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The therapeutic landscape across many cancers has dramatically improved since the
introduction of potent targeted agents and immunotherapy. Nonetheless, success of
these approaches is too often challenged by the emergence of therapeutic resistance,
fueled by intratumoral heterogeneity and the immense evolutionary capacity inherent to
cancers. To date, therapeutic strategies have attempted to outpace the evolutionary
tempo of cancer but frequently fail, resulting in lack of tumor response and/or relapse. This
realization motivates the development of novel therapeutic approaches which constrain
evolutionary capacity by reducing the degree of intratumoral heterogeneity prior to
treatment. Systematic development of such approaches first requires the ability to
comprehensively characterize heterogeneous populations over the course of a
perturbation, such as cancer treatment. Within this context, recent advances in
functionalized lineage tracing approaches now afford the opportunity to efficiently
measure multimodal features of clones within a tumor at single cell resolution, enabling
the linkage of these features to clonal fitness over the course of tumor progression and
treatment. Collectively, these measurements provide insights into the dynamic and
heterogeneous nature of tumors and can thus guide the design of homogenization
strategies which aim to funnel heterogeneous cancer cells into known, targetable
phenotypic states. We anticipate the development of homogenization therapeutic
strategies to better allow for cancer eradication and improved clinical outcomes.
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INTRODUCTION

Recent advances in our understanding of the molecular
pathogenesis and therapeutic responses of cancer have enabled
the development of potent novel therapeutic modalities across
many cancer types. These strategies include targeted therapies,
which seek to eradicate cancer cells by interfering with specific
molecules or key cellular processes necessary for tumor survival
and growth, and immunotherapies, which are designed to
modulate the immune response to improve targeting and
elimination of cancer cells. While these modalities have
revolutionized patient outcomes often in synergy with
traditional chemotherapy in many cancers, patients
nonetheless continue to exhibit pre-existing or adaptive
therapeutic resistance and disease recurrence. The innumerable
therapeutic resistance mechanisms identified to date have
underscored profound propensity and capacity for cancer to
evolve (1). Tumor evolution is driven by the dynamic interplay
between cellular plasticity and environmental pressures,
resulting in constantly variegating subpopulations with many
possible avenues for therapeutic escape (2). Current therapies
inadequately address and often contribute to such heterogeneity.
Certain chemotherapeutic agents, for instance, induce various
forms of DNA damage that cause increased chromosomal
aberrations or mutations, thus fueling heterogeneity (3–6).
Targeted therapies are often chosen for their ability to
selectively target cancer cells harboring a characteristic
biomarker and in certain cases have revolutionized patient care
(e.g., clinical introduction of imatinib, a BCR-ABL tyrosine
kinase inhibitor, has more than tripled the 5-year survival rate
for patients with chronic myelogenous leukemia) (7). However,
this approach can fall short due to the presence of tumor
subpopulations with low protein expression or mutations
altering the drug-binding site, enabling therapeutic escape (8,
9). In another example, immunotherapies such as immune
checkpoint inhibitors, while curative in a proportion of
patients, often produce variable immune responses against
different tumor lesions within the same patient. Additionally,
many patients either do not respond, experience waning efficacy
due to progressive T cell exhaustion, or develop resistance after
treatment (i.e., via changes in tumor neoantigen expression and/or
immunogenicity or via downregulation of antigen presentation
pathways) (10, 11). Therefore, it is imperative that alternative
novel treatment strategies are explored to address shortcomings
that remain despite such recent therapeutic advances.

While the underlying genetics of a tumor often heavily
influence its phenotype, the phenotypic profiles or “cell states”
of a tumor have not been found to strongly associate with specific
mutational patterns (12, 13). Our understanding of the interplay
between tumor genetics, epigenetics, and expression profiles and
the tumor microenvironment remains rudimentary; however,
the field is accumulating evidence of how dynamic gene
regulatory networks and various environmental pressures play
central roles in modulating the diverse phenotypic cell states that
individual cancer cells can occupy. As different cell states can
exhibit varying sensitivities to therapy, treating a highly diverse
tumor with any given single or combination therapy is unlikely
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to effectively address the assortment of available transcriptional
states present across millions to billions of tumor constituents.
This presents another basis for therapeutic clonal escape and is a
formidable clinical challenge.

The recent introduction of functionalized lineage tracing
approaches, capable of capturing the multi-omic characteristics
of millions of clones over a treatment course, can inform a lineage-
and temporally-resolved understanding of the mechanisms cancer
cells employ during acute stress. This in turn potentially enables
the design and application of novel tumor homogenization
approaches to therapy, which aim to reduce intratumoral
heterogeneity. Specifically, tumor ‘homogenizing’ agents can be
screened for their ability to rationally drive a genetically and/or
phenotypically heterogeneous population towards a desired,
actionable set of phenotypic programs that are vulnerable to a
second, known therapeutic agent (e.g., chemotherapy, targeted
agent, or immunotherapy).

Herein, we describe current conceptual models of tumor
evolution and highlight the limitations of existing therapeutic
approaches to cancer. Further, we detail novel approaches that
aim to constrain intratumor heterogeneity and thus curtail
avenues of therapeutic escape. Finally, we discuss recent
technological advances that hold great promise for enabling and
informing therapeutic approaches such as tumor homogenization.
INTRATUMORAL HETEROGENEITY
AND THERAPEUTIC RESISTANCE

Technological advances have enabled pan-cancer sequencing
efforts, resulting in the discovery of extensive genetic,
epigenetic, and transcriptomic heterogeneity across and within
tumors (14–16). Numerous studies demonstrate that the
presence of a high degree of intratumor heterogeneity is
associated with poor prognosis (14, 17–19). With increased
heterogeneity is a greater likelihood that cells within the bulk
tumor will exhibit differing sensitivities to therapy (e.g., a rare
clone may harbor a pre-existing resistance mechanism(s) or
clones may acquire drug tolerance and/or resistance
throughout treatment, permitting clonal survival and
expansion) (2). As we deepen our understanding of the role
heterogeneity plays in therapeutic resistance, it is increasingly
clear that purposefully shaping and constraining heterogeneity is
likely to be fruitful.

Evolutionary Mechanisms of Cancer
The process of oncogenesis begins with the transformation of a
single, founding neoplastic cell - a consequence of cell cycle
dysregulation in conjunction with abrogated apoptotic signaling.
This results in uncontrolled proliferation, tempered by resource
limitation, overcrowding, and eventual toxic substrate
accumulation - shaping new and local environmental
conditions to be overcome (Figure 1A). Throughout tumor
progression, individual cancer cells undergo a number of
heritable molecular alterations that fuel evolution and
heterogeneity. Clones with alterations that enhance cellular
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survival and proliferation experience increased fitness and
undergo positive selection. Likewise, deleterious alterations
result in decreased fitness, such that clones undergo negative
selection and possible eradication from the tumor population.
The resultant tumor population then is comprised of numerous
subpopulations, each distinct in their abilities to access a range of
advantageous cell states.
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Several tumor progression models to date have been described
(Figure 1B), including linear evolution, where mutations are
acquired in a stepwise fashion and driver mutations fuel selective
sweeps of clonal dominance throughout tumor evolution (20);
branching evolution, where clones evolve simultaneously,
resulting in multiple subclonal branches that demonstrate
selection for clones with increased fitness over time within the
A

B

D

C

FIGURE 1 | Tumor dynamics in the context of progression and therapy. (A) Diagram illustrating the process of tumor progression beginning from a single founding
clone. Tumor progression coincides with increasing intratumoral heterogeneity, and as metastasis occurs, clones exhibit variegated niche adaptation. (B) Models of
tumor evolution. Linear evolution = mutations acquired in a stepwise fashion with driver mutations fueling selective sweeps of clonal dominance; branching evolution =
clones evolve simultaneously, selecting for increased fitness over time; neutral evolution = clonal expansion in absence of stringent selection leads to passive
accumulation of genomic alterations; punctuated evolution = mutation bursts resulting in the sudden accrual of genomic changes. (C) Top: Schematic of cell state
transitions in the presence of environmental pressures (A, B). Arrows represent directionality of state transitions, where bold arrows represent increased transition
rates. Color of cells corresponds to different cell states. Bottom: Representative cell state manifolds depicting influence of above environmental pressures on
modulating cell state. Peaks and troughs represent cell state stability. (D) Model depicting key limitations of targeted therapy. Intratumor heterogeneity serves as a
sustainable source of resistance, fueling the survival of clones with drug tolerance or resistance throughout treatment. This drives tumor relapse and the re-emergence
of intratumoral heterogeneity, resulting in a continuous cycle.
May 2022 | Volume 13 | Article 859032
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tumor; neutral evolution, where expansion in the absence of
stringent selection leads to passive accumulation of genomic
alterations (e.g., the Big Bang model of colorectal tumor growth)
(21); and punctuated evolution, depicted by mutation bursts or
cataclysmic genomic rearrangements resulting in the sudden accrual
of genomic changes (20). Irrespective of the mode of evolution in
treatment-naive tumors, therapy of all types can either contribute to
increased intratumoral heterogeneity or impose a selective pressure
that results in the expansion of a resistant subclone (22).

While cancer has long been considered a genetic disease,
where heritable DNA alterations serve as substrates for evolution
(gene-centric model of evolution), it is now evident that non-
genetic sources of phenotypic variation play a critical role in
tumor development, progression and therapeutic resistance (23–
25). These include epigenetic alterations (e.g., DNA methylation,
histone modifications) as well as transcriptomic variation – both
of which operate at much faster rates than does the acquisition of
genetic mutations, thus serving as substrates for evolution even
in the absence of any genetic events (26, 27). Variation at the
level of the genome, transcriptome, or epigenome can also
contribute to tumor plasticity, i.e., the degree to which a tumor
population can flexibly and reversibly transition cell states to
respond to stress (28, 29) (Figure 1C). The presence and
integration of both heterogeneity and plasticity within a tumor
results in many possible evolutionary avenues for tumor growth
and survival. Indeed, there is growing evidence of ‘dynamic
phenotypic heterogeneity ’ , where cancer cells can be
phenotypically ‘re-trained’ by chemotherapy, resulting in the
induction of drug-tolerant states (25, 30–34).

It is increasingly evident that reducing evolution to an allele-
centric framework incompletely captures the context in which
evolution occurs (35). From the early stages of transformation to
metastasis, cancer cells are exposed to an array of niche
microenvironmental and therapeutic pressures - which in total
impart selective forces that shape their genetic and phenotypic
profiles. This results in billions of cancer cells that are locally
optimized to have their own distinct cell states conducive to their
survival. Further, cells can fluctuate among different metastable
cell states, broadening the population’s effective phenotypic
landscape, thereby increasing adaptive capacity. With this
breathtaking diversity comes clear implications for how to
improve upon current therapies, which typically manage to
target only a proportion of all cell states within a tumor,
resulting in the outgrowth of clones that circumvent therapy
by retaining or adopting non-targeted cell states.

Targeted Approaches Cannot Outpace
Evolutionary Potential
Lack of tumor response or relapse has been noted in response to
single agents (targeted therapy, immunotherapy) as well as
combination chemotherapy, resulting in the ongoing search for
second, third, and fourth-line agents in many cancers, despite
their relative ineffectiveness (33–44). In contrast to the ‘scorched
earth’ approach of chemotherapy, targeted therapies aim to spare
normal cells by targeting specific cancer cell dependencies,
driven by a single molecule or reliance on a certain cellular
Frontiers in Immunology | www.frontiersin.org 4
pathway (42). Similarly, ‘precision medicine’ seeks to rationally
target individual branches, with their respective dependencies,
within the evolutionary tree of a patient’s tumor. These
approaches all rely on genetic characterization of tumors to
identify therapeutic targets or biomarkers that predict tumor
response to existing targeted therapy options (43, 44). Such
agents include BRAF inhibitors, which selectively eliminate or
inhibit the growth of cells that harbor BRAF mutations and
imatinib, which specifically inhibits the aberrant tyrosine kinase
produced by the BCR-ABL gene fusion in Philadelphia
chromosome-positive chronic myelogenous leukemia
(CML) (45).

Despite their promise, targeted approaches have their
limitations. First, a single biopsy produces a restricted
representation of the various niches occupied by a tumor and
is unlikely to resolve the complete genomic landscape, with a
recent study showing >100 million coding region mutations
existing within a single tumor (33, 46–48). Given this, even if
the predominant subclones harboring the detected molecular
phenotype are targeted effectively, other subclones that are below
the limit of detection and harbor different cellular dependencies
may still survive and expand; indeed, this has been demonstrated
by the suboptimal outcomes of patients treated with agents
targeting sub-clonal driver mutations or copy number gains
(18, 19). Second, sensitive subclones may also acquire
therapeutic tolerance or resistance, subverting the effect of
therapy and contributing to relapse and re-emergence of
heterogeneity (Figure 1D). CML illustrates both of these
points, as imatinib resistance has been shown to be due to pre-
existing or acquired resistance (8, 9).

Further, focusing solely on genomic alterations neglects the
contributions of non-genetic mechanisms of tumor resistance,
which can be induced by therapy (29, 49). Recent studies
demonstrate that in several cancer types, therapeutic
intervention initiates cellular reprogramming that induces a
drug-tolerant phenotype in the absence of a pre-existing
resistant clone (13); in this case, continued targeted therapy
may accelerate tumor progression. For instance, continued
treatment with a BRAF inhibitor can cause metastasis of RAS/
BRAF-mutant melanoma (48, 50). Further, treatment with EGFR
and BRAF inhibitors in colorectal cancers can increase overall
mutability and the likelihood of resistance, demonstrating that
targeted therapy can transiently enhance evolutionary potential
by accelerating genetic diversity (51).

The dominant framework for cancer resistance studies for the
last 15 years has consisted of high-throughput sequencing
analyses of pre- and/or post-treatment tumor biopsies. While
highly informative, this approach is limited in its capacity to
provide comprehensive understandings of the longitudinal
evolutionary process in a tumor, specifically due to resolution
limitations that preclude capture and tracking of rare clones over
time. As a result, only sporadic snapshots of a cancer cell’s
journey are captured following therapeutic exposure. Moreover,
the design and development of targeted agents to date have
largely been informed by genomic alteration measurements
following therapy. However, the vast heterogeneity inherent to
May 2022 | Volume 13 | Article 859032
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tumors and their unique evolutionary trajectories as they adapt
to an assortment of microenvironments and respond to various
stimuli are such that many evolutionary outcomes are possible
for a given tumor. Indeed, recent single-cell studies have shown
that multiple cell states are often present within a tumor and that
different cell states can have different sensitivities to therapy (52).
Therefore, therapeutic strategies to date may eliminate the
majority of a tumor population, but certain subpopulations can
survive and drive relapse (Figure 1D). Regardless of mechanism
of action, it is unlikely that any single or combination of
therapeutic agents can adequately address the large range of
present and potential phenotypes (i.e., cellular states and
dependencies) that can emerge across clones within a tumor.
Thus, the rational next step will be to also reduce the total
number of potential cell states and associated dependencies
within a tumor.
FUNCTIONALIZED LINEAGE TRACING
CAN INFORM THE DESIGN AND
MONITORING OF HOMOGENIZATION
THERAPY

Intratumor heterogeneity has been consistently detected through
numerous high-throughput genome/exome sequencing studies,
thereby presenting a gene-centric view of evolution. However,
due to the substantial number of cells within tumors (107 to 1012)
and sequencing error rate of traditional NGS-based methods,
resolution is restricted to an allele frequency of approximately
0.1% (53), limiting our ability to resolve evolutionary dynamics
of rare clones. By contrast, single-cell analyses enable
characterization of intratumor heterogeneity at greater
resolution. The challenge, now, is the linking of this high-
resolution information to cell fate and clonal origin such that
we gain a more complete understanding of therapeutic response
and chemoresistance.

DNA barcoding approaches have been developed to allow the
tracking of clones over time and the elucidation of clonal
dynamics (54–56). Bhang et al. and Hata et al. were the first to
use such an approach in cancer models, providing examples of
rare pre-existing resistance as well as de novo acquisition of
resistance driving therapeutic relapse (54, 55). However, these
early approaches consisted of unidimensional measurements of
barcode frequency, and could not enable further clonally-linked
measurements for characterizing tumor heterogeneity
and resistance.

As a result, functionalized lineage tracing approaches
employing DNA barcodes have been more recently developed,
allowing the linkage of clonal identity with transcriptomic
features (e.g., CellTag, LARRY, Watermelon) (57–59), as well
as the additional capacity to isolate and functionally characterize
clones of interest for further multi-omic (Rewind) (60) and live
cell analysis (e.g., ClonMapper, CloneSifter) (60, 61). Further, in
situ lineage tracing methods have been developed, enabling
integration of cellular profiling, spatial contexts, and clonal
information (Rewind, intMEMOIR, Zombie) (60, 62). More
Frontiers in Immunology | www.frontiersin.org 5
recently, dynamic lineage-tracing systems, which enable sub-
clonal demarcation over time, have been introduced and when
paired with single-cell gene expression readouts have the
potential to more deeply resolve clonal evolution (56, 63–68).
These approaches have collectively permitted elucidation of the
dynamic responses of heterogeneous populations to stimuli at
clonal resolution across longitudinal phenotypic read-outs.
Beyond engineered systems, lineage tracing in primary human
samples has been possible by using mitochondrial mutations as
native barcodes to enable multi-omic readout has also led to
insights into clonal dynamics of therapeutic resistance in patients
(Figure 2A) (69–71). Detailed and comprehensive reviews of
existing lineage tracing systems with further information have
been published (72) (see example approaches and their features,
Table 1). Future studies using these tools will allow for
exploration of the tumor-immune interface, spatial
heterogeneity, in vivo clonal dynamics, and drug resistance and
metastasis studies in primary cancer cells.
PHENOTYPIC HOMOGENIZATION:
AN APPROACH TO MITIGATING
INTRATUMOR HETEROGENEITY AND
BOOSTING THERAPEUTIC POTENTIAL

While the concept of homogenization has been introduced in the
literature (76), homogenization strategies are still in their infancy
and require convincing experimental support. Several possible
approaches have recently been proposed to reduce intratumoral
heterogeneity and cancer cell plasticity. These include the
targeting of shared pathways in settings where parallel
mutations lead to pathway convergence (e.g., the PI3K/mTOR
pathway in renal cancer, impacted by PTEN, PIK3CA, TSC1 and
mTORmutations) (77), blocking cellular plasticity by preventing
cell state transitions (e.g., inhibition of mediators of these
processes: TGF-b and PI3K) (78), targeting the primary driver
in a tumor while simultaneously blocking the anticipated
adaptive response (e.g., PI3K inhibition in breast cancer can
activate MAPK, thus motivating the combination of MEK and
PI3K inhibitors) (79–81), or priming cancer cells with epigenetic
drugs to sensitize them to subsequent treatment (e.g., with DNA
methylation and HDAC inhibitors) (76, 82, 83). However, these
approaches are challenged by the complexity of cellular signaling
pathways, limitations in sequencing technologies, and difficulties
in identifying the driver gene(s) amidst numerous passenger
mutations within any given tumor (84, 85).

As an alternative, phenotypic homogenization, which
involves creating an environment that serves to drive all tumor
cells to exhibit a common targetable phenotype, is an attractive
strategy (76). If achieved, it could then provide the backdrop
against which subsequent administration of a drug targeting the
shared phenotype of these cells could effectively eliminate the
tumor population. Through this approach, it would be feasible
for cells possessing disparate genetic backgrounds or residing in
different transcriptomic and/or epigenetic niches to be
confronted with a uniform potent stressor. Cells that fail to
May 2022 | Volume 13 | Article 859032
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adequately sense and respond to the stressor would suffer a
considerable negative fitness impact, while those that respond
become reliant on a limited set of stress response pathways.

Strategies for Tumor Homogenization
It is currently unknown what agents, targetable states, and to
what extent homogenization is feasible. Conceptually, the
implementation of tumor homogenization could be
systematically pursued through a three step process
(Figures 2B, C). First is homogenization: as described by Tong
Frontiers in Immunology | www.frontiersin.org 6
et al., a selective pressure (i.e., therapeutic agent or combination
of agents) can be introduced, coercing all tumor cells to exhibit a
common phenotype that is vulnerable to a second agent which
would eliminate the entire tumor population (also termed
‘collateral sensitivity’) (76, 86). Indeed, a recent study
demonstrated that development of resistance to dasatinib
treatment induces collateral sensitivity to non-classical BCR-
ABL inhibitors, cabozantinib and vandetanib, in a murine model
of acute lymphoid leukemia (87–89). Second is characterization
of the homogenized state: extent of phenotypic homogenization
A

B

D

C

FIGURE 2 | Functionalized lineage tracing can enable phenotypic homogenization. (A) Current features of multi-functionalized lineage tracing approaches. (B)
Three–step model of phenotypic homogenization. Step 2 includes example uniform manifold approximations and projections (UMAP) of subpopulations within a
cancer cell population prior to and after subjection to a phenotype homogenizing stimulus, as well as the corresponding matrix plot of differential gene expression
data. Colors within the UMAP correspond to different cell states. Homogenized cells are outlined by colors representing their cell state of origin prior to treatment.
Colors within the matrix plot represent the relative fold expression of each gene; yellow represents upregulation and dark blue represents downregulation of genes.
Homogenized populations exhibit consistent upregulation of the same genes. (C) Example manifold depicting the phenotypic landscape of a cancer cell population
shortly after treatment with a phenotype homogenizing stimulus. Cells of different cell state origins are pressured to adopt a new, more common phenotype. (D)
Illustration of cellular stress responses of interest to target for achieving phenotypic homogenization.
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TABLE 1 | Examples of Lineage Tracing Approaches and Their Features.

Year Lineage
Tracing

Approach

Barcoding System DNA
barcode
type

Clonal Read-out(s) Notable Features Citation

2015 ClonTracer Lentiviral integration of 30-nucleotide S/W patterned
DNA barcodes

Static Targeted barcode
sequencing

Bhang et al., Nature
Medicine 2015 (54)

2019 Mitochondrial
lineage
tracing

Tracking of somatic mitochondrial DNA mutations as
native genetic barcodes

Native Single-cell RNA-
sequencing, single-
cell ATAC-
sequencing

No cellular engineering
necessary - mutations
serve as native clonal
inference markers

Ludwig et al., Cell
2019 (69)

2019 CellTag
Indexing

Lentiviral integration of 8-nucleotide DNA barcodes;
expressed within poly-adenylated transcripts

Static Targeted barcode
sequencing, single-
cell RNA-sequencing

Guo et al., Genome
Biology 2019 (57)

2020 LARRY Lentiviral integration of 28-nucleotide DNA barcodes;
expressed within poly-adenylated transcripts

Static Targeted barcode
sequencing, single-
cell RNA-sequencing

Weinreb, Rodriguez-
Fraticelli et al.,
Science 2020 (73)

2020 Zombie Lentiviral integration of array of 20-nucleotide DNA
barcodes. Barcodes are transcribed by phage RNA
polymerases after fixation.

Evolving RNA fluorescence in
situ hybridization

Sub-clonal demarcation,
spatial/morphological
profiling

Askary et al., Nature
Biotechnology 2020
(62)

2020 CloneSifter Lentiviral integration of CRISPR sgRNA 20-nucleotide
DNA barcodes; expressed within poly-adenylated
transcripts (using CROPseq base vector)

Static Targeted barcode
sequencing, single-
cell RNA sequencing

Live-cell clonal isolation Feldman et al.,
BMC Biology 2020 (74)

2021 Target Site Lentiviral or transposon-mediated integration of a static
14-nucleotide DNA barcode and 3 evolving Cas9-cut
sites for recording; expressed within poly-adenylated
transcripts

Evolving Targeted barcode
sequencing, single-
cell RNA sequencing

Sub-clonal demarcation Quinn et al., Science
2021 (63)

2021 IntMEMOIR Integrase-mediated integration of array of 10 'memory
elements' which can be irreversibly edited to generate
heritable expressed DNA barcodes.

Evolving RNA fluorescence in
situ hybridization

In situ barcode detection,
spatial/morphological
profiling

Chow et al., Science
2021 (65)

2021 ClonMapper Lentiviral integration of CRISPR sgRNA 20-nucleotide
DNA barcodes expressed within poly-adenylated
transcripts (using CROPseq base vector)

Static Targeted barcode
sequencing, single-
cell RNA sequencing

Live-cell clonal isolation Gutierrez et al., Nature
Cancer 2021 (61)

2021 Rewind Lentiviral integration of 100-nucleotide W/S/N
patterned DNA barcodes expressed within poly-
adenylated transcripts

Static Single-cell RNA-
sequencing, RNA
fluorescence in situ
hybridization

Fixed-cell clonal isolation,
spatial/morphological
profiling

Emert et al., Nature
Biotechnology 2021
(60)

2021 Watermelon Lentiviral integration of 30-nucleotide S/W patterned
DNA barcodes expressed within poly-adenylated
transcripts

Static Single-cell RNA-
sequencing

Enables tracking of
proliferation

Oren et al., Nature
2021 (59)

2022 TraCe-Seq Lentiviral integration of 30-nucleotide DNA barcodes
expressed within poly-adenylated transcripts

Static Targeted barcode
sequencing, single-
cell RNA sequencing

Chang et al., Nature
Biotechnology 2022
(75)

Gutierrez et al. Homogenization-Based Therapeutic Strategies in Cancer
within a tumor can be assessed through methods such as single-
cell RNA-sequencing. Third is targeting of the homogenized
state: therapeutic agents should be identified which can either
eliminate the homogenized population through targeting of the
shared phenotypic state, or funnel the homogenized cancer
populations further into a defined targetable or sensitized state
for elimination. Testing and selection of existing therapeutic
agents at approved physiological doses would enable ease of
clinical implementation.

The feasibility of homogenization strategies was first
successfully tested in yeast (90), demonstrating that
evolutionary dynamics can be manipulated for homogenization
therapy. In support of the efficacy of homogenization therapy, a
case study of a patient with ALK-rearranged non-small-cell lung
cancer (NSCLC) has been described, where the authors postulated
that cells exhibited unique, temporally restricted collateral
sensitivities during adaptation to ALK inhibition (49, 91).
Frontiers in Immunology | www.frontiersin.org 7
Additionally, prior patient studies similarly have shown that
convergent evolution in response to therapy is possible (16, 92,
93). The concept that cancer cell populations can be
therapeutically modulated to transform cellular plasticity into
therapeutic opportunities has been recently described in practice
(49, 93, 94). For example, Frede et al. found that myeloma cells
can modulate lineage restriction, adapt their enhancer usage, and
employ cell-intrinsic diversity for survival and treatment escape,
resulting in the co-existence of numerous distinct transcriptional
states (95). Further, they demonstrated that standard therapy
promotes transcriptional reprogramming while simultaneously
reducing developmental potential, resulting in actionable
immunotherapy targets (e.g., CXCR4) that could be exploited to
overcome resistance (95). In another study, Lin et al.
demonstrated that drug-induced antagonistic pleiotropy, the
concept that genes can induce opposite effects on fitness in
response to different drugs, can be leveraged to identify
May 2022 | Volume 13 | Article 859032
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evolutionary traps which selectively target therapeutic
resistance (96).

While cancer cells often rely on multiple stress response
pathways to evade apoptosis and survive harsh tumor
environments (e.g., the integrated stress response, cytosolic
heat shock response, and unfolded protein response mediated
by organelles such as the endoplasmic reticulum and
mitochondria), induction of these cellular processes have also
been noted to contribute to drug sensitivity of cancer cells.
Activation of the integrated stress response in HER2+ breast
cancer predicts a better response to trastuzumab therapy (97). In
cancers with high protein turnover (e.g., multiple myeloma),
agents that induce the unfolded protein response increase
sensitivity to treatment with proteasome inhibitors through
likely synergistic mechanisms (98). Further, cellular stress
responses orchestrate common, potent responses across cells
(i.e., via sweeping changes in cell state). For instance, ER stress
induces the unfolded protein response, transducing multi-axis
signaling and causing transcriptional reprogramming via IRE1a
and ATF6, major trans lat ion modulat ion through
phosphorylation of EIF2a, and pro-survival/-apoptotic signals
dependent on resolution of ER stress (99, 100). In agreement, a
recent lineage tracing study using TraCe-seq identified that
efficacy of EGFR-inhibitor response is, in part, dependent on
induction of ER stress (75). Similarly, replication stress has
recently been described to activate immune-stimulating
pathways, resulting in increased immune response to
immunotherapies like PD-1/PDL-1 inhibitors across numerous
cancer types, and serving as a reliable biomarker/predictor of
clinical response to immune checkpoint blockade in patients
(101, 102). For these reasons, induction of cellular stress
responses may have great potential in actualizing phenotypic
homogenization efforts (Figure 2D).

Homogenization strategies further require the ability to
characterize cancer systems as they respond to sub-cytotoxic
stress to uncover the nature of their responses, including the
extent of their phenotypic uniformity and the duration of
homogenization upon application and removal of stimulus.
With the ongoing rapid development of multi-modal single-cell
technologies, these characterizations will be greatly augmented.
ClonMapper, Watermelon, and other dynamic expressed barcode
systems enable one to distinguish how diverse clones differentially
respond to therapy at single-cell resolution.
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The concept of tumor homogenization involves the induction of
a ubiquitously adopted, targetable cell state across an initially
heterogeneous cell population. Development of this approach is
newly empowered by recent advances in lineage tracing
techniques, which couple cell fate with multi-omic single-cell
measurements and clonal isolation, enabling the identification
and longitudinal monitoring of homogenized cancer cell states in
detail. As newer multi-omic technologies with spatial resolution
mature and innovative methods that approximate the complexity
observed in primary tumors continue to be generated, we will be
even better equipped to develop homogenization strategies.
Homogenization therapy holds great promise as a generalizable
strategy to anticipate and forestall evolutionary trajectories that
lead to therapeutic resistance. Such a strategy enables a proactive
rather than reactive approach to cancer therapy.
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