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Massively parallel or second-generation sequencing-based genomic studies continuously identify new genomic alterations

that may lead to novel protein sequences, which are attractive candidates for disease biomarkers and therapeutic targets

after proteomic validation. Integrative proteogenomic methods have been developed to use mass spectrometry (MS)-based

proteomics data for such validation. These methods replace the reference sequence database in proteomic database search-

ing with a customized protein database that incorporates sample- or disease-specific sequences derived from DNA or RNA

sequencing, thus enabling the identification of novel protein sequences. Although useful, this spectrum-centric approach

requires a full evaluation of all possible spectrum-peptide pairs, which is time-consuming, error-prone, and difficult to ap-

ply. Here, we present PepQuery, a peptide-centric approach that focuses on only novel DNA or protein sequences of in-

terest. PepQuery allows quick and easy proteomic validation of genomic alterations without customized database

construction. We demonstrated the sensitivity and specificity of the approach in validating completely novel proteins, novel

splice junctions, and single amino acid variants using simulations and experimental data. Notably, enabling unrestricted

modification searching in PepQuery reduced false positives by up to 95%. We implemented PepQuery as both web-based

and stand-alone applications. The web version provides direct access to more than half a billion MS/MS spectra from the

Clinical Proteomic Tumor Analysis Consortium (CPTAC) and other cancer proteomic studies. The stand-alone version sup-

ports batch analysis and user-provided MS/MS data. PepQuery will increase the usage of proteogenomics beyond the pro-

teomics community and will broaden the application of proteogenomics in personalized medicine.

[Supplemental material is available for this article.]

Massively parallel or second-generation sequencing-based geno-
mic studies, especially cancer genomic studies, continuously iden-
tify new genomic abnormalities such as single nucleotide variants
(SNVs), insertions and deletions (INDELs), RNA edits, novel junc-
tions, fusions, and novel transcription regions. Some abnormal
DNA and RNA sequences encode novel, disease-relevant proteins,
whicharepromising candidatesof diseasebiomarkers, drug targets,
andneoantigens. The first step in translating thesegenomicdiscov-
eries into clinical practice is to validate their expression at the pro-
tein level. The tandemmass spectrometry (MS/MS)-based shotgun
proteomics provides an excellent opportunity for such validation.

Traditional shotgun proteomics data analysis relies on search-
ing all MS/MS spectra against a reference protein sequence data-
base (Nesvizhskii 2006), such as RefSeq, UniProt, or Ensembl,
and thus is unable to identify any novel, disease-specific sequences
(Fig. 1A). An emerging proteogenomic approach derives custom-
ized, sample-specific protein databases from DNA and RNA se-
quencing data (Li et al. 2011; Wang et al. 2012), making it
possible to identify novel peptides that are present in a specific
sample but not included in the reference databases (Fig. 1B).

The customized database approach has been demonstrated in
many proteogenomic studies (Zhang et al. 2014, 2016; Mertins
et al. 2016), and there is an increasing need from the genomics
community to reutilize published proteomic data sets to search
for proteomic evidence of putative novel coding sequences pre-
dicted from genomics data. The putative novel coding sequences
may come as a batch, but many times, the investigators are simply

interested in an SNV, an INDEL event, a possible stop codon read-
through, an intron retention, a novel junction, an upstream open
reading frame, or a circular RNA, etc. An intuitive web-based query
system providing direct access to the MS/MS data would be the
most effective to serve this purpose.

Both traditional and customized database searching ap-
proaches are MS/MS spectrum-centric (Ting et al. 2015), and the
common goal is to comprehensively interpret all MS/MS spectra
through database searching (Fig. 1A,B). Therefore, validating
even a single coding SNV requires customized database construc-
tion, a full evaluation of all peptide-spectrum pairs, and then ex-
tracting the peptide-spectrum matches (PSMs) involving the
specific coding SNV. This process is time-consuming, with most
of the time spent on database preparation and evaluating pep-
tide-spectrumpairs irrelevant to the novel peptide sequences of in-
terest. Therefore, it is not feasible for real-time web applications. A
peptide-centric analysis, as suggested in a few previously published
perspective articles (Noble 2015; Ting et al. 2015), could provide a
novel solution to this problem.

Here, we report a peptide-centric method named PepQuery
for validating putative novel protein coding sequences (Fig. 1C).
PepQuery is conceptually similar to BLAST (Altschul et al. 1990).
Whereas BLAST allows users to query a sequence database with a
sequence of interest to look for sequence similarity, PepQuery al-
lows users to query an MS/MS spectra database with a novel pep-
tide or DNA sequence of interest to look for PSMs. Unlike the
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spectrum-centric analysis, PepQuery analyzes only the peptide-
spectrum pairs involving the novel sequence, making it possible
to support real-time, web-based analysis. Statistical evaluation of
the PSM scores in peptide-centric analysis represents a new chal-
lenge, which we addressed with a new strategy. A spectrum
matched to a novel peptide may correspond better to reference
peptides with modifications, such as post-translational modifica-
tions (PTMs), chemical modifications, and artifacts of sample
handling. Due to computational complexity, it is still difficult to
consider all modifications in database searching, and this may
result in false positive identifications in proteogenomic studies.
The peptide-centric analysis in PepQuery provides an additional
advantage of reducing false positives by comprehensive consider-
ation of sequence modifications. We demonstrated the sensitivity
and specificity of the method in identifying novel proteins, novel
splice junctions, and single amino acid variants using simulations
and experimental data. PepQuery is available as both web-based
and stand-alone applications (http://www.pepquery.org).

Results

PepQuery workflow

PepQuery takes as input anovel peptide, protein, orDNAsequence,
or novel genomic features in the VCF, BED, or GTF file format, and
theworkflow includes fivemajor steps: (1) target peptide sequence
preparation and initial filtering; (2) candidate spectra retrieval and
PSM scoring; (3) competitive filtering based on reference sequenc-
es; (4) statistical evaluation; and (5) competitive filtering based on
unrestricted modification searching (Fig. 2; Methods). For PSM
scoring, we implemented the Hyperscore used in X!Tandem
(Craig andBeavis 2004) and themultivariatehypergeometricdistri-
bution (MVH) score used inMyriMatch (Tabb et al. 2007). For stat-
istical evaluation of the PSM scores, permutation P-values are
calculated based on randomly shuffled peptide sequences

(Methods). The spectra with statistically significant matches to
the query peptide that cannot be better explained by unmodified
or modified reference sequences are reported. Annotated PSMs
can be visualized in the tool for manual evaluation.

With the existing customized database approach, identifying
a novel peptide sequence as shown in Figure 2 in the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) colorectal cancer
data set (Zhang et al. 2014) will require constructing a customized
database that includes both reference protein sequences (e.g., from
RefSeq) and the novel sequence, and then evaluating all possible
spectrum-peptide pairs between over 12 million MS/MS spectra
and over one million unique peptide sequences. In contrast,
PepQuery starts with the novel peptide sequence of interest, eval-
uates only peptide-spectrum pairs involving the novel peptide,
and thus reduces the computational time by several orders of mag-
nitude (Fig. 2). Moreover, the peptide-centric approach quickly
narrows down to a small number of candidate spectra, which
makes it possible to perform unrestricted modification searching
in the last step to identify alternative interpretations of the candi-
date spectra in real-time applications.

Validating completely novel protein sequences

Toevaluate theperformanceofPepQuery for validating completely
novel protein sequences, we used a spiked-in MS/MS proteomic
data set from the Proteome Informatics Research Group (iPRG)
2015 study (Choi et al. 2017). Thisdata setwasgenerated fromyeast
cells with six spiked-in nonyeast proteins. Here, we used the yeast
proteome as the background, and the peptides derived from the
six spiked-in nonyeast proteins were treated as the ground truth
of “novel peptides.” The goal was to investigate whether
PepQuery could accurately identify the “novel peptides” using in-
dividual “novel peptides,” theMS/MS data, and the yeast reference
proteome as input. Because some of the peptides derived from the
spike-in proteins may not be detectable in theMS/MS experiment,
we first performed a standard database search using IPeak (Wen
et al. 2015) to determine which peptides from the spiked-in pro-
teins were detectable in the MS/MS experiment with 1% false dis-
covery rate (FDR) at both PSM and protein levels. IPeak integrates
search results from three search engines, MS-GF+, MyriMatch,
andX!Tandem. Although this does not necessarily produce the ex-
act set of detectable peptides from the spike-in proteins, usingmul-
tiple search engines has been shown to achieve higher sensitivity
and specificity compared to individual search engines (Wen et al.
2015). The IPeak analysis identified a total of 93 peptides from
the six spiked-in proteins (Supplemental Table S1). The 93peptides
were used as gold-standard positives for novel protein sequences
(Supplemental Fig. S1). Meanwhile, we randomly selected 10,000
tryptic peptides from Escherichia coli as gold-standard negatives.
Searching the gold-standard peptide sequences against the iPRG
data set using PepQuery, we obtained true positive rates (TPRs,
a.k.a., sensitivity) of 94.62% and 97.85% (Fig. 3A; Supplemental
Tables S2, S3) and false positive rates (FPRs, a.k.a., 1-specificity) of
0.05% and 0.05% (Fig. 3B; Supplemental Tables S4, S5) based on
the Hyperscore and MVH score, respectively. The precisions of us-
ing Hyperscore and MVH after unrestricted filtering were 94.62%
and 94.79%, respectively. These results demonstrate high sensitiv-
ity and specificity of PepQuery.

Notably, filtering based on unrestricted modification search-
ing reduced the false positives by 89% (from 47 peptides to five
peptides) and 95% (from 93 peptides to five peptides) for the
two scoring algorithms, respectively (Fig. 3B), whereas the true
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Figure 1. Proteomics data analysis strategies. (A) Traditional proteo-
mics data analysis using a common reference protein database.
(B) Proteogenomics approach using customized, sample-specific protein
sequence databases. (C) Peptide-centric proteomics focuses on individual
novel peptides of interest instead of interpreting all MS/MS spectra.
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positives were only reduced by 1% (Fig. 3A). To illustrate the merit
of this approach in reducing false positives, a spectrum incorrectly
matched to an E. coli peptide (false positive) without unrestricted
modification searching-based filtering (MVH score = 19.7, P=
0.0028) (Fig. 3C) was matched by PepQuery to a yeast peptide
with an ammonium salt modification on aspartic acid (D) (MVH
score = 70.0) (Fig. 3D). When including ammonium salt modifica-
tion on aspartic acid as a variable modification in a standard data-
base searching of the iPRG 2015 data set using MyriMatch, we
found that 306 (1.33%) out of the 22,678 identified peptides had
the same ammonium salt modification, suggesting its origin
from artifacts of sample handling. All spectra incorrectly matched
to an E. coli peptide without unrestricted modification searching-
based filtering and the alterative matches to a modified yeast pep-
tide were annotated and presented in Supplemental Figure S2.
These data suggest that competitive filtering with unrestricted
modification searching provides a powerful means to reduce false
positives in proteogenomic studies.

Validating novel splice junctions

To evaluate the ability of PepQuery
to validate novel splice junctions, we
applied PepQuery to a data set from a
published study on novel splice-junction
peptide identification (Sheynkman et al.
2013). The MS/MS data were generated
from the Jurkat cells, and the study re-
ported a total of 55 unique splice-junc-
tion peptides (Supplemental Table S6).
The 55 peptides were searched against
the MS/MS data using PepQuery and 36
(65%) and 39 (71%) were confirmed
based on the Hyperscore andMVH score,
respectively (Fig. 4A; Supplemental
Tables S7, S8). Among the 16 peptides
not confirmed by MVH (i.e., false nega-
tives), ninewere removed by competitive
filtering based on reference sequences
and five were removed by competitive
filtering based on unrestricted modifica-
tion searching. Thus, 87% of the MVH-
based “false negatives” were likely to be
false positive discoveries in the original
study (Fig. 4C) and so were 84% of
the Hyperscore-based “false negatives”
(Fig. 4B). These data demonstrate that
PepQuery effectively removes false iden-
tifications reported in published proteo-
genomic studies.

Validating single amino acid

variants

To evaluate the ability of PepQuery
to validate single amino acid variants
(SAAVs), we used simulation data derived
from the iPRG 2015 study (Methods). For
each of the 93 peptides from the six
spiked-in nonyeast proteins, we generat-
ed two versions of variant peptides, each
with a randomly introduced SAAV. One
version served as a gold-standard nega-
tive. The other version was added to

the reference database to replace the original reference peptide se-
quence. With regard to this new reference sequence, the original
peptide became an SAAV peptide. Because the original peptide
hadmatched spectra in theMS/MS data, it was used as a gold-stan-
dard positive sequence in our evaluation (Supplemental Fig. S3).
On the basis of 100 sets of gold-standard positives, gold-standard
negatives, and expanded reference databases, PepQuery achieved
average TPRs of 93.53% and 96.27% (Fig. 5A) and average FPRs
of 0.41% and 0.26% (Fig. 5B) using the Hyperscore and MVH
score, respectively. Filtering based on unrestricted modification
searching reduced the false positives by 75% and 86% for the
two scoring algorithms, respectively (Fig. 5B), with only 1.56%
and 1.96% reduction on the true positives, respectively (Fig. 5A).
These results are comparable to those from the novel protein
sequence study (Fig. 3A,B) and further highlight the sensi-
tivity and specificity of PepQuery in SAAV validation and the ben-
efits of competitive filtering with unrestricted modification
searching.

A

B C

Figure 2. PepQuery workflow. (A) The PepQuery workflow involves fivemajor steps: (1) target peptide
sequence preparation and initial filtering; (2) candidate spectra retrieval and PSM scoring; (3) competi-
tive filtering based on reference sequences; (4) statistical evaluation; and (5) competitive filtering based
on unrestricted post-translational modification searching. The red text illustrates a real example in which
a variant peptide LVVVGADGVGK is used to query the CPTAC colorectal cancer (CRC) data set with 95
samples and 12,941,421 spectra, using RefSeq as the reference protein database.Whereas existingmeth-
ods require pairwise analysis between all 12,941,421 spectra and all RefSeq-derived peptide sequences
plus the variant peptide sequence, PepQuery focuses only on the spectra that are relevant to the novel
peptide, which reduces computational time and also allows more comprehensive analysis of these spec-
tra. Illustration of peptide (B) and modification (C) indexing methods.
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Applying PepQuery to large proteomic data sets

An important emerging application of PepQuery is to identify pro-
teomic evidence for genomic findings using large, publicly avail-
able proteomic data sets. To demonstrate the utility of PepQuery
in this scenario, we used the colorectal cancer data set produced
byCPTAC (Zhanget al. 2014). The4084SAAVpeptide-sample pairs
reported by the original paper, which involves 799 fully tryptic
SAAV peptides and 79 samples, were used as gold-standard
positives for this study, whereas all other 59,037 pairs between
the 799 SAAV peptides and the 79 samples were used as gold-
standard negatives (Methods; Supplemental Table S9). Using
PepQuery, each of the 799 SAAV peptides was searched against
all 10,753,601 MS/MS spectra from the 79 samples. Annotated
spectra for PSMs identified based on Hyperscore and MVH score
can be found in Supplemental Figures S4 and S5, respectively.
The Hyperscore and MVH score-based analyses showed TPRs of
78.04% and 90.96% (Fig. 6A) and FDRs
of 2.01% and 2.40% (Fig. 6B), respective-
ly (Supplemental Tables S10, S11). The
TPRs are lower than those observed in
the simulation study, whereas the FPRs
are higher.

We note that, unlike the simulation
study, the “gold-standards” used in this
analysis were derived from the original
customized database searching results
and are not perfect ground truth. In the
original study, database searching used
MyriMatch (MVH) but not Hyperscore,
which explains the much lower TPR ob-
served for the Hyperscore-based analysis.
Furthermore, competitive filtering based
on unrestricted modification searching

reduced the true positives by 7.54% and
4.39% for the two algorithms, respec-
tively (Fig. 6A). The original study con-
sidered only a few PTMs. Therefore,
some of the gold-standard positives may
be false because the spectra supporting
the SAAV peptides corresponded better
to modified reference sequences.

On the other hand, some of the
false positives may be true. Among the
SAAV peptide-sample pairs identified by
PepQuery but not the original study
(Fig. 6B),wewere able to findRNA-seq ev-
idence for 39% of the Hyperscore-based
“false positives” (H1, 457 SAAV peptide-
sample pairs) and 41% of the MVH
score-based “false positives” (M1, 576
SAAV peptide-sample pairs) (Fig. 6C;
Supplemental Tables S10, S11). These
SAAV peptide-sample pairs were missed
in the original report because RNA-seq
data from these samples only had one or
two reads covering corresponding SNVs,
and a minimum of three-read depth was
required for including an SNV in a sam-
ple-specific customized database (Zhang
et al. 2014). We also found that unre-
stricted modification searching-based fil-
tering increased the proportion of “false

positives” that could be supported by RNA-seq evidence (Fig. 6C,
H1 vs. H2 and M1 vs. M2).

RNA-seq alsomay fail to detect some SAAVs. For example, de-
spite a lack of RNA-seq evidence, PepQuery identified two spectra
supporting the KRAS G12D mutation in the sample TCGA-AA-
A02O-01A (Fig. 6D,E). We manually checked the cBioPortal
(Cerami et al. 2012), and the KRAS G12Dmutation was indeed re-
ported for this sample. Taken together, PepQuery identified hun-
dreds of SAAV events that are supported by genomic data but are
missing in the original customized database searching results,
and unrestricted modification searching-based filtering helped re-
move false positives.

FDR estimation

To estimate FDR corresponding to the PepQuery P-value cutoff of
0.01 used in this study, we performed two additional analyses.

A B

C D

Figure 3. Evaluation of the performance of PepQuery for validating completely novel protein sequenc-
es. (A) Sensitivity and (B) specificity evaluation for novel peptide sequence validation. Mod. filtering
means unrestricted modification searching-based filtering. (C) A spectrum matched to a gold-standard
negative peptide without unrestricted modification searching-based filtering. Blue and red colors indi-
cate matched peaks, whereas gray indicates unmatched peaks. (D) The same spectrum in C can be
matched to a reference peptide with an ammonium salt modification on aspartic acid with very few un-
matched peaks and a high score.

BA C

Figure 4. Evaluation of the ability of PepQuery to validate novel splice junctions. (A) Novel splice-junc-
tion peptide identification result. (B,C ) Classification of the novel junction peptides reported by the orig-
inal study but not by PepQuery (orange sections in the large circles). I: Peptides removed by competitive
filtering based on reference sequences. II: Peptides removed by competitive filtering based on unrestrict-
ed modification searching. III: Remaining false negatives.
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The first analysis used a human-E. coli spike-in data set (317,502
MS/MS spectra) fromapublished study (Shen et al. 2017), inwhich
E. coli protein lysate was spiked into a human cell digest. We
searched the MS/MS data against the combined human-E. coli
SWISS-PROT database using X!Tandem, MyriMatch, and MS-GF+
and identified 4540 unique E. coli peptides and 30,099 unique hu-
manpeptides. The 4540 E. coli peptideswere used as the target pep-
tides. We further generated 4540 reverse peptides based on the
target peptides. After removing reverse peptides that could be
matched exactly to a human or E. coli protein sequence, we got
4512 decoy peptides. We searched the 9052 target and decoy pep-
tide sequences against the human-E. coli spike-in data set using
PepQuery and a P-value cutoff of 0.01. As shown in Table 1, the
FDRs were 0.84% and 0.37% in the Hyperscore- and MVH score-
based analyses, respectively.

In the second analysis, we further evaluated the impact of
sample size on PepQuery FDR using the CPTAC colon cancer data
set (Zhang et al. 2014) with a total of 79 samples. We searched
theMS/MS data against the RefSeq human protein sequences data-
base using X!Tandem, MyriMatch, and MS-GF+ and identified
77,069 unique human peptides. We performed FDR estimation
for randomly selected sets of one sample,
19 samples, 39 samples, 59 samples, and
79 samples. For each sample set, we ran-
domly selected 2000 target peptides and
generated 2000 decoy peptides. We
searched all 4000 peptides against the
MS/MS data from the same sample set us-
ingPepQueryandaP-valuecutoff of 0.01.
The analysis was repeated five times for
each sample set. We observed increased
FDRswith increasing sample size number
(Table 2). Nevertheless, the FDRs were
still <3% when all 79 samples were ana-
lyzed. These results suggest that a 1%
PepQuery P-value cutoff coupled with
unrestricted modification searching-
based filtering provides well-controlled
FDR for small to relatively large sample
sizes.

Discussion

PepQuery is specifically designed for
proteomic validation of novel genomic
alterations. It is peptide-centric and is
conceptually different from existing

spectrum-centric approaches. The peptide-centric approach great-
ly reduces computational time and enables analysis of more than
1000 modifications in real-time applications. Indeed, searching
one peptide sequence against the whole CPTAC colorectal cancer
data set required <30 sec on a computer with one physical CPU
and 16 cores and 64 GB of memory. To allow easy access to MS/
MS data for proteogenomic analysis, we implemented PepQuery
both as a standalone application and as a web application (http://
www.pepquery.org) (Supplemental Fig. S6). The web application
makes more than half a billion MS/MS spectra frommore than 40
proteomic data sets available online for proteogenomic studies.
New MS/MS data sets can be easily added to the web application
for public access. The stand-alone application allows users to query
their own proteomic data sets, and the analysis can be performed
in the batch. For the first time, PepQuery makes MS/MS data
directly available and useful to scientists outside the proteomics
community.

The current version of PepQuery only supports searching one
data set at a time. One obvious future improvement is to allow us-
ers to search multiple data sets or even all data sets at the same
time. This will require overcoming several challenges. First, differ-
ent data sets require different search parameters. Second, increased
sample size would lead to a higher FDR, which may require new
methods for FDR control. Third, the time required for searching
all data sets may be too long for the web application, and a more
efficient searching algorithm will be needed.

We demonstrated the sensitivity and specificity of the meth-
od in validating completely novel proteins, novel splice junctions,
and SAAVs using simulations and both spiked-in and complex
tumor data sets. The two scoring algorithms showed comparable
results in all studies (Supplemental Fig. S7), highlighting the ro-
bustness of PepQuery analyses. Unlike the target-decoy approach
used in spectrum-centric analysis that generates FDR estimation
for a set of PSMs, PepQuery provides a direct statistical measure-
ment for each PSM, and a 1% PepQuery P-value cutoff produced
well-controlled FDRs in our FDR estimation study.

BA

Figure 5. Evaluation of the ability of PepQuery to validate single amino
acid variants (SAAVs). (A) Sensitivity and (B) specificity evaluation for vali-
dating single amino acid variants based on 100 simulation studies.

B CA

ED

Figure 6. Evaluation of the performance of PepQuery for validating SAAVs in large data sets.
(A) Sensitivity and (B) specificity evaluation for validating SAAVs in a large cancer data set. (C) A large pro-
portion of the false positives in B are supported by RNA-seq evidence. (D,E) Two spectra supporting
the KRAS G12D mutation in a sample, in which the mutation was supported by DNA but not RNA
evidence.
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Competitive filtering based on unrestricted modification
searching effectively reduces false positives, which is essential in
proteogenomics. The current version of PepQuery considers one
modification at a time in unrestricted modification searching.
This may miss true matches with more than two modifications
on the same peptide. We will include modification combinations
in future development.

Both the stand-alone and web applications allow easy visual-
ization of the spectra supporting variant peptides for manual as-
sessment (Fig. 6D,E). For each PSM that passed the statistical
evaluation, the PepQuery web application provides three annotat-
ed spectra in the report, including the novel peptide PSM, the best
PSM from the reference database searching, and the best PSM from
the unrestrictedmodification-based searching. This allows users to
manually investigate the reliability of the novel peptide PSM iden-
tification and to manually compare the novel peptide match and
modification peptidematch (Supplemental Fig. S6). We anticipate
that PepQuery will increase the usage of proteogenomics beyond
the proteomics community and will broaden the application of
proteogenomics in personalized medicine.

Methods

Overview of the PepQuery Workflow

PepQuery takes as input a peptide, protein, or DNA sequence, or a
novel genomic feature in the VCF, BED, or GTF file format. In ad-
dition, a reference protein database and an MS/MS data set need
to be specified. The PepQuery workflow includes five major
steps: target peptide sequence preparation and initial filtering;
candidate spectra retrieval and PSM scoring; competitive filtering
based on reference sequences; statistical evaluation; and competi-
tive filtering based on unrestricted modification searching (Fig. 2).
Detailed information on each of these steps is provided below.

Target peptide sequence preparation and initial filtering

Peptide sequence input is used directly. Protein sequence input is
digested in silico into peptides with the same enzyme used to gen-
erate the selected MS/MS data set. DNA sequence input is translat-
ed into protein sequences using a frame specified by the user and
then digested. For VCF, BED, or GTF files, the software PGA
(Wen et al. 2016) is used to translate the events in the file to pro-
tein sequences before digestion. In all cases, only peptides without
exact match in the selected reference protein database are retained
for further analysis.

Candidate spectra retrieval and PSM scoring

Each query peptide sequence is searched against the MS/MS data
set specified, and candidate spectra are identified based on the
mass difference between a spectrum and the query peptide and a
prespecified precursor mass tolerance. For the web application,
the precursor mass tolerance for each data set is determined based

Table 2. Impact of sample size on FDR

Sample size MS/MS spectra # Scoring algorithm Search results

Replicated experiments

Average1 2 3 4 5

1 157,128 Hyperscore Target 1863 1870 1861 1847 1861 1860.4
Decoy 1 2 3 3 0 1.8
FDR 0.05% 0.11% 0.16% 0.16% 0.00% 0.10%

MVH Target 1980 1978 1985 1986 1982 1982.2
Decoy 0 4 0 0 0 0.8
FDR 0.00% 0.20% 0.00% 0.00% 0.00% 0.04%

19 2,651,097 Hyperscore Target 1923 1918 1928 1933 1927 1925.8
Decoy 19 20 23 9 11 16.4
FDR 0.99% 1.04% 1.19% 0.47% 0.57% 0.85%

MVH Target 1986 1981 1992 1987 1986 1986.4
Decoy 13 18 17 15 22 17
FDR 0.65% 0.91% 0.85% 0.75% 1.11% 0.86%

39 5,450,631 Hyperscore Target 1923 1922 1925 1937 1938 1929
Decoy 22 22 27 26 35 26.4
FDR 1.14% 1.14% 1.40% 1.34% 1.81% 1.37%

MVH Target 1993 1982 1988 1988 1977 1985.6
Decoy 34 28 31 36 23 30.4
FDR 1.71% 1.41% 1.56% 1.81% 1.16% 1.53%

59 8,198,079 Hyperscore Target 1948 1934 1934 1940 1939 1939
Decoy 42 44 27 36 41 38
FDR 2.16% 2.28% 1.40% 1.86% 2.11% 1.96%

MVH Target 1991 1989 1982 1982 1987 1986.2
Decoy 52 34 49 37 36 41.6
FDR 2.61% 1.71% 2.47% 1.87% 1.81% 2.09%

79 10,753,601 Hyperscore Target 1932 1937 1946 1941 1937 1938.6
Decoy 46 46 47 42 57 47.6
FDR 2.38% 2.37% 2.42% 2.16% 2.94% 2.46%

MVH Target 1983 1988 1980 1984 1980 1983
Decoy 41 52 49 52 53 49.4
FDR 2.07% 2.62% 2.47% 2.62% 2.68% 2.49%

Table 1. FDR evaluation based on a human-E. coli spike-in data set

Scoring
algorithm

Target peptides
Total/Hit/TPR

Decoy peptides
Total/Hit/FPR FDRa

MVH 4540/4448/97.97% 4512/37/0.82% 0.84%
Hyperscore 4540/4388/96.65% 4512/16/0.35% 0.37%

aFDR is adjusted by the total numbers of target and decoy sequences.
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on the instrument setting for generating that data set. For the
stand-alone version, the precursor mass tolerance can be set by us-
ers. For each candidate spectra, two scoring algorithms are used
to calculate PSM scores. The Hyperscore calculation is similar to
X!Tandem (Craig and Beavis 2004):

hyperscore = log Nb!Ny!
∑Nb

i=1

Ib,i
∑Ny

i=1

Iy,i

( )
,

where Nb is the number of matched b-ions, Ny is the number of
matched y-ions, Ib,i are the intensities of matched b-ions, and Iy,i
are the intensities of matched y-ions. The multivariate hypergeo-
metric distribution score calculation is similar to MyriMatch
(Tabb et al. 2007):

mvhscore =
∑

ln
ti
mi

( )[ ]
− ln

T
M

( )
,

where ti is the number of peaks from a particular intensity class in
the spectrum,mi is the number of peaks from a particular intensity
classmatched to the peptide derived peak list,T is the total number
of locations in the spectrum, and M is the total number of peaks
predicted from the peptide sequence.

Competitive filtering based on reference sequences

Candidate spectra are searched against the specified reference pro-
tein database, and those with a better match to sequences in the
reference database than to the target sequence are removed.

Statistical evaluation

For each remaining PSM, randomly shuffled sequences derived
from the peptide in the PSM are used to evaluate the statistical sig-
nificance of the match. Specifically, 10,000 unique random pep-
tides are generated by randomly shuffling of the original peptide
sequence. The resulted random peptide sequences have the same
amino acid composition as the original sequence. When the
length of the original peptide sequence is too short to generate
10,000 unique random peptides, all possible random peptides
are generated. For each random peptide, the Hyperscore and the
MVH score are calculated to quantify the match between the ran-
dom peptide and the spectrum in the PSM. Based on each of the
scoring algorithms, a P-value is then calculated for the PSM:

P value = Ns + 1
N

,

where Ns is the number of random peptides with a higher score
than the original PSM scores, andN is the total number of random
peptides generated. Only PSMs with a P-value≤0.01 are retained
for the unrestricted modification searching-based filtering.

Competitive filtering based on unrestricted modification

searching

All spectra involved in the remaining PSMs are searched against
the selected protein reference database while considering all mod-
ifications from the Unimod database (http://www.unimod.org/)
except for amino acid substitutions. Using the same scoring algo-
rithm, if a spectrum has a better match to a modified peptide
from the reference protein database than to the target peptide,
the original identification is rejected. To speed up the searching,
a peptide index and amodification index are generated. For a given
protein reference database and user-specified fixed modifications
and digestion parameters, a peptide index is generated for nonre-
dundant peptides as shown in Figure 2B. This index is a hash
map in which the integer values of the peptide masses are the

key and the corresponding peptide sequences and masses are the
values. The peptide indexing takes just a few seconds on a typical
computer. The modification index is a hash map in which integer
values of the modification masses are the key and the correspond-
ing modification objects are the values as shown in Figure 2C.

Software implementation and support

PepQuery is available as a stand-alone application as well as a web
application. The stand-alone version is written in Java and is plat-
form-independent. The web version is developed using R Shiny
(https://cran.r-project.org/web/packages/shiny/index.html). The
multithreading technology is fully utilized in PepQuery to speed
up the peptide identification. Both versions can be accessed
through the PepQuery website (http://www.pepquery.org). Cur-
rently, using VCF, BED, and GTF files as input is only supported
in the stand-alone version. For the stand-alone version, PSMs
can be visualized using PDV (Li et al. 2018) at http://pdv.zhang-
lab.org. Support is available via a Google users group (https://
groups.google.com/forum/#!forum/pepquery) and a gitter chan-
nel (https://gitter.im/PepQuery/). This provides multiple venues
for users to have their questions answered quickly and efficiently.

Mass spectrometry data sets and analysis

The spiked-in data set from the iPRG 2015 study (Choi et al. 2017)
was generated from yeast cells with six spiked-in nonyeast pro-
teins. TheMS/MS data (JD_06232014_sample1-A.mgf) and the ref-
erence protein database were downloaded from ftp://iprg_study@
ftp.peptideatlas.org/ (password ABRF329). The MS/MS data were
searched using three search engines (MyriMatch v2.2.10165, X!
Tandemv2017.2.1.2, andMS-GF+ v2017.01.13) against themixed
protein database (6622 yeast protein sequences+ 6 spiked-in pro-
tein sequences) with decoy sequences through IPeak (Wen et al.
2015). Parameters for database searching were set as follows:
Fixed modifications, Carbamidomethyl (C); variable modifica-
tions, Oxidation (M), acetylation on protein N-terminus and
Deamidated (NQ); Precursor ion mass tolerance, 10 ppm; MS/MS
mass tolerance, 0.02 Da; Enzyme specificity, trypsin; maximum
missed cleavages, 2. The search results were integrated by IPeak
with 1% PSM-level FDR. The same searching parameters were
used for PepQuery. For the Jurkat proteome study, the MS/MS
data and the reference database (Sheynkman et al. 2013) were
downloaded from http://www.peptideatlas.org/PASS/PASS00215.
The raw data were converted into MGF files using MSconvert
(ProteoWizard, version 3.0.10462) (Chambers et al. 2012). The
55 junction peptides were retrieved from the supplemental file
of the original paper. The parameters of PepQuery were set as
follows: Fixedmodifications, Carbamidomethyl (C); variablemod-
ifications, Oxidation (M); Precursor ion mass tolerance, 10 ppm;
MS/MSmass tolerance, 0.05 Da; Enzyme specificity, trypsin; max-
imummissed cleavages, 2. The human-E. coli spike-in data set from
a previous study (Shen et al. 2017) was downloaded from PRIDE
(Jones et al. 2006) through the accession number PXD005590.
The raw data were converted into MGF files using MSconvert
(ProteoWizard, version 3.0.10462). TheMS/MS datawere searched
using three search engines (MyriMatch v2.2.10165, X!Tandem
v2017.2.1.2, and MS-GF+ v2017.01.13) against the mixed protein
database (04/20/2018, 4443 E. coli protein sequences+ 20,317
human protein sequences) with decoy sequences through IPeak.
Parameters for database searching were set as follows: Fixed modi-
fications, Carbamidomethyl (C); variable modifications, Oxida-
tion (M); Precursor ion mass tolerance, 10 ppm; MS/MS mass
tolerance, 0.05 Da; Enzyme specificity, trypsin; maximummissed
cleavages, 2. The search results from each search engine were

Proteomic validation of novel peptide sequences

Genome Research 491
www.genome.org

http://www.unimod.org/
http://www.unimod.org/
https://cran.r-project.org/web/packages/shiny/index.html
https://cran.r-project.org/web/packages/shiny/index.html
http://www.pepquery.org
http://www.pepquery.org
http://pdv.zhang-lab.org
http://pdv.zhang-lab.org
http://pdv.zhang-lab.org
https://groups.google.com/forum/#!forum/pepquery
https://groups.google.com/forum/#!forum/pepquery
https://groups.google.com/forum/#!forum/pepquery
https://gitter.im/PepQuery/
https://gitter.im/PepQuery/
ftp://iprg_study@ftp.peptideatlas.org/
ftp://iprg_study@ftp.peptideatlas.org/
ftp://iprg_study@ftp.peptideatlas.org/
http://www.peptideatlas.org/PASS/PASS00215
http://www.peptideatlas.org/PASS/PASS00215


processed by Percolator (Kall et al. 2007) and then filtered with q
value≤0.001. The peptides identified by all the three search en-
gines were retained for downstream analysis. The same searching
parameters were used for PepQuery. The colorectal cancer data set
was downloaded from the CPTAC data portal (https://cptac-data-
portal.georgetown.edu/cptac/s/S022) (Zhang et al. 2014). Raw
data were converted into MGF files using MSconvert (ProteoWi-
zard, version 3.0.10462) (Chambers et al. 2012). Samples with rep-
licates in the MS/MS or RNA-seq analysis were removed, and 799
fully tryptic SAAVpeptides from the remaining 79 samples were re-
trieved from the supplemental file of the original paper. To be con-
sistentwith theoriginal study, the parameters of PepQuerywere set
as follows: Fixed modifications, Carbamidomethyl (C); variable
modifications, Oxidation (M); Precursor ion mass tolerance, 20
ppm; MS/MS mass tolerance, 0.5 Da; Enzyme specificity, trypsin;
maximum missed cleavages, 2. The reference protein database
was the same as the original study. All identification results of Pep-
Query were filtered by P-value≤0.01. The MS/MS data were also
searched using three search engines (MyriMatch v2.2.10165, X!
Tandemv2017.2.1.2, andMS-GF+ v2017.01.13) against the RefSeq
humandatabase (33,820 humanprotein sequences) with decoy se-
quences through IPeak. Parameters for database searching were set
as follows: Fixed modifications, Carbamidomethyl (C); variable
modifications, Oxidation (M); Precursor ion mass tolerance,
20 ppm; MS/MS mass tolerance, 0.5 Da; Enzyme specificity, tryp-
sin; maximum missed cleavages, 2. The search results from
each search engine were processed by Percolator and then filtered
with q value≤0.001. The peptides identified by all the three search
engines were retained for downstream analysis.

Performance evaluation for validating SAAVs

In order to evaluate the true positive rate and false positive rate of
PepQuery for validating SAAVs, we used a simulation data set and a
real complex tumor data set. The simulation study was based on
the spiked-in data set from the iPRG 2015 study (Choi et al.
2017). This data set was generated from yeast cells with six
spiked-in proteins. We analyzed the MS/MS data by IPeak (Wen
et al. 2015) and identified a total of 93 peptides from the six
spiked-in proteins with 1% PSM FDR. For each of the 93 peptides,
we generated two versions of variant peptides, each with a ran-
domly introduced SAAV. One version served as a gold-standard
negative. The other version was added to the reference database
to replace the original reference peptide sequence. With regard
to this new reference sequence, the original sequence became a
gold-standard positive SAAV sequence. The gold-standard peptides
were taken as input to PepQuery and searched against the MS/MS
data, using the new reference protein database. The FPR and TPR
were calculated as

TPR = T
TP

,

FPR = F
FP

,

whereT is the number of identified gold-standard positives, F is the
number of identified gold-standard negatives, TP and FP are the to-
tal numbers of the gold-standard positives and gold-standard neg-
atives (i.e., 93 in this case). This simulationwas repeated 100 times.

The second method is based on the CPTAC colon data set
(Zhang et al. 2014). The variant peptides reported in the original
studywere taken as input to PepQuery. The variant peptide-sample
pairs reported in the original study were used as gold-standard pos-
itives, whereas all other variant peptide-sample pairs were used as
gold-standard negatives. TPR and FPR were calculated similar to
the above description.

Software availability

The PepQuery web application can be accessed at http://www
.pepquery.org. The stand-alone application and scripts for re-
producing the work can be downloaded at the same website. The
PepQuery source code and scripts for reproducing the work
are also available in the Supplemental Material as Supplemental
Code and Supplemental Scripts, respectively.
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