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Abstract: The phase transition behavior of differently crosslinked poly(N-isopropylacrylamide)/N,N’-
methylenebisacrylamide (PNiPAM/BIS) microgels with varying crosslinker content is investigated
in presence of aromatic additives. The influence of meta-hydroxybenzaldehyde (m-HBA) and 2,4-
dihydroxybenzaldehyde (2,4-DHBA), chosen as model drugs, on the volume phase transition temper-
ature (VPTT) is analyzed by dynamic light scattering (DLS), differential scanning calorimetry (DSC),
and 1H-NMR, monitoring and comparing the structural, calorimetric, and dynamic phase transition,
respectively. Generally, the VPTT is found to increase with crosslinker content, accompanied by a
drastic decrease of transition enthalpy. The presence of an additive generally decreases the VPTT,
but with distinct differences concerning the crosslinker content. While the structural transition
is most affected at lowest crosslinker content, the calorimetric and dynamic transitions are most
affected for an intermediate crosslinker content. Additive uptake of the collapsed gel is largest for
low crosslinked microgels and in case of large additive-induced temperature shifts. Furthermore, as
temperature is successively raised, 1H NMR data, aided by spin relaxation rates, reveal an interesting
uptake behavior, as the microgels act in a sponge-like fashion including a large initial uptake and a
squeeze-out phase above VPTT.

Keywords: poly(N-isopropylacrylamide); VPTT; crosslinker; thermoresponsive; microgel; additive;
phase transition; NMR; DSC; DLS

1. Introduction

Within the last decades, Poly(N-isopropylacrylamide) (PNiPAM) is one of the most
intensely studied water-soluble thermoresponsive polymers [1,2]. First investigations of
the PNiPAM homopolymer and the observation of its lower critical solution temperature
(LCST) were published in the late 1960s [3], followed by first reports of its corresponding
microgel, crosslinked by N,N′-methylenebisacrylamide (BIS) in 1986 [4]. Microgels (µ-
PNiPAM) are colloidal spherical particles, consisting of a three-dimensional chemically
crosslinked network structure. Those particles exhibit a temperature-dependent swelling
behavior in aqueous solvent. Below their so-called volume phase transition temperature
(VPTT), microgels are highly swollen by the solvent, while above the VPTT, typically
around 32 ◦C, a collapse of the network and phase separation occurs. As the phase
transition takes place in the temperature range of the human body, these polymers are
suggested for various applications such as drug delivery [5–8], tissue engineering [9,10],
self-healing coatings [11], carrier for catalysts [12], or even ion-sensitive sensors [13,14].
Many physical and chemical stimuli are available [15] to influence the phase transition
behavior such as salts [16], surfactants [17], solvents [18], ultrasound [19], electromagnetic
radiation [20], and additives [21–23].

The most commonly targeted disease by gels of PNiPAM and its copolymers is cancer
in its manifold forms, such as breast cancer [24], liver tumors [25,26] and other malignant
tumors, which can be treated by paclitaxel [27]. The goal is to improve the deliverable
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drug content and optimize the therapeutic efficacy for specific drug release, supported by
PNiPAM. PNiPAM nanoparticles are also considered for targeted and enhanced nose-to-
brain delivery of curcuminoids to cope with consequences of a stroke, as those drugs are
reported to play a potential role in relieving of cerebral ischemia [28,29]. Another approach
employs PNiPAM as an adhesive for intraocular use in ophthalmology [30].

In general, PNiPAM microgels are amphiphilic, as the polymer consist of a hydropho-
bic backbone and isopropyl groups, while the amides in the side groups (as well as those
introduced by the crosslinker BIS) are hydrophilic. [31] Hydrogen bonding between H2O
and the polymer is responsible for its enthalpy-driven phase transition. Below the VPTT,
water molecules form a “cage-like” solvent structure around moieties of the polymer. When
temperature is raised to exceed the VPTT, these hydrogen bonds become unstable, resulting
in a partial dehydration of the polymer and an entropically driven release of water [32]. In-
tramolecular hydrophobic polymer–polymer interactions are now dominant. Although this
reversible process has been studied intensely [2,33–35], the kinetics of the phase transition
of PNiPAM microgels is still under investigation and a matter of debate.

It is known that even small concentrations of additional solutes can have an influence
on the LCST of linear PNiPAM chains and the VPTT of crosslinked PNiPAM/BIS microgels.
A depression of the transition temperature occurs upon salt addition, and its magnitude
is related to the Hofmeister series and linearly dependent on salt concentration [16]. It
is also reported that the addition of cosolvents like 1-propanol to aqueous PNiPAM so-
lutions can reduce the phase transition temperature, while it can also cause the effect of
co-nonsolvency [36]. An increase in transition temperatures is observed for the addition
of sodium dodecylsulfate (SDS) as a surfactant [37], whereas similar structures of sodium
n-alkyl sulfates with intermediate chain lengths (n = 5− 10) can depress or increase the
transition temperature in dependence of applied concentrations [38].

The application of microgels for drug delivery purposes requires fundamental knowl-
edge about interactions between polymeric structures and model drugs [39,40]. As med-
ically relevant drugs often exhibit complex molecular structures, small aromatic model
drugs are preferentially used to mimic the former [21,23]. Such aromatic additives shift
the hydrophobic coil-to-globule transition of PNiPAM and poly(N,N-diethylacrylamide)
(PDEAM) homopolymers to lower temperatures [41]. Concerning PNiPAM homopoly-
mers and microgels, detailed studies involved phenol [23,32,40], hydroxybenzenes [41],
benzaldehydes [21,41], and dopamine [23,40], as well as indol [40] and its dervatives [23].
For example, an indole ring as a component of various biologically active natural products
was shown to interact with PNiPAM only above the LCST [23], while all aromatic additives
reduce the phase transition temperature.

Concerning the effect of the crosslinker BIS, it was accepted in literature for a long time
that its influence on the VPTT is only marginal, as microgels containing different amounts
of BIS showed no evidence of systematic temperature shifts [42–46]. Mostly, the crosslinker
influence was described as a broadening of the phase transition, which stays centered at
around 32 ◦C [42–46]. Published values for VPTTs from Karg et al. for µ-PNiPAM/x-BIS
(x = 2, 5, 15 mol%) microgels vary in a range of 31.8–33.7 ◦C, but do not reflect a systematic
trend, as the lowest VPTT is observed for x = 5 [44]. In 2021, the first results of systematic
VPTT shifts were reported in a DLS study by Friesen et al., showing an increasing VPTT
with higher crosslinker content [47].

Here, we are investigating the influence of BIS crosslinker content in combination
with the effects of two model additives on the microgel phase transitions, namely m-
Hydroxybenzene (m-HBA) and 2,4-Dihydroxybenzene. Swelling curves for the neat micro-
gels and microgel-additive dispersions are measured by Dynamic Light Scattering (DLS) for
a structural characterization. To account for thermodynamic insights, Differential Scanning
Calorimetry (DSC) measurements are conducted. Finally, a more detailed insight into
molecular dynamics and distribution of the additives is obtained by Nuclear Magnetic
Resonance (NMR) spectroscopy.
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The results from all methods consistently show a linear increase of the VPTT with
increasing crosslinker content. An additional temperature shift ∆T is induced in presence
of an additive. ∆T is negative for each crosslinker content, and the depression is more
pronounced for 2,4-DHBA than for m-HBA. Furthermore, weakly crosslinked microgels
are more sensitive to the influence of additives. This higher sensitivity is accompanied
by incorporation of a larger fraction of additive upon collapse. Spin relaxation rates R2
of the additives reveal a reduction of their dynamics, which is most pronounced at low
crosslinker density. Spin relaxation rates further indicate the strongest additive–polymer
interactions at temperatures around the VPTT, while above VPTT additive molecules are
partially “squeezed out” of the microgel.

2. Results and Discussion
2.1. Characterization of µ-PNiPAM/x-BIS µGels with Different Crosslinker Content

Our systematic synthesis approach yields µ-PNiPAM microgels containing different
amounts of crosslinker BIS (1, 5, 10, 15 mol.%). At first, the phase transition behavior of
these neat microgels is characterized by DLS, DSC, and NMR.

DLS data yield the hydrodynamic radius Rh. Figure S1 shows the temperature-
dependent swelling curves for µ-PNiPAM/x-BIS, fitted by sigmoidal functions; see details
in the Materials and Methods section. Typically, sigmoidal swelling curves are expected,
proving the successful synthesis of microgel particles and their low polydispersity.

Particles with low crosslinker content (1 mol%) yield the largest structures in their
swollen and the smallest structures in their de-swollen state. In contrast, particles with high
crosslinker content (15 mol%) yield the smallest hydrodynamic radii in the swollen state,
but the largest ones in the collapsed state. Thus, the low-T hydrodynamic radii decrease
with increasing crosslinker content, while the high-T radii increase. Similar trends have
been observed in previous DLS measurements [44,47]. These trends can be attributed to
the collapse of less crosslinked outer structures onto a more rigid, highly crosslinked core,
since the reaction rate of the BIS crosslinker is larger than that of NiPAM monomers [48,49].
An increase of Rh of the collapsed state with BIS content results from an increasing size
of the highly crosslinked, rigid cores. On the other hand, less crosslinked structures offer
larger swelling ratios Rsw =

Rh, max
Rh, min

; see Figure S2. The observed swelling curve trends are
in good agreement with literature [50,51].

Furthermore, the swelling curves reveal a monotonous shift of the VPTT to higher
temperatures as the BIS content increases. The transition temperatures range from 31.8 ◦C
(x = 1%) up to 34.4 ◦C (x = 15%), indicating a total shift of the inflection point by 2.6 ◦C; see
Table S1 for a detailed summary of the DLS results. The general trend is consistent with
literature [47]; see the comparison in SI. In addition, the transition widths are qualitatively
evident from the slope of the fit function at the VPTT. A lower crosslinker content yields
sharper transitions.

DSC thermograms of the neat µ-PNiPAM/x-BIS microgels are shown in Figure 1a for
the crosslinker content from 1 mol% up to 15 mol%. The phase transition from the swollen
to the collapsed state is characterized by an endothermic heat flow. The less crosslinked
microgel (1 mol%) shows the sharpest phase transition. As the crosslinking is increased,
the endothermic peak is broadened significantly and the VPTT is increased. Both the shift
in VPTT and the broadening are visible in the heating and cooling curves. As the cooling
curves characterize the reswelling processes, exothermic heat flows are detected. The order
of the VPTT is the same as in the heating curves. Hysteresis is not very pronounced at the
cooling rates of 0.5 K/min employed here.
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Figure 1. (a) DSC thermograms (heating: solid lines; cooling: dashed lines) of neat µ-PNiPAM
microgels (1 wt.% in H2O) with different crosslinker content (left and bottom axis) and VPTT (squares,
orange axis labels) as extracted from heating curves. Lines between squares are guides to the eye. A
constant offset is subtracted from the heat flow to adjust for baseline differences. (b) Integrated heat
flow for the phase transitions of neat microgels during heating cycle for different crosslinker contents.

The integrated endothermic heat flow from the heating cycles is shown in Figure 1b in
dependence on the crosslinker content, revealing a monotonous decrease. A decrease of the
transition heat might be qualitatively explained by the reduction of the remaining NiPAM
co-monomer content, as the BIS co-monomers do not undergo a transition. However, the
integrated heat flow is reduced by a factor of three, and when comparing the 15 BIS with
the 1 BIS sample, the NiPAM co-monomer content is reduced by only 14 %mol. Thus,
the mere reduction of the NIPAM content does not explain the large degree of heat flow
reduction. There is rather a disproportional decrease of the heat flow, implying a strong
reduction of the transition heat released per NiPAM monomer.

This effect can be understood as a consequence of a reduced solvent release at elevated
crosslinker content. The observation of continuous phase transitions for microgels has
previously been explained by different transition temperatures for individual meshes,
with the crosslinker being inhomogeneously distributed [52]. As crosslinking leads to
a cooperativity of the VPT by mechanically coupling meshes of polymer networks, the
local collapse of a polymer chain can induce collapses in neighboring chains. Friesen et al.
described swelling curves of differently crosslinked PNiPAM microgels using a modified
Flory-Rehner model, employing a Hill-like equation-modeled polymer–solvent interaction
parameter χ [47]. A linear decrease of the Hill parameter ν with increasing BIS content was
interpreted as a linearly decreasing number of water molecules per network chain, which
are cooperatively leaving the chain at the VPT. Thus, our finding of a linear decrease of the
integrated transition heat with BIS content confirms the above model description.

Liquid state 1H-NMR spectra serve to characterize the dynamic transition. Microgel
1H signals are only visible in liquid state NMR, when dipolar interactions of polymer
protons are averaged by fast isotropic motions. This is the case in the swollen state, while
for T >> VPTT dynamically restricted “solid” spins lead to significantly broadened and
rapidly relaxing signals. This contrast enables us to characterize the phase transition.

Exemplary spectra of a neat microgel are shown in Figure S3. The reduction of
the polymer resonances upon exceeding the VPTT is reflected by their integrals, which
are given in Figure 2. The resulting sigmoidal curves are again fitted by Equation (4),
yielding the VPTT as the inflection point; see Figure 2 and Table 1. At the inflection point,
negative slopes decreasing with increasing crosslinker content are observed, confirming
the increasing width of the transition seen in DSC and DLS data.
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Figure 2. (i) Integrated normalized polymer signals in the range of δ = 1–3 ppm as acquired in
temperature-dependent 1H-NMR spectra (circles; left and bottom axis, integrals are normalized on
the lowest temperature) and (ii) extracted VPTTs (squares; right and top axis) for neat microgels
containing different crosslinker content. Color code as indicated in the legend. Dashed line is guide
to the eye. Solid lines are fits according to Equation (4).

Table 1. Fit results of 1H NMR intensities for neat µ-PNiPAM/x-BIS microgels in D2O.

VPTTNMR/◦C Slope at VPTT /◦C−1

µ-PNiPAM/1BIS 32.8 −1.39

µ-PNiPAM/5BIS 33.7 −0.64

µ-PNiPAM/10BIS 34.7 −0.33

µ-PNiPAM/15BIS 35.2 −0.18

NMR liquid state intensities reveal a monotonous shift of the VPTT to higher values
as a function of crosslinker content. The total VPTT shift amounts to 2.4 ◦C between the
lowest and the highest crosslinker density.

2.2. Discussion of Influence of Crosslinker Content on Volume Phase Transition

Figure 3 summarizes the VPTT values for the differently crosslinked neat microgels
extracted from each method. With increasing crosslinker content a monotonous shift of the
VPTT towards higher values is observed. As this trend is clearly visible, all methods are in
good agreement and consistent.
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Figure 3. Plot of VPTT determined by different methods for neat microgels containing different
amounts of crosslinker.

Note that samples for DSC and DLS are prepared in H2O, while samples for NMR rely
on the use of D2O as a solvent. It is known that the use of D2O increases the VPTT by about
1–2 ◦C [53], since the deuterium bond to the amide groups is stronger than corresponding
hydrogen bonds [53,54]. In view of this expected shift, the agreement in Figure 3 at 1%
crosslinker content is excellent.

Differences arise at higher crosslinker content due to the fact that in different methods
the VPTT reflects different physical properties. In DLS the smallest VPTT difference
between the 1BIS and 15BIS microgel is observed, in contrast to the results from DSC,
which show the largest temperature range of all applied methods.

Generally, the phase transition shift towards higher temperatures can be explained
with the chemical nature of the crosslinker itself. As the latter is more hydrophilic than
the co-monomer NiPAM, an increasing content of BIS will raise the overall hydrophilicity
of the microgel by introducing a significant amount of additional amide groups. Hence,
more hydrogen bonding between polymer and solvent is possible, stabilizing the swollen
state. An additional contribution to the VPTT enhancement may arise from the decreasing
mesh size as the crosslinker content is increased. As the average degree of polymerization
between crosslinks is decreased, according to Wu et al., the VPTT is shifted upwards [52].

Concerning the controversy in literature about the influence of crosslinker content
on the VPTT, we could here confirm the increase seen by Friesen et al. [47] and could
verify their model by the finding of linearly decreasing transition heats. Furthermore,
the results of all methods show that the structural, the dynamic, and the calorimetric
transition are consistently shifted upwards with increasing crosslinker content, but to a
slightly different degree.

2.3. Additive Influence on Phase Transition

In order to investigate the effects of the aromatic additives on the polymer phase
transition, the shift ∆T of the VPTT, which is caused by the additive, is defined as

∆T = VPTTPolymer+Additive −VPTTPolymer (1)

Temperature-dependent swelling curves from DLS and their fits, DSC thermograms,
and temperature-dependent 1H NMR integrals with their fits and the resulting VPTT
depression for each method are given in the SI, Figures S4–S14. Figure 4 summarizes the
VPTT temperature shifts ∆T for solutions containing m-HBA (Figure 4a) and 2,4-DHBA
(Figure 4b) as a function of crosslinker content.
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Microgel dispersions containing either additive show a VPTT, which is generally
shifted to lower temperatures in each of the methods, as indicated by negative ∆T values.
While the absolute values of ∆T differ significantly for both additives, several similarities
of the trends occur, which suggest generic behavior.

A comparison of the ∆T patterns between both additives, considering each method
separately, reveals that they are similar to each other, only shifted along the ∆T axis.
1H-NMR ∆T shifts are in the range of those from DSC; see red and black data points in
Figure 4. A general feature is a local minimum in case of data from DSC and NMR, and a
monotonous increase of ∆T in case of DLS. However, the local minimum in phase transition
temperature for the 5 mol% gel with 2,4-DHBA is more pronounced compared to the
polymer-additive system with m-HBA, where errors in particular for the NMR data are
too large to yield a clear trend, while a higher precision due to generally larger shifts is
achieved in case of 2,4-DHBA. We thus conclude on a higher responsivity of the microgel
containing 5 mol% of BIS crosslinker towards additives as compared to microgels with
lower or higher crosslinking density.

DLS measurements, reflecting the hydrodynamic radius Rh as a macroscopic size
parameter, reveal a distinct monotonous decrease in |∆T| with increasing crosslinker
content. Thus, in loosely crosslinked microgels, the effect of an additive on the microgel
particle size is most pronounced. Possibly, outer segments of the loosely crosslinked
microgels are affected by pre-transition aggregation, induced by favorable interaction with
the additive, causing a reduction of the hydrodynamic radius already at lower temperatures.
This might cause the structural transition to occur at slightly lower temperatures than the
calorimetric and the dynamic transitions. It also explains a larger influence of the additive
on the VPTT at low BIS content and thus the monotonous decrease of |∆T|.

Higher responsivity at intermediate crosslinker content, as seen for the calorimetric
and dynamic transitions, may be an effect of mesh sizes in the microgel matrix being
influenced by the NiPAM:BIS ratio. In general, mesh sizes decrease as more crosslinker is
used. As mesh sizes approach the hydrodynamic radii of applied additives, the polymer
matrix may, on the one hand, hinder the diffusion of such additive molecules [55]. On the
other hand, specific distances between functional groups in the polymer may be beneficial
for the steric demand of the additive, which might foster the ability to effectively form
polymer-additive hydrogen bonds. We assume that the efficiency to form the latter is
coupled with large values of |∆T| as a large number of additive molecules are arranged
spatially close to the polymer, inducing the hydrophobic collapse.
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2.4. NMR—Incorporated Species and Dynamics

In addition to the polymer 1H NMR signals (given in Figure 2), the additive resonances
can be evaluated in a similar manner, as suggested in previous work [56]. Figure 5 shows
the integrated aldehyde proton signals of the additive in dependence on temperature for
different crosslinker content. At low temperatures T < VPTT, the aldehyde signal originates
from freely diffusing additive species and loosely bound species, interacting with the
polymer. As the temperature is increased and induces the microgel to collapse, a partial
signal loss is detectable at T ≈ VPTT. At temperatures T >> VPTT, the additives signal
recovers to some extent.
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Figure 5. Integrated aldehyde proton signals from temperature dependent 1H spectra (15 to 45 ◦C in
1 ◦C steps) for 20 mM of (a) m-HBA and (b) 2,4-DHBA in the presence of microgels using identical
acquisition parameters. Integrals are normalized to the lowest temperature. The arrow indicates the
maximum of Pinc for 15% BIS.

The relative additive signal loss corresponds to a fraction of incorporated additive Pinc,
which is not detectable under liquid state conditions [56]. It can be calculated by comparing
the integrals of a temperature series with identical acquisition settings as follows:

Pinc = 1−
I(T)
I0

(2)

Residual proton signals arise from a fraction Pfree = 1 − Pinc of mobile additives in the
solution state. These may include free additives in solution as well as additives interacting
with the outer microgel interface but not being immobilized. We note that the process
of additive incorporation is fully reversible, since after cooling the dispersion, inducing
microgel re-swelling, previously incorporated additive species are released (see Figure S15).

The decrease of the additive integral around the VPTT occurs in all combinations of
microgels with additives and suggests that all microgel structures incorporate a fraction
of the additive during the phase transition process. Remarkably, there is a clear trend
with crosslinker density, as Pinc is higher for less crosslinked microgels, which may be
caused by a larger swelling factor Rsw (see Figure S2) and therefore higher flexibility to
incorporate additive molecules. For example, in the case of m-HBA in 1%-microgels at
30 ◦C (see dashed purple line in Figure 5a intersecting the blue curve), a minimum in signal
intensity occurs. Here, a maximum fraction Pinc = 36% of the additive is immobilized inside
collapsed microgel structures. This value agrees very well to that for m-HBA incorporation
into collapsed homopolymer particles of PNIPAM, i.e., 33% [56].

Surprisingly, while in PNIPAM homopolymer solutions a monotonous decrease of the
additive intensity finally reaches a plateau value at high temperature [56], the microgels
mostly show a maximum of incorporation. When the temperature is raised above 30 ◦C,
Pinc decreases for the 1- and 5-BIS microgels, which leads to the conclusion that the initially
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trapped additive molecules are partially released again upon further heating. Comparing
aldehyde integrals to polymer integrals reveals that the phase transition is not fully com-
pleted at T = 30 ◦C, which leads to a “sponge-like” effect. During the first phase of collapse
(up to about 30◦C), the additive, which is interacting with the polymer, is immobilized, but
upon further collapse of the microgel, it is partially squeezed out from the microgel particle.
This release in the second phase of collapse is less pronounced for highly crosslinked
microgels. We tested whether the squeeze out is a time-dependent effect but found that
the incorporated fraction is constant after a temperature jump; see Figure S16. Thus, the
temperature-dependent incorporated fractions represent a thermodynamic equilibrium.

Figure 5b shows similar trends for 2,4-DHBA; however, incorporated fractions tend to
be larger, namely up to 53% for the 1- and 5-BIS microgel. The “sponge-like” effect is even
more clearly visible in the data for 2,4-DHBA.

Considering data from both additives, the amount of incorporated species Pinc,max
correlates qualitatively with the VPTT (see Figure 6). A large VPTT reduction corresponds
to a large amount of incorporated species. It can be assumed that a large VPTT reduction is
caused by breaking up hydrogen bonds between the polymer and solvent. Hence, a large
number of additive molecules must be present in local vicinity to the polymer. As Pinc,max
is larger for 2,4-DHBA, it can be assumed that the overall additive–polymer interaction is
stronger in comparison to m-HBA, a fact that agrees well with the larger VPTT shift induced
by 2,4-DHBA; see Figure 6. It is interesting to note that the correlation of Pinc,max with VPTT
is observed here upon variation of the crosslinker content, while a similar correlation was
previously found upon variation of a larger selection of additives [56].
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Figure 6. Maximum of incorporated species Pinc,max as a function of the transition temperature
VPTTNMR for 2,4-DHBA (circles) and m-HBA (squares) for different crosslinker contents (blue x = 1,
black x = 5, red x = 10, green x = 15). Dashed lines are guide to the eye and connect polymers of the
same crosslinker content.

2.5. Additive Dynamics

To investigate local additive dynamics and distribution, the transversal spin relaxation
time T2 is measured in a temperature series for all microgels containing m-HBA. 1H relax-
ation times T2 of the aldehyde proton signal are converted into corresponding relaxation
rates R2 according to

R2 =
1
T2

(3)

They are displayed in Figure 7. Generally, exponential decays are observed, yielding
one distinct relaxation rate. As a reference, relaxation rates for a 20 mM solution of m-HBA
in D2O in absence of any polymer are given.
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Figure 7. Transversal relaxation rates of aldehyde protons from 20 mM m-HBA additive without
(pink) and with microgel in a temperature series. Lines are guides to the eye.

The relaxation rate R2 can be understood as a qualitative measure of molecular im-
mobilization. As Figure 7 indicates, the additive reference solution shows small relaxation
rates of 0.14–0.20 Hz throughout the whole temperature range. Relaxation rates for m-HBA
in presence of microgels are enhanced in the low temperature regime at T < VPTT, revealing
an interaction between aldehyde protons and microgels (see Figure 7, magnification). Here,
R2 of the aldehyde protons is increasing from 2 Hz (1BIS) up to 13 Hz (15BIS), indicating an
additive immobilization, which increases with increasing crosslinker content.

As the temperature is raised to the VPTT region, R2 shows a maximum followed by a
decrease. Considering the maximum R2 values, the trend in dependence on crosslinker den-
sity is inverted. The collapsed 1BIS microgel undergoes strongest interactions
(R2, 30◦C = 202 Hz) with the additive, while in the 15BIS samples relaxation rates are much
smaller (R2, 30◦C = 77 Hz).

In the higher temperature regime, T > VPTT, the relaxation rates decrease again. This
behavior correlates with the increasing aldehyde proton integrals (Figure 5a) and supports
the interpretation of a “sponge-like” effect, as in the second phase of the collapse additive
molecules are squeezed out of the particle interior, thus gaining mobility and reducing R2.
We note here that the exponentiality of all relaxation data implies a fast exchange averaging
between all additive localizations, which are detectable. In conclusion, the detectable
fraction Pfree consists of (a) free species and (b) detectable incorporated species, with the
latter contributing with a larger relaxation rate to the measured average value of R2.

The sponge-like effect found in microgels is an interesting feature, which clearly differs
from the additive interactions with PNiPAM homopolymers, where temperature-dependent
incorporated fractions generally show a simple monotonous behavior of the incorporated
fractions with a plateau above the critical temperature [56]. In microgels, the sponge effect
consists of an initial immobilization of a large number of additive molecules, part of which
are re-mobilized at higher temperatures by being squeezed out of the collapsing microgel
as temperature is further enhanced. A low crosslinking density favors the sponge effect,
probably mainly because a less dense network facilitates the uptake of the additive in the
initial stage of the phase transition.

3. Conclusions

A systematic dependency of the VPTT on the crosslinker content in µ-PNiPAM/x-
BIS microgels is found. VPTT values extracted from DLS, DSC, and 1H NMR confirm a
consistent shift to higher temperatures with increasing crosslinker content, while the VPTT
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values differ slightly for each technique. This shift of the VPTT has to be considered in drug
delivery applications, while it does not imply an optimum value of the crosslinker density.

Small aromatic additives decrease the neat microgel VPTT, again confirmed by DLS,
DSC, and 1H NMR. The ability to induce the collapse of a microgel is dependent on the
isomer structure, as ∆T is markedly different for each additive. For both additives a joint
pattern emerges, which shows that the calorimetric transition observed in DSC is most
affected in x = 5% microgels, while the structural transition, as manifested by changes of
the hydrodynamic radius, is most sensitive towards an additive at the lowest crosslinker
content of 1%. For different systems, varying x, or additive structures, the maximum
incorporated fraction Pinc,max correlates with ∆T. In conclusion, an optimum crosslinker
density for drug delivery has to be a compromise balancing the influence of the drug
and that of the crosslinker density: while microgels with low crosslinker density result in
a larger drug incorporation, they simultaneously suffer from the largest VPTT shift. In
addition, the distinct drug chemical structure will have a significant influence on both
effects, which have to be characterized for each specific drug structure.

1H-NMR spectra of m-DHB yield a quantification of additive incorporation. Additive
molecules incorporated during the initial stages of microgel collapse (T ≈ VPTT) are
partially released upon advancing collapse (T > VPTT). This squeeze out effect bears
potential for application, since microgels may be loaded with a large amount of drug at a
temperature around VPTT, while the drug will be released upon raising the temperature.
This feature is unique to microgels and is not observed in PNiPAM homopolymer samples.

4. Materials and Methods
4.1. Chemicals

Structures of the monomers for microgel synthesis are given in Scheme 1.
N-isopropylacrylamide (NiPAM, ≥99%) and N,N′-Methylenebis(acrylamide) (BIS, >99%)
were purchased from Sigma Aldrich and used without further purification. Sodium do-
decyl sulfate (SDS, >99%) was purchased from Fluka. All samples were prepared in
ultrapure water (MilliQ, Merck, Darmstadt, Germany) with a resistance of >18 MΩ. For
NMR solutions, D2O (99.9 atom %, Sigma Aldrich, St. Louis, MO, USA) was used instead.
Solutions were prepared immediately before use to prevent possible oxidation reactions at
the additive’s functional groups. Additive incorporation into microgels was performed by
mixing additive stock solutions and microgel dispersions at room temperature to achieve a
final additive concentration of 20 mM. This additive concentration, chosen as a compro-
mise of sufficient effects on the VPTT and limited additive solubilities, is identical for all
experimental methods.
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Scheme 1. Monomers N-isopropylacrylamide (NiPAM) (upper left) and bifunctional crosslinker
N,N′-Methylenebis(acrylamide) (BIS; upper right) used for microgel synthesis. Aromatic model
drugs 3-Hydroxybenzaldehyde (m-HBA; lower left) and 2,4-Dihydroxybenzaldehyde (2,4-DHBA;
lower right) used as additives.
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4.2. Synthesis

Poly(N-isopropylacrylamide) microgels (µ-PNiPAM) were synthesized by a conven-
tional precipitation polymerization with sodium dodecyl sulfate (SDS) as surfactant [57],
employing four different crosslinker amounts. Synthesis was performed in 500 mL three-
neck flasks equipped with a reflux condenser, Pt-100 thermometer, and a nitrogen inlet. The
flask was thermally isolated and heated using an oil bath on a magnetic stirrer. Previously
ultrasonicated and degassed ultrapure water was used as solvent. Then, 380 mL of solvent
was heated to 70 ◦C under continuous stirring while using a glass inlet for degassing with
nitrogen in order to remove residual oxygen. The solvent temperature was equilibrated for
at least 30 min, then SDS (75.4 mg; 2.6 × 10−4 mol) was added. After complete dissolution
of SDS, the monomer NiPAM (49.48 mM) and the crosslinker BIS (1, 5, 10, and 15 mol.%,
with respect to the initial molar amount of NiPAM) were added to the SDS solution with an
additional 18 mL of solvent. The solution was kept at 70 ◦C for 1 h to ensure dissolution and
thermal equilibration. Initiation was done by injecting a solution of potassium persulfate
(KPS, 100 mg in 2 mL water) into the flask. The reaction was left to proceed for 4 h at
70 ◦C under constant stirring (650 rpm). All solutions turned turbid after the first 2–10 min
after KPS injection, indicating the process of radical polymerization and particle formation.
After reaction, the solution was cooled down to room temperature and stirred overnight.
Purification was done by at least five centrifugation/redispersion processes. The microgels
were then lyophilized. Stock solutions were prepared from dried samples.

4.3. Differential Scanning Calorimetry (DSC)

DSC data were acquired on a Micro DSC III Calorimeter (Setaram, Caluire, France) in
four consecutive heating/cooling cycles from 5 ◦C to 60 ◦C and back to 5 ◦C, employing a
heating rate of 0.5 ◦C/min and water in the reference cell. The last three heating ramps
were analyzed. Concentrations were 1 wt.% of polymer material and 20 mM of additive.
The VPTT is defined as the temperature where the largest exothermic heat flow in a heating
curve is observed, which is usually a global minimum in the thermogram. We defined the
transition width as twice the difference of VPTT and onset temperature.

4.4. Dynamic Light Scattering (DLS)

DLS measurements were performed using a standard goniometer setup (ALV/CGS-3,
ALV GmbH, Langen, Germany) with toluene in the matching bath. The light source was a
HeNe laser (λ = 632.8 nm, 35 mW output power). The temperature was controlled based on
the goniometers built-in sensor and an external thermostat, yielding a stability of ±0.05 ◦C.

Samples for DLS were prepared with a polymer concentration of 1 × 10−3 wt.% in
water. Stock solutions of additives were filtrated using a 0.45 µm cellulose acetate syringe
filter. Prior to each run, the microgels were stored at 8 ◦C for at least 24 h, then temperature-
dependent swelling curves were recorded beginning at the lowest temperature. For each
temperature step, equilibration was allowed for at least 20 min to reach an equilibrium state.
For each temperature, at least five autocorrelation functions were recorded at a scattering
angle of θ = 90◦ and a correlation time of at least 60 s.

The VPTT in DLS is defined as the inflection point of an empirical fit function, namely
a sigmoidal Boltzmann function (OriginLab, OriginPro 2021), which describes the hydro-
dynamic radius Rh in the transition region:

Rh(T) =
A1 − A2

1 + e(T−T0)/dT
+ A2 (4)

The upper (low T) and lower (high T) plateaus are described by A1 and A2, respectively.
The inflection point is given as T0.

4.5. Nuclear Magnetic Resonance Spectroscopy (NMR)

Temperature-dependent 1H spectra were taken on a Avance NEO 400 MHz NMR
spectrometer (Bruker, Rheinstetten, Germany) equipped with a BB probe head (Bruker,
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Rheinstetten, Germany). The temperature was controlled using an air stream with the tem-
perature adjusted by an external cooling system (BCU II, Bruker, Rheinstetten, Germany).

Temperature-dependent transverse relaxation time (T2) measurements were conducted
on a Bruker Avance III HD 400 MHz NMR spectrometer equipped with a gradient probe
head with a selective 1H insert (“Diff50”, Bruker, Rheinstetten, Germany). The temperature
was controlled in the same way as described above, in this case using an in-house design
air cooling device. T2 relaxation measurements were accomplished by the Carr-Purcell-
Meiboom-Gill (CPMG) pulse sequence with a fixed echo time of τ = 30 ms.

In each experiment series data were taken from low to high temperatures. Directly
beforehand, the built-in temperature sensor was calibrated by determining the sample
temperature in a reference tube containing a Pt100 thermocouple in oil. The 1D 1H spectra
series and T2 relaxation measurements were acquired using 15 min of equilibration time
following each temperature change. The shim and other parameters were kept constant;
however, the automatic tuning and matching accessory (ATMA) was re-employed for each
temperature step.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/gels8090571/s1. Figure S1. Temperature-dependent hydrodynamic
radii Rh of microgel structures containing different amounts of crosslinker. Figure S2. Swelling
ratios Rsw for differently crosslinked microgels. Figure S3. 1H-NMR temperature series of a microgel
acquired with equal spectral parameters. Table S1. Summary of DLS data for neat microgels in H2O
and comparison with reported data from literature. Figure S4. Plot of the VPTT (polymer only; with
additive) and calculated ∆T from DSC against the crosslinker content for m-HBA. Figure S5. Plot of
the VPTT (polymer only; with additive) and calculated ∆T from DSC against the crosslinker content
for 2,4-DHBA. Figure S6. Calculated microgel VPTT depression ∆T from DSC data in presence
of two different aromatic additive structures. Figure S7. Temperature-dependent hydrodynamic
radii Rh of microgel particles (neat microgel and with m-HBA) containing different amounts of
crosslinker. Figure S8. Temperature-dependent hydrodynamic radii Rh of microgel particles (neat
microgel and with 2,4-DHBA) containing different amounts of crosslinker. Figure S9. VPTT (neat
microgel and with m-HBA) and calculated ∆T from DLS against crosslinker content. Figure S10. Plot
of the VPTT (neat microgel and with 2,4-DHBA) and calculated ∆T from DLS against crosslinker
content. Figure S11. Microgel VPTT depression ∆T from DLS data in presence of two different
aromatic additive structures. Figure S12. Integrated normalized polymer signals as acquired in
1H-NMR temperature series for neat microgels containing different crosslinker content and 20 mM of
m-HBA. Figure S13. VPTT (neat microgel and with m-HBA) and calculated ∆T from NMR against
the crosslinker content. Figure S14. VPTT (neat microgel and with 2,4-DHBA) and calculated ∆T
(red squares) from NMR against crosslinker content. Figure S15. Integrated aldehyde signal for
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