of p38 activation must be genomic inde-
pendent. It has been reported that nuclear translocation of Hog1 (the homologous of p38 in
yeast) and the effects on transcription that it normally causes are not necessary for its role in
hyperosmotic stress resistance. By contrast, enzymes needed for glycerol production were
essential for maintenance of osmotic balance and viability [19]. It would be interesting to study
if there is any metabolic pathway regulated by p38 activation that could increase the intracellu-
lar concentration of an osmoprotectant in Xenopus oocytes.

Second, p38 signaling system is monostable, meaning that when the stimuli disappears the
activity returns to basal levels. This is similar to the AMPK signaling system, and in contrast
with the observed bistability of the JNK system, as we previously reported [12]. We think that
this differential behaviour of protein kinases versus the same stress might be important for the
adaptation of the cell to osmotic shock and for regulation of the cell death program. The com-
bination of monostable and bistable systems may be useful to evaluate the strength and dura-
tion of a noxious stimulus and to establish a point of no return when a certain threshold level
has been surpassed [13]. Although we consider that p38 signaling system is monostable, some
residual activity is present in the oocytes exposed and returned to normal medium (Fig 3), as a
consequence of cytochrome c release induced by osmostress. The magnitude and duration of
the p38 signal might be important for its biological effects. Downregulation of signaling is
required in yeast; as sustained activation of Hog1 is detrimental to cell growth [20]. Indeed,
sustained activation of p38 accelerates osmostress-induced apoptosis in Xenopus oocytes [14].
In many cell lines, and under certain continuous stimuli, the activation of p38 is transient, indi-
cating the existence of down-regulation mechanisms, including activation of different

Fig 6. Caspase-3 inhibitor reduces p38 phosphorylation induced by hyperosmotic shock.Oocytes
were incubated with 200 mM sorbitol for 4 h in the presence or absence of caspase-3 inhibitor Z-DEVD.fmk
(50 μM), or with 400 mM sorbitol for 1 h. Pools of 20 oocytes were collected and pp38, p38, cytochrome c
(CC) and AMPK (loading control) were analyzed byWestern blot. Caspase-3 activity was determined as the
concentration of fluorescent AMC formation from Z-DEVD-AMC substrate, and represented as arbitrary units
of caspase-3 activity, giving value 1 to non treated oocytes.

doi:10.1371/journal.pone.0135249.g006
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phosphatases [1,2]. For instance, the activity of MAPKs can be regulated by a family of DUSPs
(dual-specificity phosphatases), which are transcriptionally up-regulated by stimuli that acti-
vate MAPK signaling, and are thought to play an important role limiting the extent of MAPK
activation [21,22]. In Xenopus oocytes the transcriptional effects are not possible and this
might explain why p38 activation is persistent when the stimulus is continuous (Fig 1) in con-
trast with other cellular systems [23,24].

Third, by single cell analysis we found that the response of p38 to hyperosmolar sorbitol is
bimodal, in contrast to the all-or-none response previously reported for AMPK and JNK
[12]. However, a common feature of ultrasensitive kinases in front to hyperosmotic shock is
the generation of two different populations of kinase activity from an initial homogenous
response. The presence or absence of feedback loops for specific signalling pathways might
explain a bimodal or an all-or-none distribution. Recently, it has been described that Hog1
gradually accumulates in the nucleus after increasing salt concentration, but the transcrip-
tional output obtained is bimodal [25]. The authors did not measure p38 phosphorylation
levels, but assume that Hog1 nuclear accumulation is linked to its kinase activity. However,
we measured p38 phosphorylation, which is well correlated with p38 activity, obtaining a
bimodal distribution at 4 h after osmostress. The different methodology used can explain the
distinct results obtained in both studies. Alternatively, the differential response to hyperos-
motic stress observed in Xenopus and Saccharomyces could be due to the lack of transcripcio-
nal activity or to the induction of apoptosis in Xenopus oocytes. Evidences from several
studies indicate that p38 MAPK pathway has a role in cellular differentiation [1,2], or regu-
lates checkpoint controls and cell cycle transitions [26]. It would be interesting to investigate
whether p38 shows a bimodal response to other stimuli. This might not be a general rule
since, as we have reported, AMPK shows a digital response to osmotic stress but a graded
response to antimycin [12].

Fourth, high levels of cytochrome c in the cytosol induces p38 phosphorylation through cas-
pase-3 activation. Therefore, our results imply that sustained activation of p38 induced by
hyperosmotic shock accelerates cytochrome c release and caspase-3 activation [14], which in
turn activates p38 thus creating a positive feedback loop. This positive feedback loop, in combi-
nation with others engaged by caspase-3 [27,28], could be important to make irreversible the
apoptotic program. High levels of cytochrome c, released from the mitochondria, would be a
point of no return. Importantly, this feedback loop might explain the bimodal distribution
observed at 4 h after osmostress and the residual p38 activity in the oocytes washed and incu-
bated in normal medium. The marked reduction of p38 activity when oocytes are washed sug-
gests that late p38 activation induced by caspase-3 involves a different signaling pathway that
early p38 activation induced by hyperosmotic shock. It has been reported that caspase-3
induces proteolysis and constitutive activation of MEKK1 [29,30], which in turn activates JNK
and p38 [31]. However, cytochrome c injection did not induce a rapid phosphorylation of JNK
(data not shown), thus discarding proteolysis and constitutive activation of MEKK1. Another
possibility is that caspase-3 activation would increase the levels of reactive oxygen species
(ROS) through disruption of the functions of complex I and II of the electron transport chain
[32], which in turn would activate p38 through activation of MINK and/or ASK1 [33,34].
More studies are necessary to characterize the signaling pathway that induces p38 phosphory-
lation through caspase-3 activation.

Hyperosmotic stress occurs in diverse pathological conditions such as diabetes mellitus,
heat shock, infections, and dehydration after exercise, affecting different tissues [35–38].
Therefore, to know the signaling properties of the p38 pathway in response to hyperosmotic
shock can be useful to design computational models to predict cellular responses in these path-
ological conditions.
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Conclusions
p38 is highly ultrasensitive in response to hyperosmotic shock. At a single cell level, p38 shows
an initial gradual response to osmostress at 2 h, which is converted into a bimodal response at
4 h. The good correlation between cytochrome c release and p38 activation at 4 h after hyperos-
motic shock is due to: (1) sustained activation of p38 promoting cytochrome c release from the
mitochondria and, (2) a positive feedback loop engaged after cytochrome c release and cas-
pase-3 activation, which in turn induces p38 phosphorylation. These properties give insight
into the mechanisms that regulate osmostress-induced apoptosis and facilitate the design of
computational models to predict the response of protein kinases during the cell death
program.
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