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New statistical model 
for misreported data 
with application to current public 
health challenges
David Moriña1,2*, Amanda Fernández‑Fontelo3, Alejandra Cabaña4 & Pedro Puig2,4

The main goal of this work is to present a new model able to deal with potentially misreported 
continuous time series. The proposed model is able to handle the autocorrelation structure in 
continuous time series data, which might be partially or totally underreported or overreported. 
Its performance is illustrated through a comprehensive simulation study considering several 
autocorrelation structures and three real data applications on human papillomavirus incidence in 
Girona (Catalonia, Spain) and Covid‑19 incidence in two regions with very different circumstances: 
the early days of the epidemic in the Chinese region of Heilongjiang and the most current data from 
Catalonia.

There has been a growing interest in the past years to deal with data that is only partially registered or under-
reported in the time series literature. This phenomenon is very common in many fields, and has been previously 
explored by different approaches in epidemiology, social and biomedical research among many other  contexts1–5. 
The sources and underlying mechanisms that cause the underreporting might differ depending on the particular 
data. Some authors consider a situation where the registry is updated with time and therefore the underreporting 
issue is  mitigated6. That leads to temporary underreporting while this work is focused on permanent underre-
porting, where the registered data are never updated in order to become more accurate. From the methodologi-
cal point of view, several alternatives have been explored, from Markov chain Monte-Carlo based  methods5 to 
recent discrete time series  approaches7,8. Several attempts to estimate the degree of underreporting in different 
contexts have been  done9, although there is a lack of models incorporating continuous time series structures 
and handling underreporting.

One of the fields where the interest in addressing the underreporting issues is higher is the epidemiology 
of infectious diseases. In the last few years, many approaches to deal with underreported data have been sug-
gested with a growing level of sophistication from the usage of multiplication  factors10 to several Markov-based 
 models11,12 or even spatio-temporal  modelling13. Even a new  R14 package able to fitting endemic-epidemic models 
based on approximative maximum likelihood to underreported count data has been recently  published15. This 
work presents two examples where such phenomenon appears.

Human papillomavirus (HPV) is one of the most prevalent sexually transmitted infections. It is so common 
that nearly all sexually active people have it at some point in their lives, according to the information provided 
by the United States’ Centers for Disease Control and Prevention (CDC)16. Generally, the infection disappears 
on its own without inducing any health problem, but in some cases it can produce an abnormal growth of cells 
on the surface of the cervix that could potentially lead to cervical cancer. HPV infection is also related to other 
cancers (vulva, vagina, penis, anus, . . . ) and other diseases like genital warts (GW). The fact that most cases of 
HPV infection are asymptomatic causes that public health registries might be potentially underestimating its 
incidence. The underreporting phenomenon in HPV data from the discrete time series point of view has been 
recently  studied7.

There is an enormous global concern around 2019-novel coronavirus (SARS-CoV-2) infection in the last few 
months, leading the World Health Organization (WHO) to declare public health  emergency17. As the symptoms 
of this infection can be easily confused with those of similar diseases like Middle East Respiratory Syndrome 
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Coronavirus (MERS-CoV) or Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), its incidence has 
been notably underreported, especially at the beginning of the outbreak in Wuhan (Hubei province, China) by 
December 2019.

Methods
The proposed methodology is described in detail in this section, along with an introduction of the real data 
examples used to illustrate its performance. All the analyses developed to generate the results reported in this 
paper were conducted in R and the figures were generated using the R packages ggplot218 and ggfortify19.

Application examples. The first real example, discussed in detail in “Example: HPV infection incidence” 
section is aimed to analyze the series of weekly cases of HPV infection in Girona in the period 2010–2014. This 
data set is available from the Health Department of the Catalan Government (https:// www. ics. gencat. cat/ sisap/ 
diagn ostic at/ princ ipal? patol ogia= Papil% B7lom a& lang= en). The second example (“Example: Covid-19 inci-
dence in the region of Heilongjiang” section), regarding the daily SARS-CoV-2 infection in the Chinese region 
of Heilongjiang in the period 2020/01/22–2020/02/26, was collected from the COVID-19 Data Repository by 
the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University GitHub repository (https:// 
github. com/ CSSEG ISand Data/ COVID- 19/). The third real example, described in “Example: Covid-19 inci-
dence in Catalonia” section is again focused on Covid-19 infection but in Catalonia in the period 2021/05/16–
2021/06/20, and showing a completely different behavior. This data set is freely available from the Health Depart-
ment of the Catalan Government (https:// dades covid. cat/ static/ csv/ casos_ sexe_ munic ipi. zip). These examples 
were chosen because there is a great consensus among the scientific community that both diseases (HPV and 
Covid-19) are severely underreported, and the three series present very different behavior, so they allow us to 
illustrate the performance of the proposed methodology in very different situations.

No data processing was conducted in any case beyond selecting the regions and time periods of interest. The 
final data sets and R codes used to obtain the described results are available in the Github repository https:// 
github. com/ dmori nya/ MisRe pARMA.

Model definition. Consider an unobservable process with an AutoRegressive Moving Average (ARMA(p, r)) 
structure defined by

where ǫt is a Gaussian white noise process with ǫt ∼ N(µǫ , σ
2
ǫ ) . The ARMA processes belong to the family of so 

called linear processes. Their importance relies on the fact that any stationary nondeterministic process can be 
written as a sum of a linear process and a deterministic  component20. These models are very well known, have 
been used in many applications since their introduction in the early 1950’s and are general and flexible enough 
to be useful in a wide range of different contexts. Most used statistical software packages include functions that 
allow straightforward fitting of this family of models, so it seems a natural choice in the present work.

In our setting, this process Xt cannot be directly observed, and all we can see is a part of it, expressed as

The interpretation of the parameters in Eq. (2) is straightforward: q is the overall intensity of misreporting 
(if 0 < q < 1 the observed process Yt would be underreported while if q > 1 the observed process Yt would 
be overreported). The parameter ω can be interpreted as the overall frequency of misreporting (proportion of 
misreported observations). The proposed model is a particular case of Hierarchical Mixtures-of-Experts (HME) 
modelling  (see21,22 for instance), with an ARMA process instead of a linear model in the hidden layer.

Model properties. Consider that the unobserved process Xt follows an ARMA(p, r) model as defined in 
Eq.  (1). As can be seen in Appendix 1 (Supplementary Material), the observed process has mean 

E(Yt) =
µǫ

1−α1−···−αp
·
(

1− ω + q · ω
)

 and variance V(Yt) =

((

σ 2
ǫ ·(1+θ21+···+θ2r )

1−α21−···−α2p

)

+
µ2
ǫ

(1−α1−···−αp)
2

)

·

(1+ ω · (q2 − 1))−
µ2
ǫ

(1−α1−···−αp)
2 · (1− ω + q · ω)2 . The autocorrelation function of the observed process can 

be written in terms of the features of the hidden process Xt as

where ρX is the autocorrelation function of the unobserved process Xt.
A situation of particular interest is the case ω = 1 , meaning that all the observations might be underreported 

and that a simpler model for Yt excluding the parameter ω might be suitable

In this case, however, the observed process Yt would be a non-identifiable ARMA(p, r) model as the parameter 
q cannot be estimated on the basis of the methodology described in the following section.

(1)Xt = α1Xt−1 + · · · + αpXt−p + θ1ǫt−1 + · · · + θrǫt−r + ǫt ,

(2)Yt =

{

Xt with probability 1− ω

q · Xt with probability ω

(3)
ρY (k) =

V(Xt )(1−ω+qω)2

(V(Xt )+E(Xt )
2)(1+ω(q2−1))−E(Xt )

2(1−ω+q·ω)2
· ρX(k)

= c(α1, . . . ,αp, θ1, . . . , θr ,µǫ , σ
2
ǫ ,ω, q) · ρX(k),

(4)Yt = q · Xt .

https://www.ics.gencat.cat/sisap/diagnosticat/principal?patologia=Papil%B7loma&lang=en
https://www.ics.gencat.cat/sisap/diagnosticat/principal?patologia=Papil%B7loma&lang=en
https://github.com/CSSEGISandData/COVID-19/
https://github.com/CSSEGISandData/COVID-19/
https://dadescovid.cat/static/csv/casos_sexe_municipi.zip
https://github.com/dmorinya/MisRepARMA
https://github.com/dmorinya/MisRepARMA
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Estimation. The likelihood function of the observed process Yt is not easily computable but the parameters 
of the model can be estimated by means of an iterative algorithm based on its marginal distribution, using the R 
packages mixtools23 and forecast24,25. The main steps are described in detail below: 

(1) Following Eq. (2), the observed process Yt can be written as Yt = (1− Zt) · Xt + q · Zt · Xt , where Zt is an 
indicator of the underreported observations, following a Bernoulli distribution with probability of success 
ω (Zt ∼ Bern(ω)) . The marginal distribution of Yt is a mixture of two normal random variables N

(

µ, σ 2
)

 
and N

(

q · µ, q2 · σ 2
)

 respectively, where µ =
µǫ

1−α1−···−αp
 and σ 2

=
σ 2
ǫ ·(1+θ21+···+θ2r )

1−α21−···−α2p
 . This fact can be used 

to obtain initial estimates for q and ω . Using the EM algorithm (specifically on the E-step), the posterior 
probabilities (conditional on the data and the obtained estimates) can be computed. This can be done using, 
for instance, the R package mixtools.

(2) Using the indicator Ẑt obtained in the previous step, the series is divided in two: One including the under-
reported observations (treating the non-underreported values as missing data) and another with the non 
underreported observations (treating the underreported values as missing data). An ARMA model is fitted 
to each of these two series and a new q̂ is obtained by dividing the fitted means.

(3) A mixture of two normals is fitted to the observed series Yt with mean and standard deviation fixed to the 
corresponding values obtained from the previous step, and a new ω is estimated.

(4) Steps (ii) and (iii) are repeated until the quadratic distance between two consecutive iterations 
(q̂i − q̂i−1)

2
+ (ω̂i − ω̂i−1)

2
+

∑

j(α̂ji − α̂ji−1)
2
+

∑

k(θ̂ki − θ̂ki−1 )
2 is below a fixed tolerance level.

(5) Once the parameter estimates are stable according to the previous criterion, the underlying process Xt is 
reconstructed as X̂t = (1− Ẑt) · Yt +

1
q̂
· Ẑt · Yt , and an ARMA model is fitted to the reconstructed process 

to obtain α̂j , j = 1, . . . , p , θ̂k , k = 1, . . . , r and σ̂ǫ2.

To account for potential trends or seasonal behaviour, covariates can be included in the described estimation pro-
cess expressing the observed series as Yt = β0 + β1C1 + · · ·βkCk + (1− Zt) · Xt + q · Zt · Xt , where C1, . . . ,Ck 
are the covariates, so its stationarity is ensured. The βi coefficients, i = 1, . . . , k , can be estimated by Ordinary 
Least Squares (OLS). Additionally, a parametric bootstrap procedure with 500 replicates is used to estimate 
standard errors and build confidence intervals based on the percentiles of the distribution of the estimates. In 
order to make the described methodology easily accessible to statisticians and data scientists, it has been com-
piled in the form of the R package MisRepARMA26. Additionally, non expert users facing this issue can also use 
an adapted version of the package through the web application https:// dmori na. shiny apps. io/ MisRe pARMA/.

Results
The results of the proposed methodology over a comprehensive simulation study and an application on two real 
data sets are shown in this Section.

Simulation study. A thorough simulation study has been conducted to ensure that the model behaves as 
expected, including AR(p), MA(r) and ARMA(p, r) for 1 ≤ p, r ≤ 3 structures for the hidden process Xt with 
values for the parameters α , θ , q and ω ranging from 0.1 to 0.9 for each parameter (some combinations of 
parameters have been omitted for p > 1 or r > 1 to ensure stationarity). For ARMA(p, r) structures with p > 1 
or r > 1 the parameters covered the same range (0.1 to 0.9) but with a difference of 0.2 instead of 0.1 for com-
putational feasibility. Only average absolute bias, interval coverage and 95% confidence interval corresponding 
to p = r = 1 are shown in Table 1, as higher order models behave in a very similar manner (see Supplemen-
tary Material for details). These values are averaged over all combinations of parameters. Additionally, standard 
AR(1), MA(1) and ARMA(1, 1) models were fitted to the same simulated series without accounting for their 
underreporting structure.

For each autocorrelation structure and parameters combination, a random sample of size n = 1000 has been 
generated using the function arima.sim from R package forecast24,25. Different sample sizes ( n = 50, 100, 500 ) 
have also been considered to study the impact of sample size on accuracy and the results are reported in the 
Supplementary Material. The performance of the proposed methodology is summarised in Tables S1–S4 for 
n = 50, 100, 500 and 1000 respectively. Average absolute bias is similar regardless of the sample size, while average 
interval lengths (AIL) are higher and interval coverages are poorer (around 75% for n = 50 ) for lower sample 
sizes as could be expected. Several bootstrap sizes ( b = 20, 50, 100, 500 ) were also considered and the difference 
between them were negligible, so only results corresponding to b = 500 bootstrap replicates are reported.

It is clear from Table 1 that ignoring the underreported nature of data (labeled as Standard models in the table) 
leads to highly biased estimates with extremely low coverage rates, even with larger average interval lengths. This 
is especially relevant when the intensity or frequency of underreported observations is high.

Example: HPV infection incidence. The series of weekly cases of HPV infection in Girona in the period 
2010–2014 was previously analyzed as a discrete INAR(1) hidden Markov  process7. In a similar way, we aim to 
analyze the corresponding series of incidence, and an AR process of order 1 seems to be adequate (see Fig. 1). 
Additionally, the AR(1) structure has the lowest AIC when compared to similar alternative models like AR(2), 
ARMA(1, 1) and MA(1) (AICs are 299.31, 300.47, 300.49 and 299.68 respectively). According to Eq. (3), the 
autocorrelation function of the observed process Yt when the hidden process Xt has an AR(1) structure takes the 
form ρY (k) = c · αk , where

https://dmorina.shinyapps.io/MisRepARMA/
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c = c(α,µǫ , σ
2
ǫ ,ω, q) =

(1−ω+q·ω)2·σ 2
ǫ

(1−α2)·

((

σ2ǫ
1−α2

+
µ2ǫ

(1−α2)

)

·(1+ω·(q2−1))−(1−ω+q·ω)2·
µ2ǫ

(1−α)2

) . In particular, in this case we 

can write log(ρY (k)) = log(c)+ k · log(α) , so a statistically significant intercept of this linear regression model 
(estimating the parameters by ordinary least squares method) could be interpreted as an evidence of underre-
porting, as in this case ( p− value = 0.0014 ). It is clear from Fig. 1 that the estimated regression line does not 
cross the origin, so the behavior of the observed process is consistent with an underlying underreported AR(1) 
process.

By means of the estimation method described in “Estimation” section, it can be seen that the estimated model 
for the hidden process is Xt = 0.109 · Xt−1 + ǫt , being the observed process Yt,

The estimated parameters are reported in Table 2.

(5)Yt =

{

Xt with probability 0.17
0.238 · Xt with probability 0.83

Table 1.  Model performance measures (average absolute bias, average interval length and average coverage) 
summary based on a simulation study.

Structure Parameter Bias AIL Coverage (%)

AR(1)

α̂ 0.004 0.100 94.92

q̂ < 10−3 < 10−3 93.14

ω̂ < 10−3 0.050 93.69

Standard AR(1) α̂ 0.500 0.124 0.96

MA(1)
θ̂ < 10−3 0.116 96.02

q̂ < 10−3 < 10−3 94.79

ω̂ − 0.001 0.050 90.26

Standard MA(1) θ̂ 0.499 0.124 1.23

ARMA(1, 1)

α̂ 0.003 0.161 95.66

θ̂ 0.005 0.211 96.97

q̂ < 10−3 0.001 94.91

ω̂ < 10−3 0.050 94.06

Standard ARMA(1, 1)
α̂ 0.492 3.056 52.48

θ̂ 0.509 3.055 51.14

log(ρk)
^

= −2.05 − 0.17k
−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

987654321
Lag

lo
g
(ρ

k
)

^

Figure 1.  Sample autocorrelation coefficients (red points) and estimated regression line (black solid line) of 
log(ρY (k)) = log(c)+ k · log(α).
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These results are highly consistent with those previously reported in the literature for the number of HPV 
cases obtained through a discrete time series  approach7 and can be interpreted in a very straightforward way. 
Moreover, this new methodology can be used to model the incidence of the disease instead of the number of 
cases, accounting for potential changes in the underlying population.

The estimated intensity of underreporting is q̂ = 0.238 , with 95% confidence interval (0.106, 0.371). The 
registered and estimated evolution of HPV incidence within the study period (2010–2014) can be seen in Fig. 2.

These results indicate that only 33% of the estimated HPV incidence in the considered period of time was 
actually recorded. Taking into account that public health cervical cancer prevention strategies are often designed 
on the basis of simulation models which are calibrated to registered HPV  data27, it is clear that providing decision 
makers with accurate data on HPV incidence is key to ensure optimal allocation of scarce public health funds.

Example: Covid‑19 incidence in the region of Heilongjiang. The betacoronavirus SARS-CoV-2 
has been identified as the causative agent of an unprecedented world-wide outbreak of pneumonia starting in 
December 2019 in the city of Wuhan (China)17, named as Covid-19. Considering that many cases run without 
developing symptoms beyond those of MERS-CoV, SARS-CoV or pneumonia due to other causes, it is reason-
able to assume that the incidence of this disease has been underregistered, especially at the beginning of the 
 outbreak28. This section focuses on the Covid-19 incidence registered in Heilongjiang province (north-eastern 
China) in the period (2020/01/22–2020/02/26), and it can be seen in Fig. 3 that the registered data (black color) 
reflect only a fraction of the estimated actual incidence (red color).

Another respiratory disease caused by a coronavirus (MERS-CoV) has been modeled in a previous work as 
an ARMA(3, 1)29, so we evaluated the performance of this model and similar ones. Probably due to the shortness 
of the available data this autoregressive structure was not observed and in our case the best performing model 
was an MA(1) (AIC of -140.17 against -136.1 for the ARMA(3, 1)), consistently with the residuals profile shown 
in Fig. 4, obtained from fitting an MA(1) model to the most likely process Xt reconstructed following step (v) 
in “Estimation” section.

By means of the estimation method described in “Estimation” section, it can be seen that the estimated model 
for the hidden process is Xt = 0.528 · ǫt−1 + ǫt , being the observed process Yt,

Table 2.  Bootstrap means and standard errors of the proposed model for the HPV example.

Parameter Bootstrap mean Bootstrap SE

µ̂ǫ 0.575 0.100

α̂ 0.114 0.056

ω̂ 0.832 0.135

q̂ 0.238 0.068

0.0

0.3

0.6

0.9

41023102210211020102

H
P

V
 i
n

c
id

e
n

c
e
 (

x
 1

0
0
,0

0
0
 i
n

d
iv

id
u

a
ls

)

Figure 2.  Registered (black solid line) and estimated (red dotted line) HPV incidence in Girona in the period 
2010–2014.
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The estimated parameters are reported in Table 3.

Example: Covid‑19 incidence in Catalonia. The Covid-19 incidence in Catalonia in the period 
2021/05/16–2021/06/20 looks totally different. As it can be seen in Fig. 5, these data present a slight decreasing 

(6)Yt =

{

Xt with probability 0.564
0.157 · Xt with probability 0.436
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Figure 3.  Registered (black solid line) and estimated (red dotted line) COVID-19 incidence in the region of 
Heilongjiang in the period 2020/01/22–2020/02/26.
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histogram (lower graph right)) after fitting a MA(1) model to the Heilongjiang COVID-19 data.
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trend and weekly seasonality. The decreasing trend is probably a consequence of a successful vaccination cam-
paign, while the weekly seasonality is artificially created by issues in the notification process, as it can be seen that 
the lower number of cases are consistently observed by the weekends, while the peak each week is observed on 
Mondays. In order to account for the trend the simple linear regression model f (t) = β0 + β1 · t was included as 
a covariate and the following trigonometric function was used to incorporate the observed periodic behaviour.

(7)g(t) = β2 · sin

(

2 · π · t

7

)

+ β3 · cos

(

2 · π · t

7

)

Table 3.  Bootstrap means and standard errors of the proposed model for the Heilongjiang Covid-19 example.

Parameter Bootstrap mean Bootstrap SE

µ̂ǫ 0.057 0.012

θ̂ 0.528 0.173

ω̂ 0.436 0.160

q̂ 0.157 0.076

Table 4.  Bootstrap means and standard errors of the proposed model for the Catalonia Covid-19 example.

Parameter Bootstrap mean Bootstrap SE

β̂0 11.513 1.251

β̂1 − 0.078 0.013

β̂2 − 1.037 0.246

β̂3 − 2.599 0.234

α̂1 0.0173 0.184

α̂2 − 0.372 0.187

ω̂ 0.782 0.230

q̂ 0.712 0.089
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Figure 5.  Registered (black solid line) and estimated (red dotted line) COVID-19 incidence in Catalonia in the 
period 2021/05/16–2021/06/20.
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In this case, the best fitting model according to AIC and residuals profile is an AR(2).
As shown in Table 4, the estimates related to underreporting reveal a lower intensity (although a higher fre-

quency probably related to its periodicity) of the issue compared to the previous example, as could be expected. 
In fact, α̂1 is not significantly different to zero, so a simpler model for uncorrelated misreported data like the one 
proposed  in30 might be enough.

Discussion
In biomedical and epidemiological research, the usage of disease registries in order to analyze the impact and 
incidence of health issues is very common. However, the accuracy and data quality of such registries is in many 
cases at least doubtful. This is the case, for instance, for rare  diseases31 or health issues that clear asymptomatically 
in most cases like HPV infection. In the case of HPV incidence in Girona in the period 2010–2014, the regis-
tered weekly average is 0.17 cases per 100,000 individuals, while the reconstructed process has a weekly average 
of 0.51 cases per 100,000 individuals, showing that only 33% of the estimated real incidence is recorded by the 
public health system. It must be considered that HPV infection is related to subsequent complications such as 
cervical cancer in some cases and that public health cervical cancer prevention strategies are often designed on 
the basis of simulation models which are calibrated to registered HPV  data27 and therefore the optimal alloca-
tion of scarce public health resources cannot be ensured if the under-reporting issue is not accounted for. This 
result is very consistent with that  of7, where the authors claim that only 38% of the HPV cases were registered 
in the same area and period of time.

The Heilongjiang region Covid-19 data reveal that in average about 60% of the estimated actual incidence in 
the period 2020/01/22–2020/02/26 was reported. The unavailable data estimated by the proposed methodology 
are crucial to provide public health decision-makers with reliable information, which can also be used to improve 
the accuracy of dynamic models aimed to estimate the spread of the  disease28. In China and almost globally 
afterwards, different non-pharmaceutical interventions were undertaken in order to minimise the impact of the 
disease on the general population and especially over the health systems, which were put to the limit of their 
capacity by the pandemic. In this context, one of the main challenges in predicting the evolution of the disease 
or evaluating the impact of these strategies is to use data as accurate as possible, taking into account that many 
Covid-19 cases are asymptomatic or with mild symptoms and a generalized shortage of testing  kits32, and there-
fore knowing that the registered number of affected individuals might be severely underestimated. The analysis of 
Covid-19 incidence in a completely different context (very recent daily data from a European region) shows that 
the model behaves as expected and is capable of handling trends and seasonality. In the Catalan case, the model 
reveals that more than 74% of the cases in the period 2021/05/16–2021/06/20 were registered. These examples 
are only used to illustrate the performance of the proposed methodology, but to properly analyze the evolution 
of an infectious disease with the behaviour shown by Covid-19 models that take the spreading dynamics into 
account are probably more appropriate  (see33,34 for instance).

The concerns around accuracy of registered data have recently led to the publication of recommendations to 
improve data collection to ensure accuracy of registries (see for  instance35,36). Nonetheless, these recommenda-
tions are very recent and may be difficult for the public health services of many countries to fully implement 
them, due to operational or structural issues.

The proposed methodology is able to deal with underreported (or overreported) data in a very natural and 
straightforward way, estimating its intensity and frequency on a continuous time series, and allowing to recon-
struct the most likely unobserved process. It is also flexible enough to handle covariates straightforwardly, and 
therefore it is simple to introduce trends or seasonality if necessary, so it can be useful in many contexts, where 
these issues might arise.

The simulation study shows that the proposed methodology behaves as expected and that the parameters used 
in the simulations, under different autocorrelation structures, are properly recovered, regardless of the intensity 
and frequency of the underreporting issues. It also reveals that using standard time series models can lead to 
severely biased estimates and low coverage rates, while the proposed methodology can overcome the issue of 
underreporting and provide unbiased and efficient inference.

The methods introduced in this paper could certainly be considered as a starting point to develop more 
general methods, able to deal with non-stationary continuous time series, adapting the ideas developed  in33 
for the discrete case. From the applied point of view, it would be very interesting to use these kind of models to 
analyze other issues that might be potentially underreported and to analyze more thoroughly the examples used 
to illustrate the performance of the discussed models.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).

Received: 9 December 2020; Accepted: 18 November 2021

References
 1. Bernard, H., Werber, D. & Höhle, M. Estimating the under-reporting of norovirus illness in Germany utilizing enhanced awareness 

of diarrhoea during a large outbreak of Shiga toxin-producing E. coli O104: H4 in 2011—A time series analysis. BMC Infect. Dis. 
14, 116 (2014). https:// doi. org/ 10. 1186/ 1471- 2334- 14- 116

 2. Arendt, S. et al. Reporting of foodborne illness by U.S. consumers and healthcare professionals. Int. J. Environ. Res. Public Health 
10, 3684–3714 (2013).

https://doi.org/10.1186/1471-2334-14-116


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23321  | https://doi.org/10.1038/s41598-021-02620-5

www.nature.com/scientificreports/

 3. Rosenman, K. D. et al. How much work-related injury and illness is missed by the current national surveillance system?. J. Occup. 
Environ. Med. 48, 357–365 (2006).

 4. Alfonso, J. H., Løvseth, E. K., Samant, Y. & Holm, J. Ø. Work-related skin diseases in Norway may be underreported: Data from 
2000 to 2013. Contact Dermat. 72, 409–412 (2015).

 5. Winkelmann, R. Markov chain Monte Carlo analysis of underreported count data with an application to worker absenteeism. 
Empir. Econ. 21, 575–587 (1996).

 6. Höhle, M. & an der Heiden, M. Bayesian nowcasting during the STEC O104:H4 outbreak in Germany, 2011. Biometrics 70, 
993–1002 (2014).

 7. Fernández-Fontelo, A., Cabaña, A., Puig, P. & Moriña, D. Under-reported data analysis with INAR-hidden Markov chains. Stat. 
Med. 35, 4875–4890 (2016).

 8. Fernández-Fontelo, A., Cabaña, A., Joe, H., Puig, P. & Moriña, D. Untangling serially dependent underreported count data for 
gender-based violence. Stat. Med. 38, 4404–4422 (2019).

 9. Gibbons, C. L. et al. Measuring underreporting and under-ascertainment in infectious disease datasets: A comparison of methods. 
BMC Public Health 14, 147 (2014).

 10. Stocks, T., Britton, T. & Höhle, M. Model selection and parameter estimation for dynamic epidemic models via iterated filtering: 
Application to rotavirus in Germany. Biostatistics 21(3), 400–416 (2018).

 11. Azmon, A., Faes, C. & Hens, N. On the estimation of the reproduction number based on misreported epidemic data. Stat. Med. 
33, 1176–92 (2014).

 12. Magal, P. & Webb, G. The parameter identification problem for SIR epidemic models: Identifying unreported cases. J. Math. Biol. 
77, 1629–1648 (2018).

 13. Stoner, O., Economou, T. & Drummond Marques da Silva, G. A hierarchical framework for correcting under-reporting in count 
data. J. Am. Stat. Assoc. 1–17 (2019).

 14. R Core Team. R: A Language and Environment for Statistical Computing (2019). https:// www.r- proje ct. org/.
 15. Bracher, J. hhh4u: Fit an endemic-epidemic model to underreported data. https:// rdrr. io/ github/ jbrac her/ hhh4u nderr eport ing/ 

man/ hhh4u. html (2019).
 16. Dunne, E. F. et al. CDC grand rounds: Reducing the burden of HPV-associated cancer and disease. MMWR Morb. Mortal. Wkl. 

Rep. 63, 69–72 (2014).
 17. Sohrabi, C. et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. 

J. Surg. (Lond., Engl.) 76, 71–76 (2020).
 18. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
 19. Tang, Y., Horikoshi, M. & Li, W. ggfortify: Unified interface to visualize statistical result of popular R packages. R J. 8, 474–485. 

https:// doi. org/ 10. 32614/ RJ- 2016- 060 (2016).
 20. Brockwell, P. J. & Davis, R. A. Time Series: Theory and Methods (Springer, 1991).
 21. Huerta, G., Jiang, W. & Tanner, M. A. Time series modeling via hierarchical mixtures. Technical Report (2003).
 22. Jiang, W. & Tanner, M. A. Hierarchical mixtures-of-experts for exponential family regression models: Approximation and maxi-

mum likelihood estimation. Ann. Stat. 27, 987–1011 (1999).
 23. Benaglia, T., Chauveau, D., Hunter, D. R. & Young, D. mixtools : An R package for analyzing finite mixture models. J. Stat. Softw. 

32, 1–29 (2009).
 24. Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 27, 1–22 (2008).
 25. Hyndman, R. et al. forecast: Forecasting Functions for Time Series and Linear Models (2018). http:// pkg. robjh yndman. com/ forec 

ast.
 26. Moriña, D., Fernández-Fontelo, A., Cabaña, A. & Puig, P. MisRepARMA: Misreported Time Series Analysis (2021). https:// cran.r- 

proje ct. org/ packa ge= MisRe pARMA.
 27. Moriña, D., De Sanjosé, S. & Diaz, M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention. Sci. 

Rep. 7, 17208 (2017).
 28. Zhao, S. et al. Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 

2020: A data-driven modelling analysis of the early outbreak. J. Clin. Med. 9(2), 388. https:// doi. org/ 10. 3390/ jcm90 20388 (2020).
 29. Alkhamis, M. A. et al. Temporal dynamics of Middle East respiratory syndrome coronavirus in the Arabian Peninsula, 2012–2017. 

Epidemiol. Infect. 147, e21. https:// doi. org/ 10. 1017/ S0950 26881 80027 28 (2019).
 30. Moriña, D. et al. Quantifying the under-reporting of genital warts cases. BMC Med. Res. Methodol. 21(1), 6 (2021).
 31. Kodra, Y. et al. Data quality in rare diseases registries. In Advances in Experimental Medicine and Biology, vol. 1031, 149–164 

(Springer, 2017).
 32. Huang, L. et al. Rapid asymptomatic transmission of COVID-19 during the incubation period demonstrating strong infectivity 

in a cluster of youngsters aged 16–23 years outside Wuhan and characteristics of young patients with COVID-19: A prospective 
contact-tracing study. J. Infect. 80, e1–e13. https:// doi. org/ 10. 1016/j. jinf. 2020. 03. 006 (2020).

 33. Fernández-Fontelo, A., Moriña, D., Cabaña, A., Arratia, A. & Puig, P. Estimating the real burden of disease under a pandemic 
situation: The SARS-CoV2 case. PLoS Onehttps:// doi. org/ 10. 1371/ journ al. pone. 02429 56 (2020).

 34. Moriña, D., Fernández-Fontelo, A., Cabaña, A., Arratia, A. & Puig, P. Bayesian Synthetic Likelihood Estimation for Underreported 
Non-stationary Time Series: Covid-19 Incidence in Spain (2021). arXiv: 2104. 07575.

 35. Kodra, Y. et al. Recommendations for improving the quality of rare disease registries. Int. J. Environ. Res. Public Health 15(8), 1644. 
https:// doi. org/ 10. 3390/ ijerp h1508 1644 (2018).

 36. Harkener, S., Stausberg, J., Hagel, C. & Siddiqui, R. Towards a core set of indicators for data quality of registries. Stud. Health 
Technol. Inform. 267, 39–45 (2019).

Acknowledgements
This work was supported by Grant COV20/00115 from Instituto de Salud Carlos III (Spanish Ministry of Health). 
This work was partially supported by Grant RTI2018-096072-B-I00 from the Spanish Ministry of Science and 
Innovation and by the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program 
for Centers and Units of Excellence in R&D (CEX2020-001084-M).

Author contributions
D.M., A.F.-F., A.C. and P.P. participated in the analysis of the data, interpretation and discussion of the results, 
reviewed the manuscript and approved its final form.

Competing interests 
The authors declare no competing interests.

https://www.r-project.org/
https://rdrr.io/github/jbracher/hhh4underreporting/man/hhh4u.html
https://rdrr.io/github/jbracher/hhh4underreporting/man/hhh4u.html
https://doi.org/10.32614/RJ-2016-060
http://pkg.robjhyndman.com/forecast
http://pkg.robjhyndman.com/forecast
https://cran.r-project.org/package=MisRepARMA
https://cran.r-project.org/package=MisRepARMA
https://doi.org/10.3390/jcm9020388
https://doi.org/10.1017/S0950268818002728
https://doi.org/10.1016/j.jinf.2020.03.006
https://doi.org/10.1371/journal.pone.0242956
http://arxiv.org/abs/2104.07575
https://doi.org/10.3390/ijerph15081644


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23321  | https://doi.org/10.1038/s41598-021-02620-5

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 02620-5.

Correspondence and requests for materials should be addressed to D.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-02620-5
https://doi.org/10.1038/s41598-021-02620-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	New statistical model for misreported data with application to current public health challenges
	Methods
	Application examples. 
	Model definition. 
	Model properties. 
	Estimation. 

	Results
	Simulation study. 
	Example: HPV infection incidence. 
	Example: Covid-19 incidence in the region of Heilongjiang. 
	Example: Covid-19 incidence in Catalonia. 

	Discussion
	References
	Acknowledgements


