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Abstract: Plant-beneficial Pseudomonas spp. aggressively colonize the rhizosphere and produce nu-
merous secondary metabolites, such as 2,4-diacetylphloroglucinol (DAPG). DAPG is a phloroglucinol
derivative that contributes to disease suppression, thanks to its broad-spectrum antimicrobial activity.
A famous example of this biocontrol activity has been previously described in the context of wheat
monoculture where a decline in take-all disease (caused by the ascomycete Gaeumannomyces tritici)
has been shown to be associated with rhizosphere colonization by DAPG-producing Pseudomonas
spp. In this review, we discuss the biosynthesis and regulation of phloroglucinol derivatives in the
genus Pseudomonas, as well as investigate the role played by DAPG-producing Pseudomonas spp. in
natural soil suppressiveness. We also tackle the mode of action of phloroglucinol derivatives, which
can act as antibiotics, signalling molecules and, in some cases, even as pathogenicity factors. Finally,
we discuss the genetic and genomic diversity of DAPG-producing Pseudomonas spp. as well as its
importance for improving the biocontrol of plant pathogens.

Keywords: 2,4-diacetylphloroglucinol; DAPG; Pseudomonas; biocontrol; antibiotic

1. Introduction

Phloroglucinol derivatives are a large class of secondary metabolites widely dis-
tributed in plants and brown algae. Over a thousand phloroglucinol derivatives have
been characterized to date. As an example, 429 phloroglucinol derivatives have been
isolated from the genus Hypericum alone [1]. Phloroglucinol derivatives found in plants
and brown algae have extremely diverse structures, ranging from the simple grandinol, an
acylphloroglucinol produced by several Eucalyptus species, to the more complex phlorotan-
nins found in several families of brown algae [2,3]. These compounds often exhibit antiviral,
antibacterial and antifungal activity [2]. Phloroglucinol derivatives are also produced by
some microorganisms [2,4]. By contrast with the phloroglucinol derivatives found in plants
and brown algae, phloroglucinol derivatives of microbial origin are rather simple. Some
Pseudomonas strains produce 2,4-diacetylphlorglucinol (DAPG) alongside its biosynthetic
intermediates monoacetylphloroglucinol (MAPG) and phloroglucinol.

DAPG-producing Pseudomonas spp. have received particular attention due to their
ability to control numerous soil-borne plant diseases, including take-all of wheat, tobacco
black root rot and sugar beet damping-off [4,5]. These bacteria also play an important
role in natural disease suppressiveness found in several soils across the world. Besides
their presence in the rhizosphere, DAPG-producing Pseudomonas spp. are also known
to colonize various environment, including the phyllosphere [6], the skin surface of cer-
tain amphibians [7] and the surface of marine algae [8]. This review specifically covers
rhizosphere-inhabiting DAPG-producing Pseudomonas spp.

Several reviews have been previously published on rhizosphere-inhabiting DAPG-
producing Pseudomonas spp. and their role in take-all decline [4,9]. In this review, we discuss
the biosynthesis and regulation of phloroglucinol derivatives in the genus Pseudomonas.
Then, we tackle the role that DAPG-producing Pseudomonas spp. play in several soils
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naturally suppressive to soil-borne plant diseases. We also discuss the mode of action
of phloroglucinol derivatives, which can act as antibiotics, signalling molecules and, in
some cases, even as pathogenicity factors. Finally, we discuss the genetic and genomic
diversity of DAPG-producing Pseudomonas spp. as well as its importance for improving
the biocontrol of plant pathogens.

2. Genetics, Biochemistry, and Evolution of DAPG Biosynthesis
2.1. The Phl Biosynthetic Gene Cluster

Genes involved in DAPG biosynthesis were cloned several times from three different
DAPG-producing Pseudomonas strains: Pseudomonas sp. Q2-87 [10,11], P. kilonensis F113 [12]
and P. protegens CHA0 [13]. Further characterization of the genomic fragment isolated
from Pseudomonas sp. Q2-87 led to the description of the so-called phl biosynthetic gene
cluster (BCG) [14]. Six genes were originally described: four were found to be directly
involved in DAPG biosynthesis (phlABCD) and the two others were shown to encode a
putative permease (phlE) and a TetR regulatory protein (phlF). Three other genes were
later discovered and associated with the BCG: phlG, which encodes a hydrolase involved
in DAPG degradation [15], phlH, which encodes another TetR regulatory protein [15]
and phlI, which encodes an uncharacterized protein [16,17]. The organization of the phl
BCG is conserved in all DAPG-producing Pseudomonas spp. sequenced to date [18]. The
biosynthetic cluster and the current understanding of the DAPG biosynthesis pathway are
presented in Figure 1.
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Figure 1. Organization of the 2,4-DAPG biosynthetic cluster and current understanding of the biosynthesis scheme. (A) Or-
ganization of the phl biosynthetic gene cluster found in DAPG-producing Pseudomonas spp. (B) Current understanding of the
biosynthesis and degradation of DAPG in the genus Pseudomonas. MAPG ATase is an enzyme multiplex composed of PhlA,
PhlB and PhlC units. Abbreviations are as follows: MAPG, monoacetylphloroglucinol; DAPG, 2,4-diacetylphloroglucinol.

2.2. Biosynthesis and Degradation of DAPG

The first step in the biosynthesis of DAPG is catalysed by the type III polyketide
synthase (PKS) PhlD [14,19]. Type III PKSs are homodimeric enzymes that catalyse the
iterative condensation of a starter substrate (usually an acyl-CoA) with several extender sub-
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strate units (usually malonyl-CoA) to generate a linear polyketide, which is subsequently
cyclized [20]. Bangera and Thomashow [14] proposed that PhlD uses acetoacetyl-CoA
as the starter substrate to produce monoacetylphloroglucinol (MAPG), but it was later
showed that PhlD produces phloroglucinol from malonyl-CoA instead [19]. While PhlD
uses malonyl-CoA as a preferred substrate, it also accepts other starter substrates with an
aliphatic chain of C4-C12 in vitro [21]. The proposed mechanism leading to the formation
of phloroglucinol is that PhlD catalyses the iterative condensation of three molecules of
malonyl-CoA into 3,5-diketoheptanedioate [19]. This polyketide intermediate undergoes
decarboxylation and is subsequently cyclized via a Claisen condensation, leading to the
formation of phloroglucinol [19,21].

In the following steps, acetylation of phloroglucinol leads to the formation of MAPG,
which is subsequently acetylated into DAPG. MAPG was identified as a putative interme-
diate in DAPG biosynthesis by Shanahan and colleagues [22], who also found experimental
evidence for an enzymatic acetyltransferase activity in cell-free extracts of P. kilonensis
F113. Bangera and Thomashow [14] found that phlACB was required for the biosynthesis
of MAPG and DAPG, suggesting a role for PhlACB in the production and the acetylation
of MAPG. Achkar and colleagues [19] confirmed that the product of phlACB catalyses the
acetylation of phloroglucinol and MAPG: The addition of phloroglucinol to the culture
medium of an E. coli strain carrying plasmid-localized phlACB led to the formation of
MAPG and DAPG. Later, Hayashi and colleagues [17] characterized the multimeric en-
zyme composed of PhlA, PhlC and PhlB units, which was named MAPG acetyltransferase
(MAPG ATase). This enzyme, unlike most acetyltransferases described so far, was shown
to catalyse C-C bond formation without the use of CoA-activated substrates [17]. The
MAPG ATase catalyses the disproportionation of two molecules of MAPG, resulting in the
formation of DAPG and the production of phloroglucinol.

The MAPG ATase also catalyses the reverse reaction, yielding two molecules of
MAPG from a molecule of DAPG and a molecule of phloroglucinol [17]. This results in
an equilibrium where DAPG, MAPG and phloroglucinol are present at quasi-equimolar
concentration. Recent studies have provided new insight into the catalytic properties, the
mechanism, and the structure of the MAPG ATase [23–27]. This enzyme was shown to
use various non-natural substrates as acyl-donor in in vitro experiments [26–28]. This is
particularly interesting given the fact that the acyl donor involved in MAPG biosynthesis
from phloroglucinol remains to be characterized. The crystal structure revealed that
PhlACB subunits are arranged in a Phl(A2C2)2B4 composition where four PhlB units
mediate the binding of two PhlA and two PhlC dimers [23]. Crystal soaking and site-
directed mutagenesis experiments suggest that only PhlC units are involved in the acyl
transfer reaction [23].

DAPG is degraded by the zinc-dependent hydrolase PhlG [29,30]. PhlG degrades
DAPG into MAPG and acetate by cleaving one of the C-C bonds linking the acetyl groups
to the phenolic ring [29,30]. This enzyme is highly specific for its substrate DAPG, as it is
unable to degrade structurally similar compounds, such as MAPG or triacetylphlorogluci-
nol [29]. The crystal structure of PhlG revealed that it cleaves C-C bonds using a Bet v1-like
fold domain, contrary to the alpha/beta fold classically used by hydrolases [30].

2.3. Distribution and Evolution of the Phl Biosynthetic Gene Cluster

The phl BCG is mainly found in the P. corrugata and P. protegens subgroups of the P.
fluorescens species complex [18], as shown in Figure 2. The phl BCG is not present in all the
strains belonging to these two subgroups, and its distribution in these two subgroups is
patchy [18,31,32].
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Figure 2. Distribution of the phl biosynthetic gene cluster in the P. fluorescens species complex.
This neighbour-joining phylogeny is based on an alignment of the concatenated partial sequences
of four housekeeping genes (16s rDNA, gyrB, rpoB, rpoD; 2945 nucleotides total) generated using
MUSCLE [33]. The phylogenetic tree was generated using PhyML [34] and the distance matrices
were calculated by the Jukes-Cantor method. Bootstrap values over 50% (out of 1000 replicates)
are indicated at the nodes. The presence of a black square indicates that that strain harbours the
phl biosynthetic gene cluster. The three subgroups encompassing DAPG-producing strains are
highlighted in color. Letters following the strain names correspond to multilocus phylogenetic
groups described by Frapolli and colleagues [35].

Almario and colleagues [18] proposed that the phl cluster was acquired independently
in these two groups and that this cluster was subsequently lost in some lineages of the
P. corrugata subgroup. A recent study reported that the phl BCG is present in about
half of the genomes sequenced from the P. corrugata subgroup [32]. Interestingly, this
subgroup includes numerous phytopathogenic strains, prominently strains belonging to
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the species P. corrugata and P. mediterranea [36,37]. These phytopathogenic strains do
not harbour the phl BCG, suggesting that this cluster could have been lost during the
transition between commensal and pathogenic lifestyles. The fact that DAPG can trigger
induced systemic resistance in some plant species [38–40] is an undesirable trait for a
plant pathogen, which means that it could have been counter-selected in these lineages.
Outside of these two subgroups, the phl BCG is also present in several other strains, both
inside and outside of the P. fluorescens species complex [18,41]. The phl BCG has also been
found outside of the Pseudomonas genus: the presence of the phl BCG has been reported in
three non-pathogenic Betaproteobacteria, namely Pseudogulbenkiania ferrooxidans EGD-HP2,
Chromobacterium vaccinii MWU328 and Chromobacterium piscinae ND17 [18].

The origin of this cluster remains unclear. Most authors agreed upon the fact that the
acquisition of the phl BCG in the P. fluorescens species complex is an ancestral event [16,18,42].
The phl BCG might have been acquired separately by the different groups of DAPG-
producing Pseudomonas spp. [18]. In Pseudomonas sp. OT69, the phl BCG is embedded in a
putative genomic island, suggesting a more recent acquisition by this strain [18]. Kidarsa
and colleagues [43] proposed that the phlACB genes might have been acquired from an
Archaea. Homologs of these three genes are present in a contiguous gene cluster and in
the same order in multiple groups of Archaea, where they may play a role in fatty acid
metabolism [43].

3. Regulation of DAPG Biosynthesis

DAPG production in the genus Pseudomonas is regulated by two translational re-
pressors of the TetR family, PhlF and PhlH, and, at the posttranscriptional level, by the
Gac/Rsm regulatory network. Figure 3 provides an overview of DAPG regulation in the
genus Pseudomonas.

3.1. Regulation by Translational Repressors of the TetR Family

The phlF and phlH genes encode two pathway-specific regulators from the TetR family.
The TetR family regulators consist of an N-terminal DNA-binding domain and a C-terminal
domain [44]. These regulators bind to palindromic repeated sequences localized upstream
of the target gene, repressing its expression. In most cases, the C-terminal domain interacts
with one or several ligands, which subsequently reduce the ability of the regulator to bind
DNA [44]. PhlF has been shown to repress phlACBD expression by binding, as a dimer,
to an inverted repeated sequence (phO) localized downstream of the phlA transcriptional
start site [45,46]. DAPG and MAPG positively regulate phlACBD expression by modulating
PhlF activity [15,45]. These two molecules can dissociate the PhlF-phO complex in a
concentration-dependent manner and prevent further binding of PhlF to phO [45]. This
suggests that DAPG and MAPG could act as ligands for PhlF. As for PhlH, it regulates
the intracellular concentration levels of DAPG by modulating the expression of phlG [47].
PhlH binds (likely as a dimer) to the upstream sequence of phlG and strongly represses its
expression, preventing PhlG-mediated degradation of DAPG [47]. DAPG (and to a lesser
extent MAPG) interacts physically with PhlH and can dissociate the PhlH-DNA complex,
releasing the PhlH-mediated repression of phlG.

PhlF and PhlH regulate DAPG biosynthesis and degradation at different stages of
growth. PhlF acts as a repressor of DAPG biosynthesis during the early growth stages.
This is evidenced by the fact that DAPG production is observed earlier in a phlF mu-
tant [15,45,46]. The growth of the phlF mutant is, however, reduced in the early growth
stages compared to the wild type [46]. This suggests that, by repressing DAPG production
in the early stages, PhlF enables DAPG-producing Pseudomonas spp. to outcompete and
outgrow other microorganisms. On the other hand, PhlH-mediated repression of phlG in
the early stages of growth is essential for DAPG production, as a phlH mutant produces
very low levels of DAPG [15,47]. This indicates that PhlH-mediated repression of phlG
would normally be abolished later in the growth stages. Yann and colleagues [47] proposed
that PhlG promotes bacterial growth in a nutrient-limited environment by reducing the
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resources allocated to DAPG production in the late growth stages. Indeed, a ∆phlG mutant
exhibited a lower growth rate and cell density in a nutrient-limited medium compared
to the wild type, but this difference was not observed in the richer KB medium. Thus,
DAPG sequentially promotes its own biosynthesis and degradation by modulating PhlF
and PhlH activity. Furthermore, PhlF-mediated repression of phlACBD is abolished sooner
during growth when compared to the PhlH-mediated repression of phlG. In this regard,
we believe that PhlF and PhlH might have differential binding affinities, either for DNA or
for MAPG/DAPG to explain this discrepancy. Other factors could also modulate PhlF and
PhlH activity.
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Figure 3. Regulation of DAPG biosynthesis in Pseudomonas spp. DAPG production is regulated at the
transcriptional level by the TetR repressors PhlH and PhlF, and at the posttranscriptional level via the
Gac/Rsm pathway. PhlF binds as a dimer to the operator phO, located between phlF and phlA and
represses the expression of phlABCD. When DAPG and MAPG concentrations increase, MAPG and
DAPG interact with PhlF, dissociating the phO-PhlF complex and relieving phlACBD transcription.
Likewise, PhlH binds to an operator, located between phlH and phlG and represses phlG expression.
DAPG and MAPG can dissociate PhlF-DNA binding and relieve phlG expression. Upon reception of
an environmental cue, GacS activate GacA by phosphotransfer. GacA activates the transcription of
several small non-coding RNAs (RsmX, RsmY and RsmZ), which in turn sequester the RNA-binding
proteins RsmA/RsmE, relieving phlABCD expression.



Metabolites 2021, 11, 182 7 of 19

3.2. Regulation by the Gac/Rsm Regulatory Network

The Gac/Rsm signal transduction pathway is well conserved in Gammaproteobacteria
and regulates, at the posttranscriptional level, the production of several antibiotics, such
as hydrogen cyanide, pyoluteorin, phenazine and DAPG [48,49]. The GacA/GacS two-
component system governs a complex signal transduction pathway, which involves small
non-coding regulatory RNAs (RsmX/Y/Z) and translational repressors (RsmA and RsmE).
A gacA or gacS mutant is unable to produce DAPG [49,50], indicating that GacA/GacS pos-
itively regulates DAPG production. The GacA/GacS two-component system is composed
of a membrane-bound sensor kinase (GacS) and a cytosolic cognate response regulator
(GacA). The Gac/Rsm transduction cascade is initiated by the reception of a signal, which
remains to be characterized [51]. GacS undergoes autophosphorylation and subsequently
activates GacA by phosphotransfer. Two membrane-bound sensor kinases, LadS and RetS,
modulate GacS activity by influencing its phosphorylation state. LadS stimulates GacS
activity whereas RetS negatively regulates GacS activity [51–54]. Notably, RetS was shown
to directly interact with GacS [55] to negatively regulate its activity at 35 ◦C, preventing the
production of antibiotics [53]. Upon activation by GacS, GacA upregulates the expression
of three small non-coding RNAs, RsmX, RsmY and RsmZ [56]. GacA activates rsmXYZ ex-
pression by interacting with a conserved palindromic upstream activating sequence (UAS)
present in the promoter of rsmXYZ [57]. Activation of rsmXYZ expression also requires
other transcriptional activators that may interact with phosphorylated GacA [57]. These
three small non-coding RNAs have a high affinity for the translational repressors RsmE and
RsmA [56,58]. RsmA and RsmE are RNA-binding proteins from the RsmA/CsrA family
that bind to specific structures located near the ribosome binding site in the leader sequence
of target mRNAs, preventing ribosome binding and promoting mRNA decay [50,59–61]. A
typical hexaloop structure is present in the leader sequence of the phlA mRNA and this
sequence was shown to be recognizable by RsmA/RsmE [62]. Upon activation of GacA,
RsmA and RsmE are sequestered by RsmXYZ, relieving translational repression of target
mRNAs [63,64].

The GacS/GacA signal transduction pathway is influenced by the population density
and/or the nutritional state of the cells [54,56,57,65]. The expression of rsmXYZ increases at
the end of the exponential growth phase [56,57,66]. This could originate from the accumu-
lation of a signal in the medium, that activates the Gac/Rsm regulatory network [56,57,66].
It could also be the result of the depletion of the nutrients present in the growth medium,
which activates secondary metabolism. The alarmone guanosine tetraphosphate (ppGpp),
a signal molecule produced under nutrient limitation, was precisely shown to stimulate
the Gac/Rsm signal transduction pathway [54].

3.3. Co-regulation of DAPG and Pyoluteorin Production

Several strains belonging to the P. protegens subgroup have been reported to produce
the phenolic antibiotic pyoluteorin [67,68] in addition to DAPG and MAPG. The amounts of
DAPG and pyoluteorin being produced have been shown to be inversely correlated [15,67].
This has been especially demonstrated in a CHA0 mutant impaired in pyoluteorin pro-
duction, which overproduced DAPG and MAPG [69], suggesting a co-regulation between
both biosynthetic pathway. In addition, some medium were shown to favour either DAPG
or pyoluteorin production [67]. DAPG and pyoluteorin both act as autoinducers of their
own biosynthesis [15,70] and the addition of pyoluteorin has been shown to repress phlA
expression and DAPG production [15,70]. The effect of phloroglucinol derivatives on
pyoluteorin production is, however, more complex. The addition of high concentrations of
phloroglucinol derivatives (DAPG or phloroglucinol) was shown to repress the expression
of genes involved in pyoluteorin production [43,70]. Phloroglucinol production by PhlD
was shown, however, to be essential for pyoluteorin production, as a ∆phlD mutant was
unable to produce pyoluteorin [43]. The addition of low concentrations of exogenous
phloroglucinol restored pyoluteorin production in the ∆phlD mutant [43], suggesting that
small quantities of phloroglucinol are required for pyoluteorin biosynthesis. Interestingly,
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pyoluteorin-producing P. aeruginosa strains do not produce DAPG, but they harbour a phlD
gene adjacent to the pyoluteorin gene biosynthetic cluster, which allows them to produce
phloroglucinol [43]. More recently, Yan and colleagues [71] found that phloroglucinol is
the substrate of the FADH2-dependent halogenase PltM, which converts phloroglucinol
into chlorinated phloroglucinol. Chlorinated phloroglucinol activates, probably via the
pathway-specific regulator PltR, the expression of pyoluteorin biosynthetic genes [71].
This co-regulation mechanism likely attenuates the metabolic cost of producing several
antibiotics, while still providing the option for the bacteria to produce one or the other
depending on the situation.

3.4. Environmental Factors Influencing DAPG Production

Several environmental factors can influence DAPG production by plant-beneficial
Pseudomonas spp. First, the type of carbon source available can greatly affect DAPG produc-
tion. For example, the presence of sucrose, fructose, galactose, or mannitol promotes DAPG
production by P. kilonensis F113, while the presence of glucose and sorbose negatively
impacts its production [22,72]. On the other hand, glucose promotes DAPG production
in P. protegens CHA0 and in several other DAPG-producing strains [73], indicating that
carbon sources have differential effects on DAPG production depending on the strain
genotype. Furthermore, the presence of specific metabolites, such as fusaric acid, can
also reduce DAPG production. Fusaric acid is a mycotoxin produced by several Fusarium
species, including Fusarium oxysporum [74]. Fusaric acid was shown to strongly repress
DAPG production by plant-beneficial Pseudomonas spp. both in vitro and in the rhizosphere
of tomato and wheat [15,75,76]. Since an isogenic mutant lacking the pathway-specific
repressor PhlF was found insensitive to fusaric acid, it was determined that this mycotoxin
likely acts via the modulation of PhlF activity [15,75]. Finally, plants can also influence
DAPG production by plant-beneficial Pseudomonas spp. colonizing the rhizosphere in
several ways. For example, Jousset and colleagues used a split-root system to demonstrate
that infection by Pythium ultimum resulted in a change in root exudate composition, which
leads to an increase in DAPG production by P. protegens CHA0 colonizing the rhizosphere
of the infected plant [77]. Recently, two plant flavonoids, apigenin and phloretin, were
shown to repress DAPG production by rhizosphere-inhabiting Pseudomonas sp. 2P24 [78].
These two metabolites promote phlG expression by modulating PhlH-mediated repression,
which ultimately results in the degradation of DAPG.

4. Role of DAPG-Producing Pseudomonas spp. in Natural Soil Suppressiveness
4.1. Take-All Decline

Take-all is an important root disease of wheat caused by the ascomycete Gaeuman-
nomyces tritici (formerly Gaeumannomyces graminis var tritici). This soil-borne pathogen
primarily infects wheat, but it can also cause root rot in other Poaceae, such as triticale,
barley and rye [79,80]. Because of its relative inability to survive for a long period of time
in the soil without a host, growing a non-host crop, such as oats, for one or two years
can effectively control this disease [81]. An alternative to crop rotation is to grow wheat
and barley continuously, which leads to a spontaneous decline in take-all occurrence and
severity over time, a phenomenon known as take-all decline (TAD). TAD represents one of
the best examples of induced specific suppression, and this field phenomenon occurs across
the world [4,82]. It is defined as "the spontaneous decrease in the incidence and severity of
take-all that occurs with monoculture of wheat or other susceptible host crops after one
or more severe outbreaks of the disease" [82]. Take-all decline is usually achieved after
4–6 years of monoculture of wheat and barley in the same fields [82]. The suppressiveness
associated with TAD soils can be transferred to conducive soils by mixing a small amount of
TAD soil with conducive soil. TAD suppressiveness can be reduced by growing a non-host
plant (oats) and it can be eliminated by soil pasteurization/fumigation [82].

The role that DAPG-producing Pseudomonas spp. play in the natural suppressiveness
associated with TAD soils was demonstrated in a series of experiments conducted with
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several TAD soils from the Washington State (USA) and the Netherlands. These soils
were compared with local conducive soils [83,84]. Several lines of evidence indicate that
DAPG-producing Pseudomonas spp. play a preponderant role in take-all decline. First,
DAPG-producing Pseudomonas spp. were detected in TAD soils at population density
greater than 105 CFU per gram of root, which represents the threshold required for take-all
control under controlled conditions [83–85]. DAPG-producing Pseudomonas spp. were
not, however, detected in conducive soils or were detected at population densities below
the threshold required for the control of take-all [83–85]. Secondly, the introduction of a
DAPG-producing Pseudomonas strain in a conducive soil at sufficient levels resulted in
take-all control equivalent to the natural disease suppression found in TAD soils [83,84]. By
contrast, the introduction of a mutant impaired in DAPG production did not confer to the
conducive soil a level of disease suppression equivalent to TAD soils [84]. Finally, DAPG
was isolated from the rhizosphere of wheat colonized by DAPG-producing Pseudomonas
spp. [86], and the take-all pathogen was shown to be highly sensitive to DAPG [87].

4.2. Natural Soil Suppressiveness to Tobacco Black Root Rot

Several morainic soils located in the Swiss region of Morens are naturally suppressive
to tobacco black root rot [88,89], a disease caused by the fungus Thielaviopsis basicola. By
contrast with take-all decline, which is induced by monocultures of wheat and barley,
suppressiveness to tobacco black root rot can be found in soils with different cropping
history (monoculture or crop rotation) [89]. The natural suppressiveness found in the
Morens soils can be eliminated by heat treatment [88], demonstrating its microbial origin.
Several DAPG-producing Pseudomonas strains were isolated from these suppressive soils,
including the model strain P. protegens CHA0 [88]. When inoculated, strain CHA0 was
able to control tobacco black root rot in 36 out of 39 conducive soils [88]. DAPG-producing
Pseudomonas spp. were found to reach high population densities in the rhizosphere of
tobacco plants grown in suppressive soils [90,91]. However, they were detected at similar
population levels in conducive soils [90,92]. This suggests that, contrary to take-all decline,
disease suppression does not originate from the buildup of DAPG-producing Pseudomonas
spp. populations in the rhizosphere. Nevertheless, several genotypes of DAPG-producing
Pseudomonas spp. were exclusively found in the suppressive soils [90,91], suggesting that
differences in the population structure of DAPG-producing Pseudomonas spp. might explain
the differences in suppressiveness between conducive and suppressive soils. However,
this conflicts with the finding that DAPG-producing Pseudomonas strains isolated from
conducive soils protected tobacco roots to a similar extent as isolates from the suppressive
soils did [93]. The conducive and suppressive soils of the Morens region have different
geological origins and compositions. Indeed, vermiculite is the predominant clay mineral
in the morainic suppressive soils, while illite is the predominant one in conducive soils.
Several studies have demonstrated that DAPG-producing Pseudomonas spp. protected
tobacco roots to a better extent in vermiculite soils [94,95]. Indeed, the presence of ver-
miculite instead of illite is associated with a higher iron availability and a higher phlA
expression [95]. Lastly, other plant-beneficial microbial strains may be involved and act in
concert with DAPG-producing Pseudomonas spp. to control tobacco root rot [89,96].

4.3. Role of DAPG-Producing Pseudomonas in Other Suppressive Soils

In addition to soils suppressive to take-all and tobacco black root rot, DAPG-producing
Pseudomonas spp. were isolated from other suppressive soils across the world. Numerous
genotypes of DAPG-producing Pseudomonas spp. were isolated from the rhizosphere of
pea plants grown in soils suppressive to Fusarium wilt [97], suggesting that they could
play a role in the natural suppressiveness. DAPG-producing Pseudomonas spp. were also
found in the rhizosphere of flax and tomato grown in the natural suppressive soils of
Châteaurenard, in France [98]. However, they were also found in the conducive soils of
Carquefou (France) at similar population levels and probably play a minor role in the
suppression of Fusarium wilt.
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5. Mode of Action
5.1. Direct Inhibition of Soil-Borne Plant Pathogens

Phloroglucinol derivatives have been shown to inhibit the growth of numerous bacte-
rial, fungal and oomycete soil-borne pathogens, including the fungal ascomycetes Gaeu-
mannomyces tritici and Thielaviopsis basicola, the oomycete Pythium ultimum, the Gram-
negative bacterium Pectobacterium atrosepticum and the Gram-positive bacterium Clavibacter
michiganensis subsp. michiganensis [10,12,13,99,100]. Plant pathogens and even different
isolates of the same pathogen display differential sensitivity to DAPG [13,87]. Phloroglu-
cinol derivatives produced by plant-beneficial Pseudomonas spp. accumulate in the rhizo-
sphere [13,86,101–103] at concentrations up to several micrograms per gram of root. DAPG
is, however, rapidly degraded in the rhizosphere [103], suggesting that root-associated
microcolonies of plant-beneficial Pseudomonas spp. actively maintaining DAPG production
is required. Plant-associated Pseudomonas spp. only colonize a small portion of the root
surface [104], which means that, locally, DAPG concentration is likely to be sufficient
to inhibit soil-borne plant pathogens. Most reports indicate that, among phloroglucinol
derivatives, DAPG is more active than MAPG, whereas DAPG and MAPG are more active
than phloroglucinol [105,106]. Like other antibiotics, the antimicrobial activity of phloroglu-
cinol derivatives is strongly influenced by the pH and is higher at lower pH [105]. This
could originate from the fact that at high pH, DAPG is likely to be deprotonated, which
could impair its capacity to cross biological membranes.

Several studies have examined the effect of phloroglucinol derivatives on the physiol-
ogy of oomycetes and fungi. Exposure of the oomycete Pythium ultimum to DAPG led to the
inhibition of zoosporogenesis, zoospore motility and zoospore germination [105], several
processes crucial for pathogenesis. The various structures produced by P. ultimum during
its life cycle greatly differ in their sensitivity to DAPG, with zoospores being the most
sensitive. Indeed, exposure to DAPG at a concentration as low as 3.2 ng mL−1 disintegrated
most zoospores [105]. By contrast, vegetative mycelium could tolerate DAPG concentration
in the range of 10–20 µg mL−1, suggesting several tolerance mechanisms. Microscopy
studies of the hyphal tips of P. ultimum revealed that exposure to DAPG provoked several
structural changes, including alteration of the plasma membrane, vacuolization and cell
content disintegration [105]. DAPG also inhibits zoosporogenesis and zoospores motility
in Plasmopara viticola and Aphanomyces cochlioides in a dose-dependent manner [106]. The
main mode of action of DAPG likely resides in its capacity to act as a proton ionophore,
dissipating the proton gradient across the mitochondrial membrane [107–109], which lead
to the loss of mitochondrial function and the inhibition of growth. Long exposure to
DAPG can generate oxidative stress with the production of superoxide and hydrogen
peroxide [110], which is similar to the effect that long exposure to other uncoupling agents
produces [109].

DAPG exhibits high antimicrobial activity against several bacteria, including the
Gram-positive model Bacillus subtilis and the Gram-negative plant pathogen Pseudomonas
syringae [13]. Conversely, it is quite inefficient against Pseudomonas aeruginosa and Pseu-
domonas fluorescens strains [13,111]. This discrepancy could originate from differential
membrane permeability and/or the presence of detoxifying efflux pumps. It has been
proposed that DAPG targets the bacterial envelop [111], but little is known about the mode
of action of DAPG towards bacteria. At subinhibitory concentrations, DAPG has been
shown to reduce biofilm and spore formation in B. subtilis [112].

5.2. DAPG in Plant-Bacteria Interaction

DAPG-producing Pseudomonas spp. can trigger induced systemic resistance (ISR) in
Arabidopsis thaliana against Hyaloperonospora parasitica [38] and Pseudomonas syringae pv.
tomato [39]. In these studies, the authors demonstrated the role of DAPG in the ISR-eliciting
activity by using strains impaired in DAPG production. These strains were unable to elicit
ISR and to prime the plants against the incoming infection with a pathogen. By contrast,
DAPG alone was sufficient to replicate the ISR-eliciting activity of the wild type strains. In
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an elegant study, Chae and colleagues [40] used transgenic A. thaliana plants overexpressing
phlG and found that these plants were rendered insensitive to DAPG-mediated ISR. On
the wild type, DAPG was able to induce ISR against P. syringae pv. tomato and Botrytis
cinerea [40]. In these three studies, DAPG-mediated ISR relied on the ethylene/jasmonate
signalling pathway.

Besides its beneficial role in pathogen suppression, DAPG was also shown to be harm-
ful to plants in several cases. High concentrations of DAPG were shown to inhibit plant
growth and seed germination in several plant species, including wheat and tomato [13,103].
DAPG also alters root architecture in tomato seedlings, inhibiting primary root growth
and stimulating lateral root production [113]. In addition, several DAPG-producing Pseu-
domonas strains were shown to act as minor plant pathogens when inoculated at high
population densities. P. brassicacerarum Q8r1-96 reduced the germination of wheat seeds
and caused lesions on wheat roots [103,114]. Recently, P. brassicacearum strains Q8r1-96
and L5.1-96 were shown to cause necrosis when injected into immature tomato fruits and
tomato stems [115]. A mutant unable to produce DAPG was consistently less virulent to
tomato fruits and stems, suggesting that DAPG plays a major role in the ability of these
strains to cause necrosis [115].

5.3. Phloroglucinol Derivatives as Signalling Molecules in the Rhizosphere

Numerous antibiotics have been shown to induce different responses depending on
their concentrations, a concept known as hormesis [116–118]. At high concentrations, an-
tibiotics are inhibitory and harmful to numerous microorganisms, but at low concentrations
(sub-inhibitory concentrations) the antibiotic influences the expression of numerous target
genes, serving as a molecular signal. We previously discussed in this review the role that
DAPG and phloroglucinol play in the regulation of DAPG and pyoluteorin biosynthesis.
DAPG can induce its own biosynthesis and degradation by modulating PhlF and PhlH
activity, in a dose-dependent manner [15,45,47]. Phloroglucinol was shown to be necessary
for pyoluteorin biosynthesis at nanomolar concentrations, but at micromolar concentra-
tions, it has a negative impact on pyoluteorin production [43]. Phloroglucinol production
also influenced the expression of numerous genes with diverse functions unrelated to
pyoluteorin production or regulation [119], reinforcing the role of phloroglucinol as an
intracellular signalling molecule.

Phloroglucinol-derivatives can also act as signalling molecules in the rhizosphere.
DAPG was shown to act as an interpopulation signal in the rhizosphere, where DAPG
produced by a strain was able to enhance the expression of the biosynthetic gene phlA
in another strain [120]. Similarly, phloroglucinol produced by one strain was shown to
influence pyoluteorin production in another strain [119]. Several studies indicate that
phloroglucinol derivatives could be involved in interspecies signalling. The ISR-eliciting
activity of DAPG is one example. Another example is the fact that DAPG production by
P. kilonensis F113 enhances the phytostimulatory effect of Azospirillum brasilense Sp245-Rif
on wheat by modulating the expression of numerous genes involved in plant growth
promotion [121]. Finally, the treatment of conidial germlines of Neurospora crassa with
DAPG resulted in a transient increase in intracellular Ca2+ concentration [107]. Considering
the importance of Ca2+ homeostasis in plant-microbe interactions, this suggests that DAPG
could potentially serve as a signal.

6. Genetic and Genomic Diversity of DAPG-Producing Pseudomonas spp.

An important diversity of DAPG-producing Pseudomonas spp. has been isolated across
the world from the rhizosphere of a myriad of plants [4,122,123]. The genetic diversity
of DAPG-producing Pseudomonas spp. has been studied by various methods, including
genomic fingerprinting using BOX/ERIC-PCR [97,124,125], restriction fragment length
polymorphism of phlD [97,123,125–128] and phylogenetic analysis of phlD [127,129]. This
led to the description of 22 genotypes (genotypes A-Q, R, S, T, PfY, PfZ) of DAPG-producing
Pseudomonas spp. [4]. It is noteworthy that several genotypes are often present in the same
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field [93,97,98,124,125]. As an example, 5 distinct genotypes (B, C, D, E and F) were isolated
from the rhizosphere of wheat grown in the Quincy soils (Washington State, USA) [124].
The phylogeny of DAPG-producing Pseudomonas spp. was also studied using multi-locus
sequence analysis [35], leading to their classification into six distinct phylogenetic groups,
with groups from A to E corresponding to lineages from the P. corrugata subgroup and
group F corresponding to lineages from the P. protegens subgroup [18,35,42]. Several
studies indicate that DAPG production also occurs outside of these six phylogenetic
groups [18,130].

The genomes of numerous DAPG-producing Pseudomonas strains have been sequenced
and, as of today, 151 genomes harbouring the phl BCG can be found in the Pseudomonas
Genome Database [131]. This includes the genomes of well-known strains Pf-5, F113, Q2-87,
Q8r1-96 and CHA0 [132–135]. The analysis of these genomes has enabled the discovery
of several unknown phytobeneficial traits. For example, three orphan gene clusters were
found in the genome of P. protegens Pf-5 [132]. This led to the characterization of two novel
antibiotics, namely rhizoxin [136] and orfamide [137].

DAPG-producing Pseudomonas strains harbour numerous BCG involved in the pro-
duction of secondary metabolites. Most DAPG-producing strains harbour the hcnABC
cluster [42,138], which is responsible for the production of hydrogen cyanide (HCN) [139].
HCN was shown to contribute to the suppression of tobacco black root rot when produced
by P. protegens CHA0, as a mutant impaired in HCN production protected tobacco plants
less effectively than the wild type did [140]. Likewise, DAPG and HCN were both shown to
contribute to the suppression of bacterial canker of tomato, a disease caused by Clavibacter
michiganensis subsp. michiganensis [100]. Several strains from the P. protegens subgroup
harbour numerous BCG involved in the production of secondary metabolites. For example,
P. protegens Pf-5 can produce six metabolites toxic to various oomycetes, fungi, and bacteria:
DAPG, hydrogen cyanide, pyoluteorin, pyrrolnitrin, rhizoxin and orfamide [132,137]. The
diversity of phytobeneficial traits present in the different DAPG-producing strains may act
in synergy to control various plant pathogens or it could expand the biocontrol range by
controlling plant pathogens less susceptible to DAPG-mediated inhibition.

The diversity of DAPG-producing Pseudomonas spp. is also important, as different
genotypes colonize the rhizosphere of various plants with different abilities. For example,
strains from genotype D (which includes strain Q8r1-96) are aggressive colonizers of the
wheat root surface and rhizosphere, and represent the most common genotype isolated
from the rhizosphere of plants grown in Washington State soils that are suppressive to
take-all [141]. Genotype K (which includes P. kilonensis F113) also colonizes the rhizosphere
of wheat to a similar extent, while genotype P was not as efficient [142]. However, genotype
P outcompetes genotype D and K in the pea rhizosphere [142]. This diversity could be
used to select biocontrol agents that are adapted to colonize the rhizosphere of a specific
plant species.

7. Concluding Remarks

Since the first description of the phl BCG by Bangera and Thomashow in 1999, great
progress has been made in our understanding of the DAPG biosynthesis pathway. The
two core enzymes of this pathway, PhlD and the MAPG ATase have been extensively
characterized and the crystal structure of the later has been recently established [23]. These
two enzymes have generated a growing interest in their unusual catalytic properties. PhlD
has been used to produce high amounts of phloroglucinol in E. coli strains carrying plasmid-
localized phlD [143–145]. Regarding MAPG ATase, this enzyme is a new biocatalytic tool,
which enables C-C bond formation without the need for CoA-activated substrates [23,28].
Despite these advances, several questions remain unanswered regarding the biosynthesis
of phloroglucinol derivatives in Pseudomonas spp. For example, the identity of the acyl
donor leading to the production of MAPG remains unknown. In addition, several authors
reported the isolation of various dimers, such as DAPG-DAPG or MAPG-MAPG dimers [4].
Little is known about how they are produced and the role they play in the rhizosphere.
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Secondly, we have seen in this review that the biosynthesis of DAPG is regulated by
the Gac/Rsm signal transduction pathway and by two TetR pathway-specific regulators,
PhlF and PhlH. PhlF and PhlH act, to some extent, as sensors of DAPG and MAPG
concentration, thereby allowing DAPG-producing Pseudomonas spp. to control the amounts
of DAPG being produced. Even more interesting is the fact that these two regulators
can be influenced by exogenous metabolites, such as fusaric acid [15,75], or by two plant
flavonoids, apigenin and phloretin [78]. This suggests that PhlF and PhlH could act as
sensors of the rhizosphere environment. Finally, DAPG-producing Pseudomonas spp. are
efficient biocontrol agents, capable of protecting the plant root system from numerous
soil-borne plant diseases. They are present as long-lasting indigenous communities in
several agroecosystems, including in fields under wheat and barley monocultures. The fact
that Gaeumannomyces tritici did not become less sensitive to DAPG after several decades
of wheat monoculture [87] is very promising for the extensive use of DAPG-producing
Pseudomonas spp. as biocontrol agents. This is probably linked to the mode of action of
DAPG, which does not target a specific protein.
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