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Abstract
In this work an efficient one-pot synthesis of substituted pyrroles 7a–n is described, which involves the in situ formation of

dihydrofurans ethyl 5-butoxy-2-methyl-4,5-dihydrofuran-3-carboxylate (4), 1-(5-butoxy-2-methyl-4,5-dihydrofuran-3-yl)ethanone

(5) and 5-butoxy-4,5-dihydrofuran-3-carbaldehyde (6) followed by reaction with primary amines.
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Introduction
The  pyrrole  unit  [1]  occurs  in  many  interesting  classes  of

compounds such as pharmaceutical agents [2-5], conducting

polymers [6,7], molecular optics [8-11], electronics [12], gas

sensors for organic compounds [13], and as building blocks in

many physiologically interesting natural products, such as alkal-

oids [14]. The classical methods of constructing pyrrole ring

system include mainly Knorr or Paal–Knorr syntheses, which

have been summarized in  a  wide number of  review articles

[15-19]. Due to these multiple uses and varieties of biological

activities, the synthesis of this ring system has been subject of

intense  investigation.  Danks  [20]  developed  a  high  yield

Paal–Knorr  method of  synthesis  of  pyrroles by the reaction

between  hexane-2,5-dione  and  primary  amines  under

microwave irradiation. Other processes including several clay-

mediated synthetic variations of these classical methods also

have been reported for preparing pyrroles in equal or better

yields [21]. In 2001 [22] and 2004 [23], Banik and co-workers,

by using the same protocol developed by Danks, reported the

synthesis of pyrroles using montmorillonite KSF in a solvent-

free  process  accelerated  by  microwave  irradiation.  More

recently,  Yadav and co-workers  [24]  described an  efficient

protocol  for  the  synthesis  of  sugar  derived  optically  active

di-pyrrolyl and bis-indolyl alkanols that are important for the

synthesis of porphyrins, using montmorillonite KSF as catalyst.

The search for short procedures for the synthesis of highly func-

tionalized pyrrole derivatives is still desirable [25-27].

In the next years the organic synthetic chemists will have more

demanding tasks, which include the search of products that can

be  manufactured  in  environmentally  acceptable  ways  with
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Scheme 1: One-pot synthesis of pyrrole derivatives.

Table 1: Substituted pyrroles (7a–n) prepared by this methodology.

Entry 7a–n R1 R2 R3 t (h) Yield (%)

1 7a OEt Me Benzyl [29] 52 72
2 7b OEt Me Decyl [29] 60 79
3 7c OEt Me Cyclohexyl [29] 72 74
4 7d OEt Me Isopropyl [31] 76 21
5 7e OEt Me Butyl 48 69
6 7f Me Me Decyl [29] 44 66
7 7g Me Me Benzyl [29] 61 73
8 7h Me Me Cyclohexyl [29] 56 64
9 7i Me Me Isopropyl 54 23
10 7j Me Me Butyl [29] 51 62
11 7k H H Benzyl [30] 48 86
12 7l H H Butyl [32] 48 83
13 7m H H Propyl [33] 48 85
14 7n H H H [34] 24 65

minimum consumption of energy and abundant raw materials

(e.g. biomass). The new reactions must maintain a favorable

ecological balance to be acceptable by society. In many books,

the  definition  of  the  ideal  synthesis  agrees  with  several

demanding tasks mentioned before in such way that the target

molecules should be made from readily available starting mater-

ials in one simple, safe, environmentally acceptable operation.

Additionally, they also should proceed quickly, in quantitative

yield, with high atom economy, and be more convergent than

one or two-component reactions.

α-Diazocarbonyl  compounds  have  a  long  history  of  useful

applications in  organic  chemistry.  They are  easily  prepared

from readily accessible precursors and can be used in a wide

variety of chemical transformations [28]. Indeed, we prepared

several pyrroles from diazocarbonyl compounds in two steps

[29]  employing  dihydrofurans.  However,  these  latter

compounds were difficult to prepare, isolate and transform into

the pyrroles [30]. In this manuscript, we report the preparation

of pyrroles from diazodicarbonyl compounds in a one-pot reac-

tion.

Results and Discussion
The substituted pyrroles 7a–n were prepared according to the

synthetic pathways described in Scheme 1. α-Diazocarbonyl

compounds ethyl 2-diazoacetoacetate (1), 3-diazopentane-2,4-

dione (2) and diazomalonaldehyde (3) were treated with a cata-

lytic quantity of rhodium(II) acetate in the presence of butyl

vinyl ether to produce the corresponding 3-carbonyl-dihydro-

furans 4–6. The rhodium catalyzed reaction of the α-diazocar-

bonyl compounds 1–3 was monitored by TLC chromatography.

Evaporation  of  the  solvents  at  the  end  of  these  reactions

followed by purification of crude residues by column chromato-

graphy led to the pyrroles 7a–n  in moderate to good yields.

Their structures were confirmed mainly based on their 13C and
1H NMR spectral data which are depicted in the experimental

section.

Since the reactivities of the diazo compounds are different there

were variations in the reaction times (see Table 1). The reaction

of the dihydrofuran intermediates 4,  5  and 6  with excess of

primary amines in the presence of glacial acetic acid afforded

the corresponding substituted pyrroles  7a–n  in  moderate  to

good yields (Table 1). Slightly different reactivity between 4, 5
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and 6 was observed since the former reaction involves a nucleo-

philic attack to vinylogous carbonyls of 3-carbonyl-dihydro-

furans.

In general, the yields were dependent basically on the reactivity

of the diazocompounds. In fact, diazocompound 3 led to higher

yields and lower reaction times than 1  or  2  (entries 11–14).

Most of the amines had little influence on the reaction yields,

with the exception of isopropylamine that led to the pyrroles in

lower yields (entries 4 and 9), probably due to steric hindrance

of the methyl groups. In some experiments the products were

obtained in a high degree of purity (entries 11 and 14). Addi-

tionally, pyrrole 7k, in our previous work [30], was obtained in

16% yield  and  by  using  this  methodology  was  obtained  in

higher  yield  (86%,  entry  11).

Conclusion
In  summary,  this  one-pot  methodology for  the  synthesis  of

substituted pyrroles from α-diazocarbonyl compounds is a very

straightforward  route  to  construct  variously  substituted

compounds  of  this  class  starting  from  readily  available

precursors.

Experimental
Analytical  grade solvents  were  used.  Butyl  vinyl  ether  was

freshly distilled before being used. Column chromatography

was performed on silica gel 60 (Merck 70–230 mesh). Infrared

spectra were recorded on a Perkin-Elmer 1420 spectrophoto-

meter. NMR spectra were recorded with a Varian Unity Plus

300 spectrometer,  operating  at  300 MHz (1H) and 75 MHz

(13C),  with tetramethylsilane as the internal  standard.  Ethyl

2-diazoacetoacetate (1) [35], 3-diazopentane-2,4-dione (2) [36],

and diazomalonaldehyde (3) [37] were prepared following the

procedures described in the literature. Purified samples were

used for measuring physical constants and spectral data. High-

resolution mode TOF-ESIMS mass spectra were obtained with

Hewlett Packard 5985 instrument.

General procedure
A solution of the diazodicarbonyl compound (1–3, 2 mmol) in 5

mL of freshly distilled butyl vinyl ether was slowly added by a

syringe pump, at a rate of 1.0 mL/h, to a stirred suspension of

dirhodium tetraacetate (0.2 mmol) in 5.0 mL of the same butyl

vinyl ether as solvent, under a nitrogen atmosphere. The stir-

ring was continued until the disappearance of the diazodicar-

bonyl compound followed by the addition of the appropriate

amine  (4  mmol)  and  of  0.2  mL of  glacial  acetic  acid.  The

mixture was stirred for the total time described in the Table 1.

The solvent was removed under reduced pressure leading to a

residue,  which  was  purified  by chromatography column on

silica gel,  using a gradient mixture of hexane/chloroform or

chloroform/acetone as the eluent. For the compound 7n (entry

14), the butyl vinyl ether solution was saturated with ammonia

and stirred for 24 h.

1-Butyl-2-methyl-1H-pyrrole-3-carboxylic acid ethyl ester

(7e). It was obtained as a yellow oil. IR νmax/cm−1: 2595, 2873,

1701, 1464; 1H NMR (300 MHz, CDCl3) δ 0.93 (3H, t, J = 7.2

Hz), 1.35 (3H, t, J = 7.2 Hz), 1.45 (2H, sept, J = 7.2 Hz), 1.68

(2H, quint, J = 7.5 Hz), 2.47 (3H, s), 3.84 (2H, t, J = 7.5 Hz),

4.22 (2H, q, J = 7.2 Hz), 6.53 (1H, d, J = 3.0 Hz), 6.55 (1H, d, J

= 3.0  Hz);  13C NMR (75 MHz,  CDCl3)  δ  10.5  (CH3),  13.7

(C-4′), 14.1 (OCH2CH3), 19.3 (C-3′), 32.8 (C-2′), 45.8 (C-1′),

58.9 (OCH2CH3), 109.5 (C-4), 112.0 (C-3), 119.1 (C-5), 135.3

(C-2),  165.0  (C=O).  HRMS calcd  for  C12H20NO2  [M+H]+:

210.1494,  found 210.2959.

1-(1-Isopropyl-2-methyl-1H-pyrrol-3-yl)-ethanone (7i).  It

was obtained as a brown oil. IR νmax/cm−1: 2925, 2871, 1738;
1H NMR (300 MHz, CDCl3) δ 1.25 (3H, t, J = 7.0 Hz), 1.27

(3H, t, J = 7.0 Hz), 2.40 (3H, s), 2.53 (3H, s), 3.67–3.80 (1H,

m), 6.48 (1H, d, J = 3.0 Hz), 6.53 (1H, d, J = 3.0 Hz); 13C NMR

(75.0 MHz, CDCl3) δ 11.0 (CH3C2), 28.7 (CH3C=O), 32.4 and

32.7 (C-2′), 46.1 (C-1′), 109.3 (C-4), 119.1 (C-5), 120.5 (C-3),

134.1  (C-2),  195.4  (C=O).  HRMS  calcd  for  C10H16NO

[M+H]+:  166.1232,  found  166.2433.
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