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miR-27 regulates mitochondrial networks by
directly targeting the mitochondrial fission factor

Hyosun Tak1, Jihye Kim2, Aravinth Kumar Jayabalan3, Heejin Lee1, Hoin Kang1, Dong-Hyung Cho4,
Takbum Ohn3, Suk Woo Nam5,6, Wook Kim2 and Eun Kyung Lee1,6

Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a

pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related

to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate

the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct

target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3′-untranslated region. Expression

of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mito-

chondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by

targeting MFF.
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INTRODUCTION

MicroRNAs (miRNAs) are a type of small noncoding RNA that
regulates numerous cellular activities by suppressing gene
expression.1–3 These RNAs are involved in various cellular
processes, including cellular proliferation, differentiation, death
and development via imperfect base pairing with target
mRNAs.4–6 Aberrant expression of miRNAs has been asso-
ciated with many pathological conditions, such as malignancies
and metabolic disorders.7–9

Mitochondria continuously change their morphology by
fusing or dividing in response to the different physiological
needs of the cells,10 and several studies have shown that the
tight regulation of mitochondrial morphology is critical for the
maintenance of mitochondrial structures and functions affect-
ing cell fate.11–13 Mitochondrial dynamics is governed by
several core proteins, including mitofusin 1 (MFN1), mitofusin
2 (MFN2), dynamin-related protein 1 (DRP1), mitochondrial
fission factor (MFF), mitochondrial fission 1, mitochondrial
dynamics 51 and optic atrophy protein 1 (OPA1).14–18

Although disruption of the dynamic mitochondrial balance is
known to be related to several physiological and pathological
conditions such as aging, apoptosis, cancer, neurodegenerative

diseases and diabetes, the regulatory mechanisms involved in
mitochondrial dynamics remain largely unknown.19–21

Recently, several studies have indicated the involvement of
miRNAs in the regulation of mitochondrial dynamics. For
example, miR-499 and miR-30 regulate the mitochondrial
fission machinery by directly targeting DRP1;22,23 miR-484
and miR-761 are responsible for regulating mitochondrial
fission 1 and MFF, respectively;24,25 miR-140 and miR-19b
negatively regulate mitochondrial fusion by downregulating
MFN1;26,27 and miR-106b is responsible for mitochondrial
dysfunction by targeting MFN2.28

Results from this study reveal that miR-27 functions as a
novel factor regulating mitochondrial dynamics by suppressing
MFF expression. We show that miR-27 suppresses the
association of MFF mRNA with polysomes via its 3′-untrans-
lated region (UTR). Ectopic expression of the miR-27
precursor resulted in mitochondrial fusion, thereby
increasing the mitochondrial membrane potential as well as
the mitochondrial ATP level. Taken together, our data provide
experimental evidence, suggesting that miR-27 is involved
in negatively regulating mitochondrial fission by directly
targeting MFF.
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MATERIALS AND METHODS

Cell culture, transfection, plasmids and miRNAs
Human CHANG liver cells stably overexpressing mitochondria-
targeted yellow fluorescent protein (mtYFP) were cultured in Dulbec-
co’s modified Eagle’s medium (Invitrogen, Carlsbad, CA, USA)
supplemented with 10% fetal bovine serum and antibiotics. Enhanced
green fluorescent protein (EGFP) reporters were cloned by inserting
3'-UTR fragments from the MFF mRNA into pEGFP-C1 (BD
Bioscience, San Jose, CA, USA). A mutant reporter lacking the binding
sites for the miR-27 seed region was generated by site-directed
mutagenesis using the KOD-Plus-Mutagenesis Kit (Toyobo, Osaka,
Japan). The plasmids, miRNAs [control miRNA (Ctrl)], as well as the
precursor and an inhibitor of miR-27 (Bioneer, Daejeon, Korea) were
transiently transfected using Lipofectamine 2000 (Invitrogen).

Western blot analysis
Whole-cell lysates were prepared using RIPA buffer (10mM Tris–HCl
(pH 7.4), 150mM NaCl, 1% NP-40, 1 mM EDTA and 0.1% sodium
dodecyl sulfate) containing 1× protease inhibitor cocktail (Roche,
Basel, Switzerland), separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and transferred onto polyvinylidene
difluoride membranes (Millipore, Darmstadt, Germany). The mem-
branes were incubated with primary antibodies against MFF (Abcam,
Cambridge, MA, USA), GFP (Santa Cruz Biotech, Santa Cruz, CA,
USA) or β-actin (Abcam) and then further incubated with the
appropriate secondary antibodies conjugated to horseradish perox-
idase (Santa Cruz Biotech). The signals were detected using enhanced
luminescence (Bio-Rad, Hercules, CA, USA).

RNA analysis
Total RNA was prepared from whole-cell lysates using Trizol
(Invitrogen). After reverse transcription (RT) using random hexamers
and reverse transcriptase (Toyobo), the mRNA abundance was
assessed by reverse transcription-quantitative polymerase chain reac-
tion (RT-qPCR) analysis using the SYBR green PCR master mix (Kapa
Biosystems, Wilmington, MA, USA) and gene-specific primer sets
(Table 1). RT-qPCR analysis was performed using the StepOne Plus
system (Life Technologies, Waltham, MA, USA).

Fluorescence microscopy
To visualize the changes in mitochondrial morphology, YFP signals
from CHANG liver cells stably expressing mtYFP or cells incubated
with 100 nM MitoTracker Red CMXRos (Invitrogen) for 30min at 37 °C
were observed under the fluorescence microscope. Images were

acquired using an Axiovertcam mRM camera attached to an Axiovert
200M microscope (Carl Zeiss, Oberkochen, Germany).

Measurement of the mitochondrial membrane potential and
ATP level
The mitochondrial membrane potential was measured using the JC1
Mitochondrial Membrane Potential Assay Kit (Abcam). Cells were
incubated with tetraethyl benzimidazoly carbocyanine iodide (JC-1)
staining solution (Abcam) for 10min at 37 °C in the dark, and the
fluorescence was measured at 535 nm (excitation)/590 nm (emission)
using a Victor3 fluorescent plate reader (Perkin-Elmer, Waltham, MA,
USA).
The cellular mitochondrial ATP level was measured using the

Mitochondrial ToxGlo assay (Promega, Madison, WI, USA) according
to the manufacturer’s procedure. Briefly, CHANG liver cells were
harvested and suspended by pipetting until they were evenly dispersed.
The resuspended cells were then incubated with galactose-containing
media at 37 °C for 90min and then further incubated with ATP
detection reagent. Luminescence was measured using a Victor3 plate
reader (Perkin-Elmer).

Polysome analysis
Forty-eight hours after transfection of the precursor of miR-27 or the
inhibitor of miR-27 with the control miRNA, CHANG liver cells were
preincubated with cycloheximide (100 μg ml− 1, 15min) and then
lysed with polysome extraction buffer containing 20mM Tris-HCl, pH
7.5, 100mM KCl, 5 mM MgCl2, 0.5% (v v− 1) Nonidet P-40, 1 ×
protease inhibitor cocktail and RNase inhibitor, followed by centrifu-
gation at 10 000 g for 10min. The lysates were further fractionated by
ultracentrifugation through linear sucrose gradients as described in the
previous studies.29,30 RNAs from each fraction were isolated, and
cDNA was synthesized as described above. The relative levels of MFF
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNAs
were analyzed by RT-qPCR using specific primer sets.

RESULTS

Identification of miRNAs targeting MFF
Although MFF is one of the critical factors regulating
mitochondrial morphological changes, the mechanisms
involved in the regulation of MFF expression are not fully
understood.16,17,25,31 To identify miRNAs affecting the mor-
phological changes of mitochondria via MFF, we analyzed the
MFF mRNA using TargetScan 4.2 and microrna.org. Human
MFF mRNA (NM_020194) is composed of a 266-bp 5′-UTR,
the MFF coding sequence, and an ~ 700-bp 3′-UTR, which
harbors miRNA binding sites, as shown in Figure 1a. In silico
analysis revealed that several miRNAs can potentially interact
with the MFF mRNA 3′-UTR. Among these miRNAs, we
examined the effects of miR-141, miR-27b and miR-200c on
MFF expression using western blot analysis (Figure 1b).
miR-27b and miR-200c resulted in a significant downregula-
tion of MFF expression, whereas miR-141 did not alter the
MFF level in CHANG liver cells, despite the positive prediction
of binding between miR-141 and the MFF mRNA. Because
miR-200c did not show reproducible effects on MFF expres-
sion in CHANG liver cells, we decided to further examine the
relationship between miR-27b and MFF expression. Although
miR-27a and miR-27b are located on different chromosomal

Table 1 Primer list used in this study

Primer name Sequences

Human MFF-3U-F 5′-AAAAAGATCTTAA CACGTCTGAGCA-3′
Human MFF-3U-R 5′-AAAAGGTACCTCTGGCACCAGA-3′
Human MFF-3UM-F 5′-AAGTGTGACACAAAGAAAAACAATTATT-3′
Human MFF-3UM-R 5′-TCTTTGTGTCACATTTTCTGAATCAAT-3′
Human MFF-F 5′-CACCACCTCGTGTACTTACGC-3′
Human MFF-R 5′-GTCTGCCAACTGCTCGGATTT-3′
Human GAPDH-F 5′-TGCACCACCAACTGCTTAGC-3′
Human GAPDH-R 5′-GGCATGGACTGTGGTCATGAG-3′

Abbreviations: F, forward; GAPDH, glyceraldehyde 3-phosphate dehydrogenase;
MFF, mitochondrial fission factor; R, reverse.
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loci, their mature forms present the same sequence, except for
two nucleotides at their 3′ ends, which may allow them to
share common target mRNAs. In silico analysis via TargetScan
4.2 and microrna.org showed that both miR-27a and miR-27b
could undergo seed region base pairing with the MFF mRNA
(positions 1656–1661) (Figure 1c). miR-27a and miR-27b
expression decreased MFF expression, as shown in Figure 1d,
which indicated that miR-27 (miR-27a/b) has the potential to
regulate MFF expression.

MFF translational repression by miR-27
miRNAs inhibit protein synthesis by either suppressing transla-
tion or by destabilizing the target mRNAs.3,32,33 To understand
the regulation of MFF expression by miR-27, we assessed the
levels of theMFF mRNA and protein by RT-qPCR and western
blotting, respectively, after expressing the miR-27 precursor or
inhibitor (anti-miR-27) in CHANG liver cells. Neither the
miR-27 precursor nor the inhibitor altered the MFF mRNA
level (Figure 2a). However, the miR-27 precursor downregu-
lated the MFF protein level, whereas anti-miR-27 increased the
protein level (Figure 2b). To further analyze the regulation of
MFF expression by miR-27, we generated an EGFP reporter
(pEGFP-MFF 3U) harboring the MFF mRNA miR-27 binding
sites (1509–1778), and we also generated a mutant construct
(pEGFP-MFF 3UM) lacking the ‘seed’ region for miR-27
binding using site-directed mutagenesis, as shown in
Figure 2c. The reporter constructs were sequentially transfected
into CHANG liver cells, and miR-27 expression and EGFP
levels were analyzed by western blotting using an anti-EGFP
antibody and statistical analysis. As observed in Figure 2d,
miR-27 expression decreased the expression of EGFP harboring
miR-27 binding sites, but it did not affect the expression of
mutant EGFP. These findings indicate that miR-27 interacts
with the MFF 3′-UTR, thereby repressing MFF expression.

Because miR-27 negatively regulated MFF expression with-
out significantly changing the MFF mRNA levels, we investi-
gated whether miR-27 was involved in MFF mRNA
translational repression. The relative association of the MFF
mRNA with polyribosomes (polysomes) was analyzed using
polysome fractionation on sucrose gradients, as described in
the previous studies.29,30,34–36 The levels ofMFF mRNA in each
fraction, that is, untranslated (fractions 1 and 2), ribosome
subunits and monoribosomes (fractions 3–5), low-molecular-
weight polysomes (fractions 6–8) and high-molecular-weight
polysomes (fractions 9–13), were then measured by RT-qPCR.
The polysome profiles were not affected by transfection of the
miR-27 precursor or inhibitor (Figure 3a). Compared with the
distribution of the MFF mRNA in control cells (peaking at
fractions 7 and 8), the expression of the miR-27 precursor
resulted in a shift of the MFF mRNA distribution to the lower
portions of the gradient, with much of the MFF mRNA
peaking at fraction 7 (Figure 3b, top). Conversely, expression
of the miR-27 inhibitor increased the relative abundance of the
MFF mRNA in the highly translated fractions (fractions 8 and
9). In contrast, the distribution of GAPDH mRNA was not
affected by miR-27 expression (Figure 3b, bottom). These data
revealed that miR-27 altered the MFF mRNA translational
status. Taken together, these observations imply that
miR-27 represses MFF mRNA translation by interacting with
its 3′-UTR.

Reduction of mitochondrial fission by miR-27
MFF mediates mitochondrial fission by recruiting DRP1, and
MFF downregulation is responsible for mitochondrial
elongation.16,17,33 Because miR-27 regulates MFF expression,
we further tested whether miR-27 affected changes in mito-
chondria morphology. The miR-27 precursor or inhibitor with
control miRNA were transfected into CHANG liver cells stably

MFF mRNA (NM_020194) miR-141Ctrl miR-27b miR-200c

MFFmiR-200
miR-27b

β-actin

β-actin

miR-141

MFF1  266 1296                                      2014
1 1.09 0.65 0.49

±0.05 ±0.02 ±0.02
Mean
± SEM

5' ...GAUUCAGAAAAGUGUCUGUGAAA... MFF mRNA
miR-27aCtrl miR-27b||||||

3' CGCCUUGAAUCGGUGACACUU miR-27a3 miR 27a MFF

5' GAUUCAGAAAAGUGU CUGUGAAA MFF mRNA5 ... -- ... MFF mRNA
||||| |||||| 1 0.89 0.81 Mean

3' CGUCUUGAAUCGGUGACACUU miR-27b
1
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Figure 1 miR-27 targets the mitochondrial fission factor (MFF). (a) Schematic of the MFF mRNA showing the miR-27 binding sites in its
3′-untranslated region (UTR). 5′-UTR (1–266 bp), coding region (267–1295 bp) and 3′-UTR (1296–2014 bp). miRNA binding sites are
located in the MFF mRNA 3′-UTR (b and d) CHANG liver cells were transfected with miR-141, miR-27a, miR-27b, miR-200c or control
miRNA, and 48 h after transfection, MFF expression was analyzed by western blotting using an anti-MFF antibody. The β-actin level is
shown as a loading control. The results are representative of three independent experiments, and the number represents the mean± s.e.m.
of three independent experiments. (c) Prediction of miR-27a and miR-27b binding to MFF mRNA using Targetscan.
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expressing mtYFP.37 After 48 h of transfection, mitochondrial
morphology was observed by observing the YFP signals under a
fluorescence microscope. miR-27 precursor expression
increased the number of cells with elongated mtYFP fluor-
escent structures, whereas the miR-27 inhibitor decreased the
number of cells with these structures (Figure 4a). Additionally,
miR-27 expression resulted in mitochondrial elongation, as
visualized using Mitotracker, whereas miR-27 inhibition was
responsible for mitochondrial fragmentation (Figure 4b).
Owing to these observations, we evaluated the effects of
miR-27 on mitochondria morphology. The expression of the
miR-27 precursor reduced the portion of cells showing
fragmented mitochondria and enhanced mitochondrial elonga-
tion. However, inhibition of miR-27 using antagomiR resulted
in significant enhancement of mitochondrial fission
(Figure 4c). Taken together, these results indicate that
miR-27 expression results in the reduction of mitochondrial
fission by targeting MFF.

Enhancement of the mitochondrial potential by miR-27
The dynamic regulation of the mitochondrial network is
important for several mitochondrial functions such as mito-
chondrial Ca2+ buffering, the activity of the electron transfer
chain, mitochondrial metabolism and the maintenance of
mitochondrial DNA.19,38–40 To assess whether the changes in

mitochondrial morphology induced by miR-27 expression
affected the mitochondrial membrane potential, CHANG liver
cells were transfected with miR-27 precursor or inhibitor with
control miRNA, and the mitochondrial potentials were deter-
mined by JC-1 dye staining. As shown in Figure 5a, ectopic
miR-27 expression resulted in an increase in the mitochondrial
membrane potential, whereas miR-27 inhibition decreased the
mitochondrial membrane potential.

To disprove that the increase in mitochondrial activity
induced by miR-27 was because of a change in cell number,
mitochondrial ATP synthesis after miR-27 expression was
analyzed using the ToxGlo assay. The mitochondrial ATP level
was increased by ectopic miR-27 expression (P= 0.028) and was
decreased by inhibitor expression (P= 0.021) (Figure 5b). How-
ever, there were no significant effects on cell number (Figure 5c).
These results indicate that the effects of miR-27 on mitochon-
drial activity are independent of cell viability. Taken together,
these results suggest that miR-27 enhances mitochondrial
function by downregulating MFF expression.

DISCUSSION

The dynamic control of mitochondrial morphology is a pivotal
process for maintaining cellular homeostasis, and its dysregula-
tion is associated with several human diseases such as cancer,
diabetes and neurodegenerative diseases.11–13 Although several
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efforts have been made to identify novel factors that regulate
mitochondrial dynamics, including miRNAs, and to elucidate
the regulatory mechanisms governing mitochondrial dynamics,
these factors and mechanisms remain largely unknown.19–28

The present study demonstrates that miR-27 negatively
regulates mitochondrial fission by inhibiting MFF mRNA
translation. Ectopic miR-27 expression resulted in increases
in mitochondrial fusion and mitochondrial activity, whereas
miR-27 inhibition enhanced mitochondrial fission and reduced
the mitochondrial membrane potential. We performed an in
silico analysis using TargetScan 4.2 and microrna.org to
examine whether miR-27 affected the expression of other
factors that regulate mitochondrial morphology, and we
confirmed that miR-27 could not regulate DRP1, mitochon-
drial fission 1 or MFN1/2. To our knowledge, this is the first
study demonstrating the direct regulation of the mitochondrial
fission machinery and mitochondrial activity by miR-27 via
MFF regulation.

MFF is one of the critical regulators promoting mitochon-
drial fission by recruiting DRP1 to the mitochondria, and fine-
tuning of its expression is responsible for mitochondrial
dynamics.16,17,31 However, the detailed mechanisms involved
in MFF expression are not fully elucidated. It was recently
shown that MFF downregulation by miR-761 promotes

mitochondrial fusion in rat cardiomyocytes and protects those
cells from hydrogen peroxide-induced apoptosis.25 In addition,
in this study, we demonstrated a novel function of miR-27 as a
MFF mRNA translational suppressor that enhances mitochon-
drial fusion. Further studies may enable us to identify novel
regulators and to understand the molecular axis affecting MFF
expression at the transcriptional, posttranscriptional and post-
translational levels (Figure 5d).

In contrast to our findings, miR-27 was recently reported to
impair adipocyte differentiation and mitochondrial function by
targeting prohibitins in human adipose-derived stem cells.41

Prohibitins have a role as protein scaffolds in the mitochondria
and are involved in diverse cellular processes, including the
processing of OPA1 by m-AAA protease, thereby enhancing
mitochondrial fusion.42–43 Previous studies have shown that
prohibitin levels increase and that miR-27 levels decrease
during adipogenesis.36,41,44–46 The inverse correlation between
prohibitins and miR-27 is responsible for the efficient mito-
chondrial fusion during adipogenesis in response to the cellular
energy demand in adipocytes.

The dynamin-like GTPase OPA1, a gene product of human
dominant optic atrophy, is involved in mitochondrial fusion
and remodeling, and downregulation of OPA1 results in
mitochondrial fragmentation.43,47,48 However, a recent
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study by Otera et al.16 demonstrated that depletion of
MFF suppresses OPA1 knockdown-induced mitochondrial
fragmentation, indicating that MFF limits OPA1 silencing-
induced mitochondrial fission. Another study showed that
OPA1 normally counteracts the proapoptotic action of mito-
chondrial fission 1, which promotes mitochondrial fission.48

We did not examine the expression levels of prohibitin or
OPA1 in our system; therefore, it is difficult to conclude what
would be the predominant mechanism governing mitochon-
drial dynamics with this limited information. Additionally, in
silico analysis indicated that miR-27 potentially targets OPA1;
however, we did not see significant downregulation of OPA1
after overexpression of miR-27 in our system. The discrepancy

between the results of a previous study and our findings
showing the effect of miR-27 on mitochondrial morphology
may result from the use of various assays and systems to
measure the relative levels of MFF, prohibitin and OPA1.
Additional studies must be designed to further explore and
understand the role of miR-27 in the regulation of mitochon-
drial dynamics in various systems.

miRNA expression alterations have been reported to
be involved in several physiological and pathological
processes such as aging, tumorigenesis, metabolism and
inflammation,8,49–51 and several studies have demonstrated
differential expression of miR-27 in various diseases. miR-27
is upregulated in breast cancer, oral cancer, glioma and
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Figure 4 miR-27 inhibits mitochondrial fission. CHANG liver cells expressing mitochondria-targeted YFP (mtYFP) were transiently
transfected with pre-miR-27, anti-miR-27 or control miRNA. Forty-eight hours after transfection, the mtYFP (a) or Mitotracker (b) signals
were observed under a fluorescence microscope. The data are representative of three independent experiments. (c) Scoring of
mitochondrial morphology for the indicated cells. Forty-eight hours after transfection, each cell was placed into one of three morphological
categories, and the percentages of cells with the indicated mitochondrial morphologies (intermediate, elongated or fragmented forms) from
100 cells were calculated from three independent experiments. The data represent the mean± s.e.m. from three independent experiments.
**Po0.01.
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peripheral arterial disease41,52–55 and is downregulated in
prostate cancer and head and neck squamous cancer.56,57

Several reports have shown that mitochondrial fusion can
inhibit cell death, whereas mitochondrial fission is involved in
the promotion of apoptosis.58–61 From this interpretation, it
would be assumed that the increased expression of miR-27 in
various cancers may enhance mitochondrial fusion via target-
ing MFF, thereby promoting mitochondrial dysfunction and
tumor progression. Further studies are necessary to explore the
relationship between miR-27 and MFF in health and disease.

ACKNOWLEDGEMENTS

This work was supported by National Research Foundation of Korea
(NRF) grants funded by the Korea government (MEST)
(2012M3A9D1054517, 2012R1A5A2047939 for EKL and 2009-
0093826 for WK).

1 Ambros V. The functions of animal microRNAs. Nature 2004; 431:
350–355.

2 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell 2004; 116: 281–297.

3 Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-
transcriptional regulation by microRNAs: are the answers in sight? Nat
Rev Genet 2008; 9: 102–114.

4 Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev
Cancer 2006; 6: 857–866.

5 Ke XS, Liu CM, Liu DP, Liang CC. MicroRNAs: key participants in gene
regulatory networks. Curr Opin Chem Biol 2003; 7: 516–523.

6 Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and
tumor suppressors. Dev Biol 2007; 302: 1–12.

7 Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al.
MicroRNA expression profiles classify human cancers. Nature 2005; 435:
834–838.

8 Dalmay T, Edwards DR. MicroRNAs and the hallmarks of cancer. Oncogene
2006; 25: 6170–6175.

9 Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders.
Nat Rev Mol Cell Biol 2012; 13: 239–250.

10 Campello S, Scorrano L. Mitochondrial shape changes: orchestrating cell
pathophysiology. EMBO Rep 2010; 11: 678–684.

11 Hoppins S, Lackner L, Nunnari J. The machines that divide and fuse
mitochondria. Annu Rev Biochem 2007; 76: 751–780.

12 Liesa M, Palacin M, Zorzano A. Mitochondrial dynamics in mammalian
health and disease. Physiol Rev 2009; 89: 799–845.

13 Westermann B. Mitochondrial fusion and fission in cell life and death. Nat
Rev Mol Cell Biol 2010; 11: 872–884.

14 Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM. A human
dynamin-related protein controls the distribution of mitochondria. J Cell
Biol 1998; 143: 351–358.

15 Zhang Y, Chan DC. Structural basis for recruitment of mitochondrial fission
complexes by Fis1. Proc Natl Acad Sci USA 2007; 104: 18526–18530.

16 Otera H, Wang C, Cleland MM, Setoguchi K, Yokata S, Youle RJ et al.Mff is
an essential factor for mitochondrial recruitment of Drp1 during mitochon-
drial fission in mammalian cells. J Cell Biol 2010; 191: 1141–1158.

17 Loson OC, Song Z, Chen H, Chan DC. Fis1, Mff, MiD49, and MiD51
mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 2013; 24:
659–667.

a
250

200

150

100

50

0

%
 F

lu
o

re
sc

en
ce

 c
o

u
n

ts

FCCP Ctrl miR-27 anti-miR-27

150
c

100

50

%
  N

u
m

b
er

 o
f 

ce
lls

  

miR-27
0

Ctrl anti-miR-27

b
250

200

150

100

50

0
Ctrl miR-27 anti-miR-27

%
 M

it
o

ch
o

n
d

ri
al

 A
T

P
 s

yn
th

es
is

d

miR-27

MFF

X
fission
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transfection, the cells were incubated with tetraethyl benzimidazoly carbocyanine iodide (JC-1) dye, and the relative mitochondrial
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the cells were further incubated with galactose-containing medium, and the mitochondrial ATP levels were analyzed by measuring the
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