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ABSTRACT
Background. The species composition of and changes in grassland communities are
important indices for inferring the number, quality and community succession of
grasslands, and accurate monitoring is the foundation for evaluating, protecting,
and utilizing grassland resources. Remote sensing technology provides a reliable and
powerful approach for measuring regional terrain information, and the identification
of grassland species by remote sensing will improve the quality and effectiveness of
grassland monitoring.
Methods. Ground hyperspectral images of a sericite–Artemisia desert grassland in
different seasons were obtained with a Soc710 VP imaging spectrometer. First-order
differential processing was used to calculate the characteristic parameters. Analysis
of variance was used to extract the main species, namely, Seriphidium transiliense
(Poljak), Ceratocarpus arenarius L., Petrosimonia sibirica (Pall), bare land and the
spectral characteristic parameters and vegetation indices in different seasons. On this
basis, Fisher discriminant analysis was used to divide the samples into a training set and
a test set at a ratio of 7:3. The spectral characteristic parameters and vegetation indices
were used to identify the three main plants and bare land.
Results. The selection of parameters with significant differences (P < 0.05) between
the recognition objects effectively distinguished different land features, and the
identification parameters also differed due to differences in growth period and species.
The overall accuracy of the recognition model established by the vegetation index
decreased in the following order: June (98.87%) > September (91.53%) > April
(90.37%). The overall accuracy of the recognition model established by the feature
parameters decreased in the following order: September (89.77%) > June (88.48%) >
April (85.98%).
Conclusions. The recognition models based on vegetation indices in different months
are superior to those based on feature parameters, with overall accuracies ranging from
1.76% to 9.40% higher. Based on hyperspectral image data, the use of vegetation indices
as identification parameters can enable the identification of the main plants in sericite–
Artemisia desert grassland, providing a basis for further quantitative classification of
the species in community images.
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INTRODUCTION
The convenient and rapid identification of the composition of and changes in natural
grassland communities is highly important for identifying grassland type, quantity and
quality and monitoring grassland degradation and restoration. The development of remote
sensing technology compensates for the limitations of human and material resources in
traditional grassland resource investigation and monitoring methods (Reinermann, Asam
& Kuenzer, 2020). Hyperspectral remote sensing, one such technology, is mainly used
in spectral feature extraction because of its many bands and narrow channels (Yu et al.,
2018) and its strong advantages in grassland vegetation classification and identification
(Qiao et al., 2022). The identification and classification of plant species are the basis of
biodiversity monitoring. Clarifying the categories and distributions of plant species has
important implications for monitoring ecosystem biodiversity, community reconstruction,
and maintaining ecological function (Khdery & Yones, 2021). Species composition is an
important parameter that describes the structure of vegetation communities and indicates
biodiversity and ecosystem health in a region (Lyu et al., 2020), and species identification
is crucial for environmental monitoring (Zhang et al., 2020). Previous studies mostly
selected characteristic bands from the period of vigorous vegetation growth to analyse
and compare different grassland vegetation or transformed the characteristic bands and
used quantitative spectral characteristic parameters and vegetation indices to distinguish
different vegetation types, obtaining good research results (Melville, Lucieer & Aryal, 2018;
Yu et al., 2018; Frank et al., 2022). Spectral parameters can enhance the ability to separate
plants (Dmitriev et al., 2022; Soubry & Guo, 2021). However, due to the phenological
characteristics of vegetation, the selected parameters respond differently depending on
the phenological period (Zhang et al., 2018), so it is necessary to screen parameters with
high response degrees for vegetation classification research. For example, Han et al. (2020)
successfully identified seven species of millet (Setaria italica) using visible near infrared
(VIS-NIR) spectral information from growing leaves and established a recognition model
with a correlation coefficient of up to 0.9994. Feng et al. (2016) used ground-measured
hyperspectral data to identify indicator species of grassland degradation, namely, Artemisia
frigidaWilld, Stellera chamaejasme L, and Potentilla acaulis L., using amixed spectral model
and found that the recognition accuracy of these three species was 83.3%, 88.9%, and 94.4%,
respectively. Li et al. (2016) identified red, blue and near-infrared bands as sensitive bands
and obtained the normalized vegetation index of the blue band (NDVIblue) as the best
parameter through analysis, and the extraction accuracy of Stellera chamaejasme Linn
reached 90%. To further strengthen research on vegetation classification and recognition,
selecting an appropriate identification period and identification parameters is an important
step, especially for grassland communities with no obvious individual plant characteristics
(Singh et al., 2018).
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The ecosystem of the Seriphidium transiliense (Poljak) desert grassland is fragile and
concentrated in Xinjiang, China. Overgrazing and general degradation have seriously
damaged the animal husbandry production of herders and threatened the biodiversity of
grasslands and the ecological security of oases (Jin et al., 2011). At present, hyperspectral
research on S. transiliense desert grasslands has focused on the analysis of vegetation
spectral characteristics, and estimation models of grassland coverage and biomass have
been established by using spectral reflectance. He et al. (2014) found obvious differences
among an invasive species (Polygonum aviculare L), an increased species (Petrosimonia
sibirica (Pall)) and a reduced species (S. transiliense) in the near-infrared band, and in
terms of spectral reflectance, the rank was bare ground > P. aviculare > S. transiliense
> P. sibirica. Wei et al. (2017a) and Wei et al. (2017b) estimated grassland coverage by
using specific sensitive bands and the vegetation index through ground and satellite
hyperspectral images, and the accuracy of the best model exceeded 85%. They estimated
the aboveground biomass inside and outside the fence, and the differences in the estimation
models were due to the different types and seasons of the measured grassland communities.
The above studies mainly considered the red and near-infrared bands of vegetation, with
limited analysis of other bands, and did not include in-depth research or analysis on
the identification period and identification parameters of the main species in the focal
community.

Therefore, to further improve the identification accuracy and utilization of the
identification parameters for the main plants in a grassland community, this study used
an imaging spectrometer to collect spectral images of the S. transiliense desert grassland
community, established spectral characteristic parameters and vegetation indices, and
analysed these spectral characteristic parameters and the vegetation indices of the main
plants. The sensitive identification parameters in different periods were selected, and the
identification objects were classified by Fisher analysis to provide a theoretical basis for the
classification and identification of grassland plants.

MATERIALS & METHODS
Study site
The study area is located in themiddle part of the northern slope of the TianshanMountains
in the S. transiliense habitat in Baiyanghe Township, Midong District, Urumqi. The
geographical location is between 87◦52′59′′ and 87◦55′13′′E and 44◦00′16′′ and 44◦01′20′′N
(Fig. 1). The mean annual temperature is 16 ◦C, the highest temperature is 39 ◦C in July
and August, the lowest temperature is −31 ◦C in January, the altitude is 895–954 m, and
the annual precipitation is 170–276 mm (National Earth System Science Data Center). The
area has a temperate continental semiarid and semidesert climate.

The grassland types in this area are representative and have good growth conditions.
The area is home to an important local spring and autumn pasture. The community
characteristics are shown in Table 1. The dominant species is S. artemisia, and the
subdominant species are the annual plants Ceratocarpus arenarius L and P. sibirica. There
are also scattered distributions of Carpesium abrotanoides L., Ceratocephalus orthocerasDC,

Liu et al. (2024), PeerJ, DOI 10.7717/peerj.17663 3/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.17663


Figure 1 Study area located in Urumqi, Xinjiang Uygur Autonomous Region, China.
Full-size DOI: 10.7717/peerj.17663/fig-1

Draba nemorosa L., Trigonella arcuata CA, Koelpinia linearis (Pall), Stipa capillata L. and
so on. The 0–5 cm soil moisture content is 11.32%, the soil bulk density is 1.21 g/cm3,
the conductivity is 199.33 us/cm, the pH is 7.87, the soil C content is 9.10 g/kg, the soil N
content is 1.25 g/kg, the soil P content is 0.73 g/kg, and the soil K content is 9.93 g/kg.

Data acquisition
Sample plot establishment
In the study area, a 500 m long transect was established every 150 m, with a total of six
parallel transects. Five 30 m × 30 m transects with a spacing of 30 m were arranged along
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Table 1 Plant community characteristics of sericite-Artemisia desert grassland.

Time
(Month)

Height
(cm)

Coverage
(%)

Density
(number m−2)

Aboveground biomass
(Fresh weight) (g m−2)

Species composition

4 5.85± 1.66 34.51± 15.79 226.28± 65.57 95.48± 38.45 Seriphidium transiliense (0.4094)
Ceratocarpus arenarius (0.1897)
Petrosimonia sibirica (0.1408)

6 14.93± 2.63 40.91± 9.93 147.78± 35.52 69.07± 30.92 Seriphidium transiliense (0.5964)
Ceratocarpus arenarius (0.2951)
Petrosimonia sibirica (0.0535)

9 14.40± 4.00 28.52± 14.58 14.83± 5.74 128.64± 43.46 Seriphidium transiliense (0.7643)
Ceratocarpus arenarius (0.2356)

Notes.
The numbers in brackets are the importance values of the species, which were calculated with the formula (relative height + relative coverage + relative density + relative
biomass)/4.

Figure 2 Sample plot and quadrat establishment.
Full-size DOI: 10.7717/peerj.17663/fig-2

each transect. Five transects were arranged on two diagonal lines of the transects with a
5-point sampling method as the data acquisition points. According to the field of view
of the instrument, the area of the transect was set as 0.5 m × 0.6 m, with a total of 150
transects (Fig. 2).

Hyperspectral image acquisition
An SOC710VP imaging spectrometer was used to collect spectral data of plant communities
in the field (spectral range, 400∼1,000 nm; resolution, 4.68 nm; number of bands, 128;
and imaging resolution, 1,392 × 1,040 pixels), and the spectral measurement time ranged
from 11:00 to 16:00 in April, June and September 2018 (solar altitude angle > 45◦). The
measurements were taken on sunny, cloudless, and windless or less windy (wind < 3
m/h) days. During measurement, the lens was vertically downwards, and the vertical
height from the plant canopy was approximately 1.0 m. Based on the analysis of the
spectral characteristics of the three main plants, the other plants distributed sporadically
in the quadrat were extracted, and the community canopy spectrum and bare-ground
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hyperspectral images were collected in each quadrat. A total of 450 images were collected.
In addition, the coverage and biomass of each species in the quadrat were measured to
provide a reference for the extraction of spectral data.

Extraction of spectral data
The spectral data of pure pixels of S. transiliense, C. arenarius, P. sibirica and bare ground
were extracted from the images of plant communities in each measurement period by
using SRAnal 710 software of the imaging spectrometer. A total of 150 quadrat images
were obtained in each period, yielding 150 reflectance samples of three types of plants and
bare land from which the damaged samples were removed. To ensure the consistency of
the reflectance samples, 90 reflectance samples of each type were ultimately classified: 360
reflectance samples in April (spring), 273 reflectance samples in total due to the scarcity of
P. sibirica in June (summer), and 184 samples in total due to the scarcity of C. arenarius in
September (autumn).

Spectral data processing
First-order differential processing
The first-order differential can eliminate the influence of partial atmospheric and soil
backgrounds, highlight the characteristics of the vegetation spectrum, and be beneficial to
the extraction of vegetation information such as vegetation indices and the leaf area index.

The first-order differential method was selected to process the spectrum, with the
following formula:

FR(λi)=
R(λi+1)−R(λi−1)

21λ
(1)

where FR(λi) is the first-order differential spectrum of wavelength λi; R(λi+1) is the
original spectral reflectance of wavelength i+1; R(λi−1) is the original spectral reflectance of
wavelength i-1; and 1λ is the wavelength difference between wavelength i and wavelength
i+1.

Selection of spectral parameters
To explore the spectral response characteristics of the main species and bare land of
the S. transiliense desert grassland, 10 common spectral characteristic parameters were
selected, including eight location parameters, two area parameters and 11 vegetation
indices, including seven wide-band vegetation indices and four narrow-band vegetation
indices, as shown in Tables 2 and 3.

Fisher discriminant analysis is used to establish a linear discriminant function
based on the original information of samples of known categories or the feature space
information that can represent the information of samples of known categories, project
the multidimensional spatial space to one-dimensional space, classify and discriminate
the samples of unknown categories through the discriminant criteria, and then verify the
classification accuracy of the sample classification information (Huang et al., 2019).

Sω=
C∑
i=1

∑
X∈Xi

(x−mi)(x−mi)T ,i= 1,...,C (2)
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Table 2 Characteristic parameters.

Parameter type Characteristic
parameter

Abbreviation/
symbol

Definition

Location parameters Blue edge amplitude Mb First-order differential maximum in the range of
490∼530 nm in the blue edge

Blue edge position Lb Wavelength corresponding to blue edge amplitude
Green peak amplitude Mg Maximum reflectivity of 510∼560 nm in the green light

range
Green peak position Lg Wavelength corresponding to 510∼560 nm green peak in

the green light range
Red valley amplitude Mr Maximum reflectivity of 640∼680 nm in the range of red

light
Red valley position Lr Wavelength corresponding to 640∼680 nm red valley in the

red light range
Red edge amplitude Mre Maximum value of the first-order differential at 680∼760

nm on the red edge
Red edge position Lre Corresponding wavelength of the red edge amplitude

Area parameter Blue edge area Ab Sum of first-order differential values within the blue edge
range

Red edge area Are Sum of first-order differential values within the red edge
range

Table 3 Vegetation index.

Parameter type Vegetation index Abbreviation Formula

Wide band vegetation index Normalized difference vegetation index NDVI (Rnir-Rred)/(Rnir+Rred)
Ratio vegetation index RVI Rnir/Rred
Difference vegetation index DVI Rnir-Rred
Blue normalized difference vegetation index BNDVI (Rnir-Rb)/(Rnir+Rb)
Green normalized difference vegetation index GNDVI (Rnir-Rg)/(Rnir+Rg)
Enhanced vegetation index EVI 2.5(Rnir-Rred)/(Rnir+ 6×Rred-7.5×Rb+1)
Normalized difference green index NDGI (Rg-Rred)/(Rg+Rred)
Red index RI (Rred-Rg)/(Rred+Rg)

Narrow band vegetation index Photochemical reflectance index PRI (R531-R570)/(R531+R570)
Red edge normalized difference vegetation index RENDVI (R750-R705)/(R750+R705)
Plant senescence reflectance index PSRI (R680-R500)/R750
Vogelmann red edge index VOG R740/R720

Sb=
C∑
i=1

(x−mi)(x−mi)T (3)

sω=
C∑
i=1

∑
y∈Yi

(y−mi)2,i= 1,...,C (4)

JF (ω)=
ωTSbω
ωTSωω

(5)
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L(ω,λ)=ωTSbω−λ(ωTSωω− c) (6)

Sbω∗= λSωω∗ (7)

where mi is the mean vector of each class of samples in the original high-dimensional
space; mi is the mean vector of each class of samples in the one-dimensional space Y after
projection; m is the mean vector of all of the samples; X is the sample point vector; Sω is
the discrete matrix within the sample class; Sb is the discrete matrix between sample classes;
sω is the pooled within-class scatter matrix; JF (ω) is the Fisher criterion function; L(ω,λ) is
the Lagrange function; λ is the Lagrange multiplier; and ω∗ is the maximum value, which
is the best projection method.

Screening of sensitive spectral parameters
Variance analysis and a discriminant model were used to screen the eight location
parameters, two area parameters and 12 vegetation indices, and the, contributions of
these parameters to the identification of the four objects were determined. The P value
between two identified objects was determined by variance analysis. The smaller the P
value is, the more significant the difference is. All 10 spectral characteristic parameters
and 12 vegetation index parameters were taken as input parameters to obtain the initial
discrimination accuracy. The characteristic parameters were removed one by one according
to the P value. If the discrimination accuracy of the model after removing the parameters
was greater than or equal to the initial accuracy, the parameter was removed; otherwise,
the parameter was retained in the discrimination model (Fig. 3).

Data analysis
The spectral reflectance values of different recognition objects were extracted using
SRAnal710 and imported into Excel 2016 to remove abnormal data. First-order differential
processing was performed, and feature parameters and vegetation indices were calculated.
Principal component analysis was performed in SPSS 20.0 software to screen feature bands,
and significance tests were conducted on the feature parameters of each identified object
and vegetation index. Fisher discriminant analysis was used to classify samples and verify
accuracy. SigmaPlot 14.0 software was used for plotting.

RESULTS
Characteristic parameter analysis
In April, the six spectral parameters of blue edge amplitude Mb, green peak amplitude Mg,
red valley amplitude Mr, red edge amplitude Mre, blue edge area Ab and red edge area Are

showed significant differences among the four recognition objects (P < 0.05); there were
significant differences in various spectral parameters between bare land and the three plants
(P < 0.05). The spectral parameters in June and September showed significant differences
among the four objects, including the red valley position Lr and the red edge area Are,
which were significantly different among the identified objects (P < 0.05, Table 4).
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Figure 3 Parameter screening.
Full-size DOI: 10.7717/peerj.17663/fig-3

Vegetation index analysis
In April, the significant differences in the NDVI, RVI, BNDVI, GNDVI, EVI, PSRI and
REEDVI were observed among the four objects were found (P < 0.05); there was a
significant difference between bare land and the three plants, except for the PRI (P < 0.05,
Table 5).

In June, there were significant differences in six vegetation indices (DVI, BNDVI,
GNDVI, NDGI, PSRI and VOG) among the four detection objects (P < 0.05), but there
were no significant differences in theNDVI, RVI or EVI between bare land andC. arenarius.
The DVI, NDGI and VOG differed from those in April.

In September, there were significant differences among the seven vegetation indices: the
NDVI, DVI, EVI, NDGI, PSRI, RENDVI and VOG (P < 0.05). The NDVI, EVI and PSRI
were the same in June and April; and the DVI, NDGI, PSRI and VOG were the same in
June and April. Only the EVI differed from that in June and April.
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Table 4 Statistical results of variance analysis of spectral characteristic parameters among the identified objects in different seasons.

Time
(Month)

Species Blue
edge
position

Blue
edge
amplitude

Green
peak
position

Green
peak
amplitude

Red
valley
position

Red
valley
amplitude

Red
edge
position

Red
edge
amplitude

Blue
edge
area

Red
edge
area

Seriphidium transiliense 525.58a 0.27b 555.92c 17.31b 641.46b 12.88c 725.84b 0.96b 1.87b 15.44b

Ceratocarpus arenarius 525.59a 0.28a 556.29c 20.61a 641.60b 15.46b 725.62b 1.06a 2.18a 16.29a

Petrosimonia sibirica 525.56a 0.21c 557.02b 14.61c 641.63b 10.87d 732.09a 0.89c 1.42c 14.67c4

Bare land 507.95b 0.08d 559.12a 12.49d 739.71a 17.95a 707.67c 0.15d 0.62d 0.82d

Seriphidium transiliense 521.44a 0.13b 556.06c 16.66bc 653.76c 17.32b 717.01a 0.44b 0.84b 4.49b

Ceratocarpus arenarius 506.81b 0.11c 558.59ab 18.34ab 664.42b 21.45a 716.70a 0.44b 0.72b 3.13c

Petrosimonia sibirica 524.14a 0.19a 557.65b 19.59a 642.93d 17.66b 717.08a 0.86a 1.37a 11.68a6

Bare land 508.01b 0.10c 559.12a 15.61c 672.91a 19.90ab 713.70a 0.31c 0.72b 0.73d

Seriphidium transiliense 523.32a 0.15a 556.16b 14.44b 650.59c 13.33b 726.86a 0.56a 0.88a 7.80a

Ceratocarpus arenarius 511.27b 0.16a 557.91a 18.74a 666.75b 21.41a 711.11b 0.51a 0.80a 3.60b9

Bare land 507.42b 0.10b 559.12a 16.51ab 673.25a 20.78a 709.57b 0.31b 0.76a 0.81c

Notes.
The different lowercase letters in the table indicate significant differences between different recognition objects within the same characteristic parameter and season (P < 0.05).
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Table 5 Statistical results of variance analysis of vegetation spectral characteristics among the identified objects in different seasons.

Time
(Month)

Species NDVI RVI DVI BNDVI GNDVI EVI NDGI RI PRI PSRI RENDVI VOG

Seriphidium transiliense 0.60b 4.10b 42.38a 0.65b 0.57b 2.05c 0.04b −0.04b −0.05a −0.44b 0.45b 1.50b

Ceratocarpus arenarius 0.56c 3.59c 41.28a 0.60c 0.52c 2.12b 0.06a −0.06c −0.05b −0.47c 0.44c 1.49b

Petrosimonia sibirica 0.62a 4.42a 38.23b 0.66a 0.59a 2.19a 0.05a −0.05c −0.06c −0.49d 0.51a 1.59a4

Bare land 0.14d 1.34d 5.01c 0.32d 0.28d 0.38d −0.15c 0.15a −0.06c 0.19a 0.02d 1.03c

Seriphidium transiliense 0.28b 1.80b 14.01b 0.38b 0.28d 1.06b −0.35d 0.07c −0.04a 0.11b 0.13b 1.10b

Ceratocarpus arenarius 0.19c 1.49c 10.73c 0.34c 0.31c 0.60c −0.12b 0.12b −0.05ab 0.07c 0.13b 1.06c

Petrosimonia sibirica 0.41a 2.46a 25.12a 0.49a 0.43a 1.63a −0.02a 0.02d −0.05b 0.29a −0.18c 1.25a6

Bare land 0.21c 1.53c 6.94d 0.37b 0.34b 0.56c −0.14c 0.14a −0.06c 0.04d 0.17a 1.04d

Seriphidium transiliense 0.44a 2.80a 23.32a 0.52a 0.47a 1.69a −0.02a 0.02c −0.04a −0.15c 0.30a 1.32a

Ceratocarpus arenarius 0.18b 1.58b 11.93b 0.31b 0.28b 0.69b −0.10b 0.10b 0.04ab 0.10b 0.07b 1.10b9

Bare land 0.12c 1.30b 5.26c 0.31b 0.27b 0.31c −0.15c 0.15a −0.07b 0.21a 0.01c 1.02c

Notes.
The different lowercase letters in the table indicate significant differences between different recognition objects within the same vegetation index and season (P < 0.05).
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Table 6 Mean P value from variance analysis of characteristic parameters among the identified objects.

Time
(Month)

Average P value

Lb Lr Lre Mb Lg Mg Mr Mre Ab Are

4 0.48 0.00 0.14 0.00 0.02 0.00 0.00 0.00 0.00 0.03
6 0.20 0.00 0.56 0.00 0.04 0.07 0.18 0.13 0.13 0.00
9 0.05 0.00 0.25 0.26 0.07 0.08 0.26 0.16 0.38 0.00

Table 7 Mean P value from variance analysis of the vegetation indices among the identified objects.

Time
(Month)

Average P value

NDVI RVI DVI BNDVI GNDVI EVI NDGI RI PRI PSRI RENDVI VOG

4 0.00 0.00 0.03 0.00 0.00 0.00 0.07 0.07 0.09 0.02 0.00 0.04
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.08 0.00
9 0.00 0.04 0.00 0.32 0.26 0.00 0.00 0.01 0.17 0.00 0.00 0.00

Discriminant parameter analysis and screening
Discriminant parameter analysis
In April, there were no significant differences in the characteristic parameters among the
identified objects, which were Lb, Lre, Lg and Are. For June, the parameters were Lb, Lre,
Lg, Mg, Mr, Mre and Ab, and for September, they were Lb, Lre, Mb, Lg, Mg, Mr, Mre and Ab

(Table 6).
In April, there were no significant differences in the vegetation indices among the

identified objects, which were the DVI, NDGI, RI, PRI, PSRI, and VOG. For June, the
measured indices were the PRI and RENDVI, and for September, they were the RVI,
BNDVI, GNDVI and PRI (Table 7).

Discriminant parameter screening
Since the average P value can indirectly reflect the size of the difference, the parameters
that did not have very significant differences were eliminated one by one from small to
large according to the P value (P < 0.01), and the discrimination accuracy of the four
recognition objects and the total discrimination accuracy of the test set were calculated.
The group with more eliminated parameters and an accuracy no less than that of the
noneliminated parameters was taken as the optimal set of parameters. The eliminated
parameters and retained parameters of sericite, S. transiliense, C. arenarius, P. sibirica and
bare land in April, June and September are shown in Tables 8 and 9.

Recognition object discrimination
Characteristic parameter discrimination
In April, 1,200 samples of the three plants and bare land were divided into a training
set and a test set at a ratio of 7:3. Taking the selected spectral characteristic parameters
as input variables, a discrimination model was established, and the recognition effect is
shown in Fig. 4. Discriminant analysis of S. transiliense (A), C. arenarius (B), P. sibirica
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Table 8 Characteristic parameter screening of the identified objects in different seasons.

Time
(Month)

Species Eliminated parameters Retained parameters

Seriphidium transiliense Lb, Lr, Lre Mb, Lg, Mg, Mr, Mre, Ab, Are

Ceratocarpus arenarius Lb, Lr, Lre, Mb, Lg, Mg, Mr, Mre, Ab, Are

Petrosimonia sibirica Lb, Lr, Lre, Lg Mb, Mg, Mr, Mre, Ab, Are
4

Bare land Lb, Lre, Are, Lg Lb, Lre, Mg, Mr, Mre, Ab

Seriphidium transiliense Lre, Mr, Ab, Mre Lre, Mb, Lg, Mg, Lr, Are

Ceratocarpus arenarius Lb, Mb, Lg, Mg, Lr, Lre, Are Mr, Ab, Mre

Petrosimonia sibirica Lb, Lr, Lre, Mb, Lg, Mg, Mr, Mre, Ab, Are
6

Bare land Lre, Lb, Mr, Mre, Lg Mb, Mg, Lr, Ab, Are

Seriphidium transiliense Ab, Mb, Mr, Lre, Mre, Mg, Lg Lb, Lr, Are

Ceratocarpus arenarius Lre, Mre, Lg Lb, Mb, Mg, Lr, Mr, Ab, Are9

Bare land Ab, Mb, Mr, Lre, Mre, Mg, Lg Lb, Lr, Are

Table 9 Vegetation index screening of the identified objects in different seasons.

Time
(Month)

Species Eliminated parameters Retained parameters

Seriphidium transiliense RI, NDGI, VOG, DVI, PSRI NDVI, RVI, BNDVI, GNDVI, EVI, PRI, RENDVI
Ceratocarpus arenarius PRI, RI, NDGI, PSRI NDVI, RVI, DVI, BNDVI, GNDVI, EVI, RENDVI, VOG
Petrosimonia sibirica RI, NDGI, DVI, PSRI NDVI, RVI, BNDVI, GNDVI, EVI, PRI, RENDVI, VOG

4

Bare land PRI, RI, NDGI, VOG, DVI, PSRI NDVI, RVI, BNDVI, GNDVI, EVI, RENDVI
Seriphidium transiliense RENDVI, PRI NDVI, RVI, DVI, BNDVI, GNDVI, EVI, NDGI, RI, PSRI,

VOG
Ceratocarpus arenarius PRI NDVI, RVI, DVI, BNDVI, GNDVI, EVI, NDGI, RI, PSRI,

RENDVI, VOG
Petrosimonia sibirica RENDVI, PRI NDVI, RVI, DVI, BNDVI, GNDVI, EVI, NDGI, RI, PSRI,

VOG
6

Bare land RENDVI, PRI NDVI, RVI, DVI, BNDVI, GNDVI, EVI, NDGI, RI, PSRI,
VOG

Seriphidium transiliense BNDVI, GNDVI, PRI, DVI, RI NDVI, RVI, DVI, EVI, NDGI, PSRI, VOG
Ceratocarpus arenarius BNDVI, GNDVI, RI NDVI, RVI, DVI, EVI, NDGI, PRI, PSRI, RENDVI, VOG9

Bare land BNDVI, GNDVI, DVI, RI NDVI, RVI, EVI, NDGI, PRI, PSRI, RENDVI, VOG

(C) and bare land (D) was performed. When classifying S. transiliense and the other three
objects, S. transiliense was incorrectly identified 17 times, with an accuracy of 81.11%. The
other objects were incorrectly identified as S. transiliense 102 times, with an accuracy of
62.22%, yielding a total accuracy of 71.67%. When classifying C. arenarius with the other
three objects, C. arenarius was incorrectly identified six times, with an accuracy of 95.56%,
and other objects were incorrectly identified as C. arenarius 51 times, with an accuracy
of 79.26%, yielding a total accuracy of 87.41%. When classifying P. sibirica and the other
three objects, the other objects were incorrectly identified as P. sibirica 52 times, with an
accuracy of 82.96%, yielding a total accuracy of 85.93%. When classifying the bare land
and the three plants, the bare land and all plants were classified into the correct category
with an accuracy of 100%.
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Figure 4 Classification based on characteristic parameters in April. (A) Classification results of Se-
riphidium transiliense and the other three types of recognition objects, (B) classification results of Cera-
tocarpus arenarius and the other three types of recognition objects, (C) classification results of Petrosimo-
nia sibirica and the other three types of recognition objects, (D) classification results of bare land and the
other three types of plants.

Full-size DOI: 10.7717/peerj.17663/fig-4

In June, 910 samples of the three plants and bare land were divided into a training
set and a test set at a ratio of 7:3. The test set samples of S. transiliense, C. arenarius, P.
sibirica and bare land were classified. When classifying S. transiliense and the other three
objects, S. transiliense was incorrectly identified four times, with an accuracy of 95.56%.
The other objects were incorrectly identified as S. transiliense three times, with an accuracy
of 98.36%, yielding a total accuracy of 96.96%.When classifying C. arenariuswith the other
three objects, C. arenarius was incorrectly identified 15 times, with an accuracy of 83.33%,
and the other objects were incorrectly identified 32 times as C. arenarius, with an accuracy
of 82.51%, yielding a total accuracy of 82.92%. When classifying P. sibirica and the other
three objects, P. sibirica was incorrectly identified once, with an accuracy of 66.66%, and
the other objects were incorrectly identified three times as P. sibirica, with an accuracy of
98.89%, yielding a total accuracy of 82.78%. When classifying the bare land and the three
plants, the bare land and all plants were placed in the correct category, and the other objects

Liu et al. (2024), PeerJ, DOI 10.7717/peerj.17663 14/24

https://peerj.com
https://doi.org/10.7717/peerj.17663/fig-4
http://dx.doi.org/10.7717/peerj.17663


Figure 5 Classification based on characteristic parameters in June. (A) Classification results of Se-
riphidium transiliense and the other three types of recognition objects, (B) classification results of Cera-
tocarpus arenarius and the other three types of recognition objects, (C) classification results of Petrosimo-
nia sibirica and the other three types of recognition objects, (D) classification results of bare land and the
other three types of plants.

Full-size DOI: 10.7717/peerj.17663/fig-5

were incorrectly identified as bare land 32 times, with an accuracy of 82.51%, yielding a
total accuracy of 91.26% (Fig. 5).

A total of 614 samples of three plants and bare land were divided into a training set
and a test set at a ratio of 7:3. When classifying S. transiliense and the other three objects,
S. transiliense was incorrectly identified zero times, with an accuracy of 100%, and the
other objects were incorrectly identified as S. transiliense zero times, with an accuracy of
100%, yielding a total accuracy of 100%. When classifying C. arenarius with other objects,
C. arenarius was incorrectly identified once, with an accuracy of 75%, and the other objects
were incorrectly identified as C. arenarius 56 times, with an accuracy of 68.89%, yielding
a total accuracy of 71.95%. When classifying the bare land and the other two plants, all
the bare land was placed in the correct category, and the other objects were incorrectly
identified as bare land four times, with an accuracy of 95.74%, yielding a total accuracy of
97.37% (Fig. 6).
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Figure 6 (A–C) Classification based on characteristic parameters in September.
Full-size DOI: 10.7717/peerj.17663/fig-6

Vegetation index model and accuracy evaluation
In April, 1,200 samples of three plants and bare land were divided into a training set
and a test set at a ratio of 7:3. The samples in the test set were classified as S. transiliense,
C. arenarius, P. sibirica and bare ground.When classifying S. transiliense and the other three
objects, S. transiliense was incorrectly identified 10 times, with an accuracy of 88.89%. The
other objects were incorrectly identified as S. transiliense 57 times, with an accuracy of
78.89%, yielding a total accuracy of 83.89%. When classifying C. arenarius with the other
three objects, C. arenarius was incorrectly identified seven times, with an accuracy of
92.22%, and the other objects were incorrectly identified as C. arenarius 46 times, with an
accuracy of 82.96%, yielding a total accuracy of 86.30%. When classifying P. sibirica and
the other three objects, P. sibirica was incorrectly identified three times, with an accuracy
of 96.67%. The other objects were incorrectly identified as P. sibirica 38 times, with an
accuracy of 85.93%, yielding a total accuracy of 91.30%. When classifying the bare land
and the three plants, the bare land and all plants were placed in the correct category, with
an accuracy of 100% (Fig. 7).

In June, 910 samples of three plants and bare land were divided into a training set
and a test set at a ratio of 7:3. When classifying S. transiliense and the other three objects,
S. transiliense was incorrectly identified zero times, with an accuracy of 100%. When
classifying C. arenarius with the other three objects, C. arenarius was incorrectly identified
as S. transiliense four times, with an accuracy of 95.56%, and the other objects were
incorrectly identified as C. arenarius eight times, with an accuracy of 95.63%, yielding
a total accuracy of 95.60%. When classifying P. sibirica and the other three objects, P.
sibirica was incorrectly identified zero times, with an accuracy of 100%. Other objects were
incorrectly identified as P. sibirica zero times, with an accuracy of 100%, yielding a total
accuracy of 100%.When classifying the bare land and the three plants, the bare land and all
plants were placed in the correct category, and the other objects were incorrectly identified
as bare land 15 times, with an accuracy of 91.80%, yielding a total accuracy of 95.90% (Fig.
8).

In September, 614 samples of three plants and bare land were divided into a training set
and a test set at a ratio of 7:3. When classifying S. transiliense and the other three objects,
S. transiliense was incorrectly identified zero times, with an accuracy of 100%, and the
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Figure 7 Classification based on the vegetation indices in April. (A) Classification results of Seriphid-
ium transiliense and the other three types of recognition objects, (B) classification results of Ceratocarpus
arenarius and the other three types of recognition objects, (C) classification results of Petrosimonia sibirica
and the other three types of recognition objects, (D) classification results of bare land and the other three
types of plants.

Full-size DOI: 10.7717/peerj.17663/fig-7

other objects were incorrectly identified three times as S. transiliense, with an accuracy of
96.81%. The total accuracy was 98.41%. When classifying C. arenarius and other objects,
C. arenarius was incorrectly identified once, with an accuracy of 75%, and the other objects
were incorrectly identified as S. transiliense 25 times, with an accuracy of 86.11%, yielding
a total accuracy of 80.56%. When classifying bare land and the other two plants, bare land
was incorrectly identified five times, with an accuracy of 94.44%, and the other objects
were incorrectly identified three times as bare land, with an accuracy of 96.81%, yielding a
total accuracy of 95.63% (Fig. 9).

DISCUSSION
Differences in identification parameters among seasons
The recognition parameters showed different responses in different recognition seasons
and for different recognition objects, revealing a certain complexity. The parameters of the
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Figure 8 Classification based on the vegetation indices in June. (A) Classification results of Seriphid-
ium transiliense and the other three types of recognition objects, (B) classification results of Ceratocarpus
arenarius and the other three types of recognition objects, (C) classification results of Petrosimonia sibirica
and the other three types of recognition objects, (D) classification results of bare land and the other three
types of plants.

Full-size DOI: 10.7717/peerj.17663/fig-8

Figure 9 (A–C) Classification based on the vegetation indices in September.
Full-size DOI: 10.7717/peerj.17663/fig-9

same plant and the remaining recognition objects are significantly different in different
seasons, and accurate classification can be achieved based on differences in plant phenology
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(Weisberg et al., 2021). In this study, both the spectral characteristic parameters and the
vegetation indices reflected this result; for example, there were six spectral characteristic
parameters in April (the period of seedling establishment) for S. transiliense, which
significantly differed from the number for other recognition objects, while there were
two in June (the peak period) and September (the dry and yellow periods). The reason is
that the spectra of the same plant differ depending on the phenological period (Ouyang et
al., 2013; Soubry & Guo, 2021; Wang et al., 2021). Although the spectral characteristics of
different plants are roughly the same, they are still different in terms of reflectivity or some
individual bands (Ge et al., 2006; Liang, Yang & Xing, 2021; Zhou, Li & Xu, 2022). Both the
characteristic parameters and vegetation indices are based on the spectra, explaining this
result. However, in June (peak period) and September (dry and yellow period), there were
red valley positions Lr and red edge areas. These two spectral characteristic parameters
showed significant differences among the identified objects, which may be because the red
light band is the most sensitive to vegetation and because the S. transiliense desert grassland
is affected by drought year round. Vegetation reflectance in the dry and yellow seasons
is similar to the spectral reflectance and characteristics of litter on the ground (He et al.,
2014).

Identification parameter screening
This study included 10 spectral characteristic parameters and 12 vegetation indices.
Through verification via analysis of variance and the discrimination model, it was found
that the characteristic parameters and vegetation indices removed and retained in different
seasons were different. When these parameters are eliminated one by one, the precision
is improved or the same compared with the original precision, which shows that the
eliminated parameters do not play a corresponding role in the discrimination of the four
recognition objects; in contrast, there will be errors in the identification results due to
the similarity of the information included. For example, in April, the three parameters
Lb, Lr, and Lre show only small, nonsignificant differences among plants and are thus
eliminated, while Lg does not show significant differences among the four recognition
objects but is retained. This may be because Lg is strongly affected by plant chlorophyll
content (Datt, 2010). Dmitriev et al. (2022) also reported that the vegetation indices used
to identify Populus plants vary among periods, which is related to the chlorophyll content
and photosynthetic intensity. Therefore, whether there are significant differences in
parameters among plants cannot be used as the only criterion for elimination, and different
characteristic parameters have different contributions and sensitivities in the determination
of recognition objects. For example, through a continuous projection algorithm, Cao et
al. (2023) reported that among 27 spectral parameters, colour parameters played a more
important role in the classification of 18 oolong tea cultivars and can be accurately divided
into early, mesophytic, and late species, with a recognition accuracy of more than 90%.

Identification of different parameters in the same season
In the same season, the characteristic parameters and vegetation indices were used to
classify and identify the three types of plants and bare land. The discrimination accuracy
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of bare land is always high because the spectral reflectance and characteristics of bare
land are quite different from those of vegetation (Qiao et al., 2022); therefore, bare land
had little effect on the ground hyperspectral identification of the three types of plants.
However, there were some differences in the accuracy obtained by using different types of
recognition parameters; for example, in April (returning green stage), the accuracy of the
characteristic parameters was 85.51%, and those of the vegetation indices were 89.50%,
92.50% and 98.01% in June (peak period) and 89.85% and 86.16% in September (dry
and yellow period), respectively. In this study, different characteristic parameters were
selected to establish the discrimination model, and the vegetation index model had the best
recognition effect and the highest accuracy. When using a single model for identification
in different periods, the overall recognition accuracy of the characteristic parameters was
85.98% in April, 88.48% in June and 89.77% in September; the overall accuracy of the
vegetation index model was 90.37% in April, 97.88% in June and 91.53% in September.
Characteristic parameters and vegetation indices are also widely used as identification
parameters, but the species, quantity and identification accuracy of vegetation indices
selected when identifying different plants are different (Li et al., 2016). Du et al. (2021)
classified four dominant plant communities in wetlands by calculating vegetation indices
through screening feature bands. The highest recognition accuracy for the dominant
species, Phragmites australis, was 89.17%, while the recognition performance for Scirpus
triqueter was relatively poor at 72.80%. This study also showed the best recognition effect
for the dominant species Seriphidium transiliense, with an overall accuracy of 89.54% for
the characteristic parameters and a vegetation index of 94.10%.

Identification of the same parameter in different seasons
The accuracy of classification and identification using the same identification parameters
also differed between periods. For example, the characteristic parameters used in April
(turning green period) yielded an accuracy of 85.51% in April, 92.50% in June (peak
period), 89.85% in September (dry yellow period), 89.50% in April (turning green period),
98.01% in June (peak period), and 86.16% in September (dry yellow period). Scholars
have also studied the identification and classification of different vegetation or plants at
different scales in different periods and determined the optimal period. Liu et al. (2002)
compared the classification results of different band combinations and finally generated
a vegetation map, concluding that the images obtained in late spring and summer were
better than those obtained in other seasons. Lu & He (2017) used spectral indices to classify
Canadian grassland plants and found that the overall accuracy in June was the highest
at 86%, which is consistent with the result of this study that the optimal period for the
identification of S. transiliense desert grassland was June (the peak period). Furthermore,
Tarantino et al. (2019) studied the classification results of multiseasonal WorldView-2
(WV-2) satellite images, which were used to map the invasive species Ailanthus altissima,
and concluded that the combination of remote sensing images of communities and
corresponding growing seasons was the best strategy, which was helpful for vegetation
interpretation and classification (Wei et al., 2017a; Wei et al., 2017b), similar to the results
of this study. Therefore, in this study, the identification parameters were used to identify
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the optimal combination of vegetation indices in June (peak period) for three main plants
in the S. transiliense desert grassland.

CONCLUSIONS
The identification model established based on the vegetation indices in June had the best
discrimination, with the highest accuracy for the test samples of S. transiliense, C. arenarius,
P. sibirica and bare land, reaching 100.00%, 95.60%, 100.00% and 95.90%, respectively.
Considering the identification period and parameters, the vegetation index model is the
best way to identify land features in the sericite–Artemisia desert grassland in June.
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