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Background: O-GlcNAcylation is an essential post-translational modification (PTM) in 
mammalian cells. It consists in the addition of a N-acetylglucosamine (GlcNAc) residue 
onto serines or threonines by an O-GlcNAc transferase (OGT). Inhibition of OGT is lethal, 
and misregulation of this PTM can lead to diverse pathologies including diabetes, 
Alzheimer’s disease and cancers. Knowing the location of O-GlcNAcylation sites and the 
ability to accurately predict them is therefore of prime importance to a better understanding 
of this process and its related pathologies.
Purpose: Here, we present an evaluation of the current predictors of O-GlcNAcylation sites 
based on a newly built dataset and an investigation to improve predictions.
Methods: Several datasets of experimentally proven O-GlcNAcylated sites were combined, 
and the resulting meta-dataset was used to evaluate three prediction tools. We further defined 
a set of new features following the analysis of the primary to tertiary structures of experimentally 
proven O-GlcNAcylated sites in order to improve predictions by the use of different types of 
machine learning techniques.
Results: Our results show the failure of currently available algorithms to predict 
O-GlcNAcylated sites with a precision exceeding 9%. Our efforts to improve the precision 
with new features using machine learning techniques do succeed for equal proportions of 
O-GlcNAcylated and non-O-GlcNAcylated sites but fail like the other tools for real-life 
proportions where ~1.4% of S/T are O-GlcNAcylated.
Conclusion: Present-day algorithms for O-GlcNAcylation prediction narrowly outperform 
random prediction. The inclusion of additional features, in combination with machine 
learning algorithms, does not enhance these predictions, emphasizing a pressing need for 
further development. We hypothesize that the improvement of prediction algorithms requires 
characterization of OGT’s partners.
Keywords: machine learning, glycosylation, O-GlcNAc, post-translational modification, 
dataset, OGT

Introduction
O-GlcNAcylation (O-linked β-N-acetylglucosaminylation) is a dynamic post- 
translational modification (PTM) occurring in cytosol, nucleus and mitochondria 
under the supervision of two antagonist enzymes: the O-GlcNAc Transferase (OGT) 
and the O-GlcNAcase (OGA).1,2 The target proteins are modified by the addition of 
a N-Acetylglucosamine (GlcNAc) residue onto serines (S) or threonines (T), which 
derives from UDP-GlcNAc supplied by the hexosamine biosynthesis pathway (HBP). 
The OGT structure can be divided into two parts: the N-terminal tetratricopeptide 
repeats (TPR) domain which binds to the substrate, and the C-terminal catalytic domain 
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that first recruits UDP-GlcNAc and then adds the GlcNAc 
moiety on the target protein. Three isoforms of OGT are 
currently known: ncOGT, mOGT and sOGT. The ncOGT, 
located in the nucleus and cytoplasm, contains 13.5 TPR 
repeats, while mOGT, located in the mitochondria, exhibits 
9 TPRs. The sOGT (small OGT) is detected in the nucleus 
and the cytosol like the ncOGT, but contains only 2.5 TPR 
repeats.3,4 O-GlcNAcylation occurs on thousands of proteins 
involved in many different pathways and dysregulation of its 
cycling leads to many pathologies such as cancers, diabetes 
and Alzheimer’s disease.5 The accurate prediction of 
O-GlcNAcylation sites would constitute a significant 
advance as this major PTM is involved in many vital path-
ways. Unlike N-glycosylation for which the consensus site is 
well known (N-X-S/T/C with X any residue except proline) 
and conserved, no specific pattern is currently known for the 
O-GlcNAcylation.

Therefore, developing efficient prediction tools represent 
a challenge. Few prediction tools such as YinOYang, 
O-GlcNAcPred-II and OGTSite are already available.6–8 

They implement algorithms such as Random Forest, Neural 
Networks or Principal Component Analysis and are based on 
sequence data. They advocate to show good prediction 
results with sensitivity up to 81.05% and specificity up to 
95.91% for O-GlcNAcPred-II. However, these numbers 
depend on the underlying test set which is different for 
each tool, making the results hard to compare. In order to 
be able to properly evaluate the performances of these pre-
dictors, we decided to build a large dataset of currently 
available experimentally proven O-GlcNAcylated sites and 
to test the performance of the three tools on this new dataset.

We show here that the predictions are not as efficient as 
expected. Thus, we decided to use the dataset to develop 
a new prediction tool for O-GlcNAcylation sites, expanding 
upon the use of sequence information by including structural 
parameters. We investigated the primary, secondary and ter-
tiary structure environment of every experimentally proven 
O-GlcNAcylation site in order to define a set of parameters 
that could be further used by machine learning algorithms. 
Here, we show that none of the available tools correctly 
predict O-GlcNAcylated sites, even when we attempted to 
improve the parameters for machine learning algorithms.

Materials and Methods
Dataset Creation
The dataset was constructed with data from experimentally 
proven O-GlcNAcylated sites of 236 mammal proteins 

from the UniProt reviewed database (Swiss-Prot) with 
the following research: “annotation: (type: carbohyd 
o glcnac evidence: experimental) AND reviewed: yes”.9 

To complete this set, we also retrieved experimental data 
from PTM-ssMP10 and from the results of Deracinois et -
al.11 In these sets, we rejected the sites found by sequence 
homology. The negative sites were taken from the same 
sequences, considering serines and threonines which were 
not described as O-GlcNAcylated.

We curated the full set, removing non-mammal 
sequences. We also removed redundant sequences. After 
curation, 565 O-GlcNAcylated sites (positive sites) and 
40,271 non O-GlcNAcylated sites (negative sites) were 
gathered. We created a second dataset, removing 
sequences longer than 4000 residues, since two of the 
three tested tools do not work on such long sequences: 
this dataset totals 550 O-GlcNAcylated and 38,665 non 
O-GlcNAcylated sites.

Evaluation of O-GlcNAcylation Prediction 
Software
We evaluated the performance of three prediction tools, 
which are YinOYang, O-GlcNAcpred II and OGTsite,6–8 

using the sequences of the reduced dataset. The results of 
predictions of each of them were then compared to experi-
mental data. A prediction was considered as

● false positive (FP) if not identified experimentally,
● true positive (TP) if validated experimentally,
● false negative (FN) if not predicted but proven 

experimentally,
● true negative (TN) if not predicted and not proven 

experimentally.

We further calculated the specificity, the sensitivity, the 
precision (also called Positive Predictive Value (PPV)), 
the Negative Predictive Value (NPV), the False 
Discovery Rate (FDR) and the accuracy of each predic-
tion tool:

● sensitivity is the percentage of unmissed positive 
sites and corresponds to the number of positive 
sites correctly classified among all positive ones 
(TP/(TP+FN)),

● specificity is the percentage of unmissed negative 
sites and corresponds to the number of TN among 
all negative ones (TN/(TN+FP)),
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● precision (or PPV) corresponds to the chance to pre-
dict a site as positive and be correct (TP/(TP+FP)),

● False Detection Rate (FDR) is the contrary, namely 
the chance to be wrong when predicting a positive 
site (1-PPV),

● NPV is the same as PPV but for negative sites (TN/ 
(TN+FN)),

● accuracy corresponds to the proportion of correctly 
predicted sites whether they are positive or negative 
((TN+TP)/(TN+FN+TP+FP)).

In OGTSite results, only serines and threonines which are 
predicted as O-GlcNAcylated are shown. Thus, to calcu-
late the number of TN, we calculated the total number of 
serines and threonines in our dataset and subtracted FN, 
TP and FP from it. The total number is 39,215. For the 
other tools, the “show all serine and threonine” option was 
available.

Features
Sequence – Structural and Polarity Classification
First of all, each amino acid around the sites in a window 
of -/+10 residues in the sequence were translated into size 
(Table 1A) and polarity (Table 1B) classes with Python 
v3.6 scripts. For the size class, we chose to focus on the 
nature and the length of each residue totaling 8 classes, 
whereas for the polarity class, we considered physico-
chemical properties of amino acids, totaling 9 classes.

We calculated the proportions of each class at each 
position in the -/+10 windows and compared them to 
a random composition of residues of all mammal 
sequences (reviewed only) retrieved from UniProt 
(82,495 sequences).

The Chi Square tests were performed after calculating 
the number of individuals from the proportions. For the 
case of the random set, these values are theoretical and 
correspond to the number of individuals that would have 
been observed.

Sequence – Flexibility Prediction
The flexibility of each site was predicted with the 
DynaMine tool that only requires a sequence as input.12 

A S2 score is provided for each residue. It is lying between 
0 and 1 where score inferior to 0.69 is considered as 
flexible, superior to 0.8 considered as rigid and between 
these two values there is a twilight zone called context 
dependent. The results were parsed with a homemade 
Python v3.6 script to extract the flexibility score of each 

site, for positive and negative data, and depending on the 
nature of the site (serine or threonine).

Sequence – Secondary Structure and Angles 
Predictions
For every site, secondary structures were predicted using 
two software: SPIDER3 and PSSpred, run locally.13,14 

Because the predictions of both were very close to each 
other, the results were only retrieved from SPIDER3 and 
stored in a file with all the other parameters.

φ and ψ angles of residues in a −3/+2 window were 
also retrieved from SPIDER3 predictions, classified as 
follows: β-strands (−160° < phi < −50° and 100° < psi < 
180°), α-helix (−160° < phi < −50° and −60° < psi < 20°) 
and other.

Table 1 Definition of the Classes of Amino Acids

A.

Sidechain Size Class Residues

No residue (Empty) (E) NA

Glycine (G) Gly

Very Small (V) Ala, Val

Small (S) Ser, Thr, Ile, Leu, Cys

Normal (N) Asp, Asn, Glu, Gln, Met

Long (L) Arg, Lys

Aromatic (A) Phe, Trp, Tyr, His

Proline (P) Pro

B.

Polarity Class Residues

Polar uncharged with hydroxyl group (A) Ser, Thr

Polar uncharged with amide (B) Asn, Gln

Positively charged polar (C) Arg, Lys, His

Negatively charged polar (D) Asp, Glu

Non-polar suffered (E) Met, Cys

Non-polar aromatic (F) Tyr, Phe, Trp

Non-polar aliphatic (G) Ala, Val, Leu, Ile, Pro

Glycine (H) Gly

No residue (I) NA

Abbreviations: Gly, Glycine; Ala, Alanine; Val, Valine; Ser, Serine; Thr, Threonine; 
Ile, Isoleucine; Leu, Leucine; Cys, Cysteine; Asp, Aspartic Acid; Asn, Asparagine; 
Glu, Glutamic Acid; Gln, Glutamine; Met, Methionine; Arg, Arginine; Lys, Lysine; 
Phe, Phenylalanine; Trp, Tryptophan; Tyr, Tyrosine; His, Histidine; Pro, Proline.
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Structure – Models
To calculate the accessibility of each site, a structure for each 
protein was needed. As all proteins do not have an available 
structure in the Protein Data Bank or structures at site loca-
tions were missing, we modeled all of them with I-TASSER 
v5.1 (default parameters),15 installed and run locally on the 
HPC cluster of the Mesocenter of the University of Lille. We 
chose I-TASSER, which combines threading and de novo 
modeling, because it was ranked as the best structure model-
ing server according to the Critical Assessment of Techniques 
for Protein Structure Prediction (CASP) for rounds 7 to 
14.16–18 Because the tool is limited to 1500 amino acids, we 
used a sequence window of 1500 residues for those cases 
where the sequence is longer, ensuring the maximum number 
of residues at either side of the O-GlcNAcylation site.

Structure – Accessibility to Solvent
NAccess v2.1.119 was used with default parameters to 
compute the accessibility to solvent of the hydroxyl 
group of serines or threonines. ElNémo (v10/18/2018)20 

was used to create 10 normal modes, from −100 to 100 per-
turbations by step of 20, from each model obtained by 
I-TASSER: the 10 largest modes with 10 structures for 
each of them were kept to render the elasticity of the 
mode, which produced 100 structures per protein. Then, 
a homemade Python 3.6 script was written to launch 
NAccess on each model and their modes to calculate the 
accessibility. The maximum of accessibility for the 100 
structures was conserved for each site.

Machine Learning
To train and test our model, we divided our dataset into 
two sets: a training set which represents 80% of the dataset 
and a testing set which represents the remaining 20% of 
the dataset. As the amount of positive data is much lower 
than the amount of negative data, we performed an over-
sampling of the training set and an undersampling of the 
testing set. Oversampling and undersampling were done 
with an algorithm for non-continuous data called Random 
Over Sampling Examples (R package “ROSE”, v0.0.3).21 

We also tested on real proportions data (1.4% 
O-GlcNAcylated vs 98.6% non O-GlcNAcylated) in 
order to compare the results with the undersampled testing 
set (Figure 1). We used three types of machine learning 
algorithms:

● Random Forest (R package “randomForest”, 
v4.6.14).22 To optimize the parameterization, we 

trained data on different numbers of trees: once 
a plateau was found, the first value of this plateau 
was chosen. Each tree has nodes to test different fea-
tures. The number of variables tested at each node was 
chosen to get the best predictions. The finally selected 
parameters are: ntree = 200 (number of trees), mtry = 3 
(number of variables tested at each division).

● Gradient Boosting Tree (GBT) (“xgboost” R package 
“xgboost”, v1.1.1.1)23 that uses decision trees like 
Random Forest but including a new variable which 
is residuals.24 The difference between residuals and 
the real value to predict is used in the algorithm.

● Support Vector Machine (SVM) is an algorithm 
essentially based on prediction of two classes (R 
package “e1071”, v1.7.3).25 Each data value is set 
in a matrix with as many dimensions as features. 
Then the algorithm tries to find a plan to separate 
the positive from the negative data. The more the 
values are away from this plan, the better the pre-
diction is. We ran four SVM algorithms based on 
different functions: Linear, Polynomial, Radial 
basis and Sigmoid which are used to create the 
plan to classify the two classes. We first used 
default parameters for all SVM algorithms; then, 
we investigated hyperparameter tuning for the four 
algorithms with the “tune” function of the “e1071” 
package, which gave the hyperparameters cost = 4 
and gamma =1. We only present the results of the 
hyperparameterized sigmoid because this is the one 
that showed the best results.

Details about each algorithm can be found in.24

To be able to run the machine learning algorithms, the 
features listed before were transformed to numeric values. 
All the transformed parameters are listed below:

● Side Chain length: 0, 1, 2, 3, 4, 5, 6 or 7 where 0 is 
No Residue, 1 is Glycine, 2 Very Small, 3 Small, 4 
Normal, 5 Long, 6 Cycle and 7 Proline from posi-
tions −1 to +5

● Non-polar aliphatic amino acids from positions −3 to 
−1: 0, 1, 2 or 3

● Polar positively charged residues from positions −7 
to −5: 0, 1, 2 or 3

● Number of serines and threonines in the -/+10 resi-
due window

● Flexibility: continuous value from 0 to 1 where 0 is 
flexible and 1 rigid
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● Secondary structure: 0, 1 or 2 where 0 is not struc-
tured, 1 is alpha helix and 2 is beta strand

● Presence of a proline in +1: 0 or 1 (no or yes)
● Secondary structure according to phi and psi angles 

(0, 1 or 2)
● Nature of the site: 0 or 1 where 0 is serine and 1 

threonine

To test the different algorithms we compared the methods 
according to the sensitivity and the PPV. We ran each 
algorithm ten times with ten randomly shuffled datasets 
(80% to train and 20% to test) and computed the statistics 
for these ten runs.

To ensure the added value of each feature, MRMD 
V3.026 was used regarding its five methods: PageRank, 
LeaderRank, TrustRank, Hist_a and Hist_h.

Everything in this section was done with R v3.6.3.

OGT Partners Analysis
The OGT partners were retrieved from the IMex database 
through the PSICQUIC27 service inside the Cytoscape28,29 

v3.7 software for network visualization and analysis. The 
enrichment analysis in molecular function of the Gene 
Ontology was performed with ClueGO v2.5.730 and the 
EBI GOA (v23/07/2020). The selection criteria were:

● Statistical Test Used = Enrichment/Depletion (Two- 
sided hypergeometric test)

● Correction Method Used = Bonferroni step down
● Min GO Level = 2
● Max GO Level = 6
● Cluster #1
● Sample File Name = Network selection: 

ManuallyAddedOrModifiedIDs
● Min number of Genes = 3
● Min Percentage of Genes = 3.0
● GO Fusion = false
● GO Group = true
● Kappa Score Threshold = 0.4
● Over View Term = SmallestPValue
● Group By Kappa Statistics = true
● Initial Group Size = 1

Figure 1 Steps of the machine learning training and testing. Machine learning process pipeline representation with over and undersampling to create the training/testing data 
and the various models from the different algorithms.
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● Sharing Group Percentage = 50.0

Availability of Data
Code and data used in the manuscript are all available in 
the GIT repository: https://gitlab.in2p3.fr/cmsb-pub 
lic/OGP.

Results
Evaluation of Available Prediction Tools 
on a Newly Built Dataset
We built a new dataset with only experimentally proven 
O-GlcNAcylated sites, ignoring sites identified by homology 
in order to avoid inclusion of false positives (see Materials and 
Methods). We obtained a dataset of 565 O-GlcNAcylation 
sites and 40,271 serine or threonine residues that are not 
O-GlcNAcylated (data set provided in the git repository). 
This means that only ~1.4% of all S and T residues of 
O-GlcNAcylated proteins are O-GlcNAcylated. We refer to 
O-GlcNAcylated sites as positive data and non 
O-GlcNAcylated sites as negative data.

Because the YinOYang and O-GlcNAcPred-II predic-
tion tools are limited in terms of protein sequence size, we 
built a reduced dataset that we used to run each tool. The 
results of our evaluation are listed in Table 2.

These results show that, although acceptable values are 
obtained by the tools for the specificity, the sensitivity and 

the accuracy, the values are lowered with respect to those 
previously published6–8 when applied to our new dataset. 
However, these criteria remain limited in determining 
which sites are truly O-GlcNAcylated. Another indicator 
such as the precision, also called Positive Predictive Value 
(PPV), is more useful. PPV is the chance that a positive 
prediction is right. In our analysis, we observed that the 
PPV is very low for any tool, the best one showing only 
8.68% (most stringent YinOYang), which means that a site 
predicted as positive has less than 9% chances to be really 
O-GlcNAcylated.

The Negative Predictive Value (NPV) is the chance 
that a negatively predicted site is factually not 
O-GlcNAcylated. For each tool, values around 99% are 
found. However, considering that the percentage of non 
O-GlcNAcylated serines and threonines is ~98.6% (100 − 
1.4), the tools perform only marginally better than 
a random prediction.

In conclusion, the more relevant criterion in 
a prediction tool is its capacity to identify the true positive 
sites, quantified in the PPV. Since these are found to be so 
low for any of the currently available tools, we attempted 
to improve the predictions using new features. So far, all 
tools are based on the protein primary structure (sequence) 
around each site only. Consequently, we decided to first 
characterize the primary structure of all the 

Table 2 Evaluation of Commonly Used Methods for O-GlcNAcylated Sites Prediction on Our Dataset

YoY + YoY ++ YoY +++ YoY ++++ OGP-II OGT Site

TP 267 172 79 21 358 270

FP 8158 3233 1068 221 8830 4084

TN 30507 35432 37597 38444 29835 34581

FN 283 378 471 529 192 280

Sensitivity (%) 48.55 31.27 14.36 3.82 65.09 (81.05) 49.09 (85.4)

Specificity (%) 78.97 91.67 97.25 99.43 77.16 (95.91) 89.44 (84.1)

Precision (PPV) (%) 3.17 5.05 6.89 8.68 3.90 6.20

NPV (%) 99.08 98.95 98.78 98.65 99.36 99.20

Accuracy (%) 78.55 90.47 96.04 98.32 76.99 (91.43) 88.87 (84.7)

FDR (%) 96.83 94.95 93.11 91.32 96.10 93.80

Total 39215 39215 39215 39215 39215 39215

Notes: Table showing the statistical measures of YinOYang (with different stringency thresholds, the higher number of “+”, the more stringent), O-GlcNAc-Pred II and 
OGTSite. When available, published performances of software on their data are put in brackets. 
Abbreviations: YoY, YinOYang; OGP-II, O-GlcNAcPred II; TP, True Positives; FP, False Positives; TN, True Negatives; FN, False Negative; PPV, Positive Predictive Value; 
NPV, Negative Predictive Value; FDR, False Detection Rate.
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O-GlcNAcylated sites and then to expand our analysis to 
secondary and tertiary structures in order to determine 
relevant features for new prediction tools.

Analysis of Sequences Around the Sites
We analysed first the O-GlcNAcylated site sequences over 
a window of −10 to +10 amino acid residues around each 
O-GlcNAcylated site to keep the maximum of available 
information without exaggeration. For all the windows, we 
compared the composition in residues between positive 
and negative sites in order to highlight over- and under- 
represented residues in both sets.

Figure 2 shows the proportion of amino acids at each 
position of the window in the positive (Figure 2A) and 
negative (Figure 2B) sets. Despite some tendencies, no 
clear patterns are discernable, although most of the residues 
around positive sites do show a small side chain. Also, as 
already described by Leney et al,31 we can see a slightly 
lower amount of proline residues in +1 for O-GlcNAcylated 
sites. The authors explain this observation by the crossplay 
between O-GlcNAcylation and phosphorylation. Indeed, 
some kinases are proline-directed and the presence of 
a proline at +1 favors phosphorylation over 
O-GlcNAcylation. We cannot also exclude the fact that 
a proline induces a steric hindrance due to its cycle that 

could hinder the transfer of the O-GlcNAc by the OGT. 
However, this hypothesis is unfavoured as a proline residue 
is frequently found at −1 and −2 of an O-GlcNAcylation site.

To assess if the size of the side chain is a pertinent 
criterion for prediction of O-GlcNAcylation, we classified 
residues in function of the size of their side chain. We also 
classified the residues depending on their polarity and 
evaluated this criterion as well. In both cases, we com-
pared the proportions to those observed in a random 
sequence. These classes are listed in Table 1A and B.

Figure 3 shows that the proportions of all the positions in 
the negative set look more homogeneous between them 
(Figure 3B) than the proportions of all the positions of the 
positive set (Figure 3A). Comparing the proportions of the 
positive set to the negative set and to the proportions of 
a random sequence, we can see that O-GlcNAcylated sites 
show a light tendency towards the shorter amino acids in their 
immediate vicinity. The area −1 to +5 in particular is of special 
interest as the sum of the proportions of the classes E, G, V and 
S at each of these positions in the positive set is at least 5% 
higher to the negative set or the random set. In addition, this 
figure shows that a serine or threonine close to N-terminal or 
C-terminal positions has a higher probability to be 
O-GlcNAcylated as the percentage of the empty class is over-
all double for the positive data compared to the negative data.

Figure 2 WebLogo representing the proportion of amino acids around sites. WebLogo representing the proportion of each amino acid in a -/+ 10 frame around (A) 
O-GlcNAcylated sites and (B) non O-GlcNAcylated sites.

Advances and Applications in Bioinformatics and Chemistry 2021:14                                                      https://doi.org/10.2147/AABC.S294867                                                                                                                                                                                                                       

DovePress                                                                                                                          
93

Dovepress                                                                                                                                                            Mauri et al

https://www.dovepress.com
https://www.dovepress.com


When considering polarity, Figure 4 also shows that 
the proportions of all the positions in the negative set 
(Figure 4B) look more homogeneous than in the positive 
set (Figure 4A). Here, two classes are over-represented in 
the positive set compared to the negative set in two areas: 
the non-polar aliphatic residues (G), in positions −3 to −1 
(respectively, 13.1%, 10.5% and 3.5% higher) and the 
polar positively charged residues (C) in positions −7 to 
−5 (respectively, 2.7%, 2.3% and 4% higher). But even if 
over-represented, not all the sites follow these distribu-
tions, which means that these criteria show slight tenden-
cies but are not sufficient to discriminate positive from 
negative data. The majority of the classes of the non 
O-GlcNAcylated sites look very close to the random com-
position. However, running a Chi-square test of propor-
tions between the mean of all the positions of the negative 
set and the random set shows that they are significantly 
different (p-value<0.0001). It is essentially due to the 
amino acid A class (10% higher on average in the negative 

set), which is the one gathering together serine and threo-
nine residues. The difference in proportions is even higher 
for the positive set compared to random, also mainly (but 
not only) due to the A class (14.1% higher on average).

Therefore, globally a −10/+10 window around each 
serine or threonine in the positive and negative sets con-
tains more serine and threonine residues than random, 
which means that they tend to be clustered. Intriguingly, 
the number of serines and threonines seem to be higher 
around positive than negative sites. Thus, we counted the 
number of serines and threonines around the sites (without 
the proper site) for the two classes (Figure 5).

Even if the mean and median of S/T is higher in the 
O-GlcNAcylated sites (Mann–Whitney test with a p-value 
<2.2e-16), the standard deviation is high and the distribu-
tions show a large overlap, which means that positive sites, 
like negative sites, can show poor or high densities of S/T, 
which makes this criterion alone not stringent enough to 
differentiate between positive and negative sets.

Figure 4 Composition in polarity classes. Composition of polarity classes around (A) O-GlcNAcylated sites and (B) non O-GlcNAcylated sites. Classes are detailed in Table 
1B. Random corresponds to the composition of any position in a random sequence from UniProt.

Figure 3 Composition in side chain size classes. Composition of side chain size classes around (A) O-GlcNAcylated sites and (B) non O-GlcNAcylated sites. Classes are 
detailed in Table 1A. Random corresponds to the composition of any position in a random sequence from UniProt.
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Unfortunately, these criteria show tendencies, but are 
not discriminative. Additional features will be required in 
order to enhance the predictive power of our approach. As 
O-GlcNAcylation is a dynamic modification, we hypothe-
sised that the sites should be flexible and accessible. We 
therefore investigated the secondary structure, flexibility, 
tertiary structure and solvent accessibility.

Analysis of Secondary and Tertiary 
Structures Around the Sites
To predict the backbone flexibility, we used the DynaMine 
software.12 Figure 6 shows that only 15.27% of all the 
O-GlcNAcylated sites are predicted in rigid regions, 
43.7% in flexible regions and 41.03% in context- 
dependent regions. These proportions are very similar to 

Figure 5 Number of serine and threonine residues around positive and negative sites. Histograms representing the mean and median of the number of serine and threonine 
residues around positive (blue) and negative (red) sites.

Figure 6 Predictive flexibility of O-GlcNAcylated sites and non O-GlcNAcylated sites. Flexibility predicted with DynaMine for positive (red) and negative (blue) datasets 
depending on the nature of the site: serine, threonine, or both.
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the negative dataset with, respectively, 15.78%, 45.13% 
and 39.09%. By making the distinction between serine and 
threonine, we find that serine residues are more often 
found in flexible regions than the threonine ones, indepen-
dently of whether a site is (positive) or is not (negative) 
glycosylated and on the contrary that less serines are found 
in rigid regions. But here, the positive and negative dis-
tributions are so close that this feature is not discriminative 
enough. We further anyway conserved it for machine 
learning prediction in a first round, in case the very light 
differences between the positive and negative flexibility 
predictions could be useful in combination with other 
features.

Secondary structures were predicted with SPIDER3, 
which also computes φ and ψ angles.13 Around 85% of 
O-GlcNAcylated sites were predicted on unstructured por-
tions of proteins, 10% on α-helix and 5% on β-strands. For 
non O-GlcNAcylated sites, the percentage of each class is 
64%, 28% and 8% for unstructured, α-helix and β-sheet, 
respectively, which means that O-GlcNAcylated sites are 
found preferentially in unstructured parts. These results 
also support the hypothesis that the structure of the sub-
strate should have a small steric hindrance to enter the 
catalytic pocket of the OGT. But, obviously, this does not 
allow for a prediction of O-GlcNAcylated sites only based 
on secondary structure predictions. According to Pathak 
et al, the backbone symmetry of O-GlcNAcylated sites is 
like β-strands in the residue range −3 to +2.32 We used the 
SPIDER3 predictions to check whether the angles actually 
correspond to β-strands. The most frequent class for each 
window of 6 residues was kept to classify a site. Table 3 
shows that O-GlcNAcylated backbone sites from −3 to +2 
are not that different from non O-GlcNAcylated sites. The 
proportion of β-like backbone in the −3/+2 area is slightly 
higher for the positive sites but here again, the signal is not 
strong enough to differentiate these two classes.

We hypothesised that the sites should be able to dive into 
the catalytic pocket of the enzyme. Accordingly, modified sites 

should be globally accessible to solvent. As a consequence, we 
computed the accessibility to solvent of the O-GlcNAcylated 
sites. This calculation required the three-dimensional structure 
of each protein. However, not all proteins of our dataset possess 
a structure listed in the Protein DataBank (PDB), and even for 
those for which a structure was available, the area which 
contained the sites was often missing, undoubtedly due to the 
intrinsic flexibility of sites prone to O-GlcNAcylation. 
Therefore, we decided to build modeled structures. Because 
for a part of the proteins any good template was available, we 
used I-TASSER. We then calculated the accessibility of all 
sites in the models using NAccess.19 We also computed normal 
modes for each structure with the ElNémo software to take into 
account the potential elasticity of the molecule, which may 
improve the accessibility of each site.20 But despite some 
elasticity of the proteins taken into account, the accessibility 
of each site was very heterogeneous. Figure S1 shows the 
accessibility for all the sites; ie, the sites of the human CR2 
(P20023) and AQP1 (P29972) proteins are totally accessible 
while others like the mouse Psma7 (Q9Z2U0) and Psma5 
(Q9Z2U1) protein sites are not accessible at all. Therefore, in 
contrast to what we initially thought, we had to discard the use 
of accessibility for prediction altogether.

Integration of the Features in Machine 
Learning Algorithms
We studied different aspects of the sites, comparing para-
meters between the O-GlcNAcylated sites and non 
O-GlcNAcylated sites of our dataset, from the primary to 
tertiary structure. None of these parameters are sufficient 
to differentiate positive from negative data despite some 
tendencies. Consequently, to find a way to predict 
O-GlcNAcylation sites, we used them as features in three 
different types of machine learning (ML) algorithms. We 
decided not to include the accessibility since it appeared to 
be unreliable and moreover relies on models of tertiary 
structures and not on resolved ones. The three types of 
algorithms we chose are Random Forest (RF), Gradient 
Boosting Tree (GBT) and Support Vector Machine 
(SVM),22,24,33 the latter being split into 4 variants (linear, 
polynomial, radial basis and sigmoidal). We initially chose 
a RF algorithm because algorithms based on decision trees 
are well adapted to treat a mixture of numerical and 
categorical features and to deal with fuzzy input data 
(outliers, irrelevant inputs). We then evaluated GBT, 
which is also based on decision trees and is sometimes 
found to outperform RF for hard classification problems.24 

Table 3 Percentage of β-Like, α-Like and Other Backbone 
Angles from −3 to +2 of O-GlcNAcylated Sites (Positive) and 
Non O-GlcNAcylated Sites (Negative)

Positive Negative

Beta-like 61,91% 59,36%

Alpha-like 29,65% 27,11%
Other 8,44% 13,53%

Note: Predictions made with SPIDER 3.
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We further tried SVM because it is not based on trees and 
it is a well-known classifier in bioinformatics that has 
already been used for O-GlcNAcylation prediction.8,34

Our dataset was divided into two: one for training and 
one for testing. Following Box and Meyer (1986),35 we 
used 80% of the data for training and the remaining 20% 
for testing. As the amount of positive and negative data in 
the set differs by three orders of magnitude, this could bias 
the training step. To counter this fact, we used an over-
sampling method, which consists of adding points in the 
space representation (created by the features) of positive 
data to make the amount of positive data equal to the 
amount of negative data5 for the training (32,217 sites). 
And we used an undersampling method which consists of 
choosing randomly the same number of negative data in 

the set as positive data for the testing (113 sites). The 
process is described in Figure 1.

Table 4 shows the sensitivity and the PPV for ten runs 
of each algorithm for testing on undersampled data on one 
side and not undersampled data (with real proportions of 
positive vs negative) on the other side. We chose these two 
measures to be able to compare them with those of 
YinOYang, O-GlcNAc-Pred II and OGTSite. For the test-
ing set based on undersampled data (50% positive/50% 
negative), this table demonstrates that Random Forest is 
the best algorithm based on the mean values of sensitivity 
followed by the GBT algorithm. The radial basis SVM 
algorithm follows in third place. Following the PPV, it 
shows the best prediction algorithm to be GBT while 
looking at the maximum. Nevertheless, the GBT gives 

Table 4 Sensitivity and PPV of the Three ML Algorithms Tested on Undersampled (Equal) and Not Undersampled (Real) Data

Min  
(Equal/Real)

Max  
(Equal/Real)

Mean  
(Equal/Real)

Median  
(Equal/Real)

Standard Deviation  
(Equal/Real)

RF (Sensitivity %) 97.35 

97.35
99.12 

100
98.58 

98.67
98.58 

98.58
0.62 

1.04

RF (PPV %) 47.46 

1.35
51.61 

1.39
48.98 

1.37
48.69 

1.37
1.36 

0

GBT (Sensitivity) 13.64 

30.97
82.30 

47.79
48.76 

39.56
49.11 

39.82
32.18 

5.71

GBT (PPV) 13.51 

2.52
86.11 

3.41
47.04 

3.06
46.08 

3.10
27.47 

0.29

SVM Linear (Sensitivity) 29.20 

32.74
51.33 

47.79
37.70 

39.73
38.94 

38.94
6.82 

5.54

SVM Linear (PPV) 31.13 

0.81
43.94 

1.08
36.53 

0.90
37.33 

0.90
4.13 

0.01

SVM Polynomial 
(Sensitivity)

8.90 

8.90
98.23 

23.48
36.81 

12.69
15.93 

10.93
42.11 

5.53

SVM Polynomial (PPV) 11.11 

0.20
48.88 

1.37
30.79 

0.88
29.16 

0.92
14.62 

0.45

SVM Radial basis 
(Sensitivity)

34.51 

34.51
53.10 

50.44
42.74 

40.97
42.92 

39.38
5.99 

5.47

SVM Radial basis (PPV) 33.05 

0.71
43.48 

1.01
37.76 

0.82
37.59 

0.78
3.70 

0.09

SVM Sigmoid (Sensitivity) 28.32 

33.63
53.10 

49.56
39.12 

39.65
38.94 

38.94
7.56 

6.14

SVM Sigmoid (PPV) 28.32 

0.81
53.10 

1.11
39.12 

0.88
38.94 

0.85
4.34 

0.10

Notes: Undersampled testing data contains the same number of positive vs negative data (50%/50%) whereas not undersampled data contains real proportions (1.4%/ 
98.6%). Statistics that correspond to real data are set in bold. Blue background contains results for sensitivity, white background for PPV. Values are indicated in %. 
Abbreviations: PPV, Positive Predictive Value; ML, Machine Learning; RF, Random Forest; GBT, Gradient Boosting Tree; SVM, Support Vector Machine.
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greater heterogeneous results with a standard deviation of 
32.18% for the sensitivity and 27.47% for the PPV and, on 
average, the Random Forest performs better on both 
tables. We then ran the same algorithms without the fea-
tures which result from a prediction, namely flexibility, 
secondary structure and φ/ψ angles, to avoid the potential 
background noise inherent to any prediction. The results 
are equivalent to the previous results or less good, showing 
that including all features is preferred (Table S1).

The results we get when testing on undersampled data 
are better than the ones of any other tools (Table 2). 
Nevertheless, this testing set is not representative of the 
reality where we have less than 2% of serine and threonine 
residues that can be O-GlcNAcylated. Thereby, we ran ten 
times the same algorithms but tested them on real propor-
tions of positive and negative data (113 positive sites, ie, 
1.4%, and 8054 negative sites, ie, 98.6%), thus without 
undersampling.

The results presented for real proportions are in bold in 
Table 4. They are not as good as the previous ones. The 
sensitivity decreased except for the Random Forest algo-
rithm but looking at the PPV values, they all decreased 
drastically to around 1% except for the GBT algorithm 
which is around 3%, a value close to other already existing 
O-GlcNAcylation prediction tools. For the sensitivity, RF 
gives really good results but the amount of false positives 
is very high, which explains the low PPV. Once again, we 
ran the predictions with the three algorithms on data with-
out the features based on predictions, and obtained similar 
or slightly worse results (Table S1).

Yet, we tuned the SVM sigmoid algorithm, which gave 
the best results among the SVM algorithms, with hyper-
parameterization. Here, the best hyperparameters were 
cost equals 4 and gamma equals 1. Once the hyperpara-
meters set, the results of the SVM sigmoid algorithm 
slightly increased but stayed lower than GBT and 
Random Forest (Table S1).

Thus, currently available tools are not as efficient as 
claimed, considering the PPV (best PPV is lower than 
9%). As we tried to improve predictions with the various 
machine learning algorithms, optimizing the features, we 
failed to get better results when running them on data with 
real proportions (our best PPV is around 3%).

Discussion
Predicting O-GlcNAcylation is a tricky task: unlike other 
PTMs, such as phosphorylation or N-glycosylation, there 
is no common pattern or consensus sequences as well as 

limited experimentally validated data. Much effort has 
been spent attempting to develop software to solve this 
problem but we showed here that their predictive power is 
disappointing. Subsequently, we tried to improve the pre-
dictions using machine learning algorithms by adding 
characterized features based on primary to tertiary struc-
ture information. Although they show better results on 
undersampled data, they fail to give good results on data 
with realistic proportions of O-GlcNAcylated serine and 
threonine residues (~1.4% O-GlcNAcylated/98.6% non 
O-GlcNAcylated).

The published tools are all based on algorithms trained 
on protein primary sequences. Because there is only 
a limited amount of experimentally proven data available, 
the training of an algorithm to predict sites is very hard. 
Some of the currently available tools therefore use the 
prediction of O-GlcNAcylated sites by homology. This 
provides more data for the training, but the data are intrin-
sically biased, which may explain the poor results we get 
when running them on our dataset. Precisely, regarding the 
results of the different tools, we pointed out that the 
statistical quantities used to compare their efficiency are 
not as significant as they should be. Looking at the biolo-
gical problem, the statistical measurements used here must 
be improved by taking into account the number of false 
positives. Sensitivity is a major statistical measurement to 
see if some positive sites are missed which is interesting 
when data are balanced. Yet, it is a quantity to take care-
fully into account because if a tool simply predicted all the 
sites as positive, this statistic would be maximized, but the 
tool would be pointless. Looking at the Positive Predictive 
Value (PPV) (also called precision) is more relevant 
because it shows the proportion of correct positive predic-
tions compared to all the positive predictions, which is 
exactly what a researcher wants to know when he/she 
performs such a prediction. However, currently, no avail-
able software succeeds to show a correct PPV value.

All these tools are only primary sequence based. In our 
sequence analysis, we only showed slight tendencies when 
comparing various features in a -/+10 window around 
serines/threonines between positive and negative sets, 
which makes it hard to classify sites into the two cate-
gories. We showed a similarity of composition between 
non O-GlcNAcylation sites and random. The positive data 
are different from this composition but the difference 
could result from the low number of data and having 
a bigger amount could lead to a homogenisation of the 
composition. A significantly higher number of positive 
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data may bend the composition to a composition close to 
the random set.

To bypass this problem of lack of discriminating infor-
mation from sequences and in order to improve the classi-
fication, we characterized additional structural and 
dynamic parameters derived from the sequence to enrich 
the features list for machine learning algorithms. 
Unfortunately, these new features either showed slight 
tendencies again (secondary structure, dihedral angles) or 
were without real interest (accessibility), and integrating 
them into machine learning algorithms did not enhance the 
predictive power. Derived features like these ones can 
sometimes improve the training but may also generate 
a bias due to their predictive aspect, which is why we 
trained our algorithms also without them. The results 
obtained thus were close to those obtained with predicted 
features, but never better. For a better evaluation of the 
feature selection, we used the MRMD3.0 tool to rank and 
reduce the features for machine learning.32 It provides 5 
different ranking algorithms. Two of five did not reduce 
the number of features and the three others reduced by two 
or three the features. The Hist_h and the LeaderRank 
methods removed the flexibility and the number of threo-
nines. LeaderRank scoring also removed the presence of 
proline at +1 while the TrustRank removed the feature 
length class at position +5. But these removals resulted 
in a very low ranking score difference with the other kept 
features (a difference of 0.0001 point), meaning the results 
would not significantly change when removing them. 
Therefore, removing features does not improve 
predictions.

The data retrieved to build our dataset are all experi-
mentally proven by tandem mass spectrometry, which is 
a conventional method currently used to identify 
O-GlcNAcylated sites, and/or by site-mutagenesis. 
Although experimentally proven, we cannot exclude that 
false positives and negatives may exist, which adds noise 
to the training. The FP and FN may be related to technical 
issues or experimental conditions, in particular considering 
that O-GlcNAcylation in an invivo environment can be 
more or less efficient than in an invitro environment.

The lack of positive data which leads to the limitation 
of the unbalanced data (which add bias in prediction) can 
explain the low PPV obtained by our method but also by 
the previously published tools. We pointed out that the use 
of equal amounts of positive and negative data in our and 
other works like O-GlcNAcPred-II showed really better 
results. Still, these proportions are not realistic because 

only 1% to 2% of the total serine and threonine residues 
of proteins are truly O-GlcNAcylated and, using our best 
models on realistic proportions, the PPV dropped signifi-
cantly from 86% for the best GBT model to 3%. Also, 
considering the sensitivity, a criterion mostly used in the 
publications of the currently available tools, we obtained 
better values than the other tools with a Random Forest 
algorithm. We do, however, consider this difference insig-
nificant because of the large amount of false-positive data. 
Indeed, our RF gives a sensitivity close to 100% but with 
a precision ~50% for balanced data and ~1% for real 
proportionate data, which basically means it classifies all 
the sites as O-GlcNAcylated, making the predictor irrele-
vant. This problem is linked to the oversampling of trained 
data but training on undersampled data is not possible in 
this case because of the lack of positive data (we tried to 
train RF models on undersampled data, which gave on 
average a sensitivity = 22.12% and a PPV= 0.54%). It 
highlights the fact that the amount of available experimen-
tal data is crucial for any machine learning algorithm. 
Thus, it will be worthwhile to apply our methods again 
when significantly more positive experimental data are 
available. Here, we showed that the PPV of any tool is 
currently so low (<9%) that there is a necessity to develop 
a new and efficient tool based on a bigger dataset of 
positive data. The RF, GBT and SVM classifier methods 
we used showed in the past to be very efficient for other 
predictions,36–38 and we are convinced now that the pro-
blem resides in the data and associated features used, 
rather than in the algorithms themselves. That is the reason 
why we did not explore more algorithms. At present, our 
conclusion is that protein sequence or any sequence- 
derived information is simply not sufficient for a good 
prediction and that the amount of positive data is too low 
for an efficient prediction.

In contrast to its competitive relationship with phos-
phorylation, O-GlcNAcylation is catalyzed by only two 
antagonistic enzymes, OGT and OGA. A hypothesis is 
that the OGT requires scaffold partners to be addressed 
to and to bind its substrates, but also to unfold them (some 
sites being predicted to be buried in the structures we 
modeled). To preliminary explore this way, we performed 
an enrichment of these partners in Gene Ontology - 
Molecular Functions to identify the proteins which are 
currently known to be in interaction with OGT.

Figure 7 shows that partners of OGT are involved in 
protein binding but also that some are involved in 
unfolded protein binding, which may relate to the 
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existence of buried O-GlcNAcylated sites. This GO class 
contains 4 proteins: Chaperonin Containing TCP1 
(T-Complex Protein 1) Subunit 2 (CCT2), 3 (CCT3) and 
5 (CCT5) (a chaperone involved in TCP1),39 and a Heat 
Shock Protein Family D Member 1 complex (HSPD1)40 (a 
mitochondrial chaperone of imported proteins in the mito-
chondria). Indeed, these chaperones can bind unfolded 
proteins to fold them. Their interaction with OGT could 
participate in the O-GlcNAcylation of target proteins 
before, during or after folding; this subject area would 
deserve to be deeply studied in a future work for a better 
understanding of O-GlcNAcylation processes. Another 
intriguing point that could help to improve the predictions 
if taken into account is that O-GlcNAcylation is a reaction 
that can occur co-translationally,41 meaning that protein 
folding and O-GlcNAcylation can occur at the same time. 
These sites should be analysed separately from the post- 
translational ones to be able to improve predictions but 
such annotation is currently lacking in databases. 

Therefore, predicting an O-GlcNAcylation as co- 
translational is an even more difficult task.

OGT presents several isoforms exhibiting different num-
bers of TPRs in the N-terminal domain. This variation in the 
number of repetitions could play a role in the enzyme capacity 
to recognize and modify sites which are on structured or 
unstructured parts of proteins, with unstructured sections that 
would be able to enter the lumen of the TPR superhelix. For 
instance, the structure of human O-GlcNAc Transferase (PDB 
ID: 4N3B)42 harbors a modified peptide from HCF-1 inside the 
superhelix of the first TPR repeat, which indicates that OGT is 
able to accept unfolded structures inside its TPR domain. The 
ncOGT may thereby be able to accept longer unfolded struc-
tures inside its longer TPR repeats domain compared to sOGT. 
Furthermore, these O-GlcNAcylation sites could be presented 
to OGT with the help of its partners. These interactors could 
help the enzyme to discriminate between sites to 
O-GlcNAcylate or not. The key for an efficient prediction 
may thereupon require a detailed study of OGT’s partners 

Figure 7 Network of GO terms (Molecular Functions) of partners of OGT. Network visualisation of GO terms (Molecular Functions) of proteins known to interact with 
the human OGT from the IMex interaction database - enrichment performed with ClueGO (see Material and methods for parameters).
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and the annotation and classification of each experimentally 
validated data with its specific context (partners, subcellular 
compartment of the cell, function of the target …) for a training 
of the algorithm specific to the context.

Conclusion
Currently available software tools for prediction of sites that 
can be O-GlcNAcylated do not show relevant statistics 
because sensitivity and specificity do not reflect the capacity 
of a predictor to provide an unambiguously positive and correct 
answer. To this purpose, the precision is more adapted and we 
showed that these tools are less efficient than expected because 
of the high amount of false positives in their predictions. We 
tried to improve the prediction methods by characterizing 
structural and dynamic features such as flexibility, accessibility 
and secondary structure prediction, but also amino acid com-
position through the classification of amino acids around posi-
tive or negative sites in function of their nature. We found that 
these features only showed tendencies and that none could be 
given discriminatory powers. We have combined them in 
machine learning algorithms, but none of the algorithms suc-
ceeded in enhancing the precision. The highest precision cur-
rently reached by any algorithm lies below 9%, which makes 
the O-GlcNAcylation prediction an as of yet unattained 
objective.
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