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Abstract Higher species commonly learn novel behav-
iors by evaluating retrospectively whether actions have
yielded desirable outcomes. By relying on explicit be-
havioral instructions, only humans can use an acquisi-
tion shortcut that prospectively specifies how to yield
intended outcomes under the appropriate stimulus con-
ditions. A recent and largely unexplored hypothesis
suggests that striatal areas interact with lateral prefrontal
cortex (LPFC) when novel behaviors are learned via
explicit instruction, and that regional subspecialization
exists for the integration of differential response–out-
come contingencies into the current task model.
Behaviorally, outcome integration during instruction-
based learning has been linked to functionally distinct
performance indices. This includes (1) compatibility ef-
fects, measured in a postlearning test procedure probing
the encoding strength of outcome–response (O–R) asso-
ciations, and (2) increasing response slowing across
learning, putatively indicating active usage of O–R as-
sociations for the online control of goal-directed action.
In the present fMRI study, we examined correlations
between these behavioral indices and the dynamics of
fronto-striatal couplings in order to mutually constrain
and refine the interpretation of neural and behavioral
measures in terms of separable subprocesses during
outcome integration. We found that O–R encoding
strength correlated with LPFC–putamen coupling,

suggesting that the putamen is relevant for the forma-
tion of both S–R habits and habit-like O–R associations.
By contrast, response slowing as a putative index of
active usage of O–R associations correlated with LPFC–
caudate coupling. This finding highlights the relevance
of the caudate for the online control of goal-directed
action also under instruction-based learning conditions,
and in turn clarifies the functional relevance of the
behavioral slowing effect.
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Ideomotor theory

Higher animals, including humans, commonly learn
novel behaviors via trial and error, by evaluating retro-
spectively whether an action performed under certain
stimulus conditions yielded desirable outcomes.
However, only humans are able to cut short this acqui-
sition process by relying on explicit behavioral instruc-
tions that specify prospectively how to yield an intended
outcome. This enables humans to directly yield the
intended outcomes while circumventing potentially
harmful trial-and-error learning (Doll, Jacobs, Sanfey,
& Frank, 2009). Although the great importance of this
issue was acknowledged early on (Duncan, Emslie,
Williams, Johnson, & Freer, 1996; Luria, 1973;
Monsell, 1996; Noelle, 1997), the underlying mecha-
nisms have still been little explored (Cole, Laurent, &
Stocco, 2012; Wolfensteller & Ruge, 2012). Ultimately,
learning by feedback and learning by instruction both
enable the expression of goal-directed action by inte-
grating anticipated response outcomes already during
action selection. As a prerequisite, organisms need to
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learn that a certain outcome O is obtained by a certain
response R (response–outcome contingency) under the
appropriate stimulus conditions (S).

Fronto-striatal interactions during instruction-based
learning

Under feedback-driven trial-and-error learning condi-
tions, it is widely believed that distinct striatal substruc-
tures are important for establishing either outcome-
directed (i.e., goal-directed) action relying on the ante-
rior caudate or habit-like (i.e., directly stimulus-trig-
gered) action relying on the putamen (Ashby, Turner,
& Horvitz, 2010; Dolan & Dayan, 2013; Seger &
Spiering, 2011; Yin & Knowlton, 2006). The picture
gains complexity when considering that the striatum is
not operating in isolation. Neuro-anatomically, it is clear
that the striatum is heavily interconnected with the
prefrontal cortex (PFC; Alexander, DeLong, & Strick,
1986). Hence, one might expect that both areas engage
interactively when learning and behavior is “model-
based” rather than “model-free” in the sense that it is
driven by explicit knowledge of contingencies stored in
lateral PFC (LPFC) working memory (cf. Dolan &
Dayan, 2013; Glascher, Daw, Dayan, & O’Doherty,
2010). This view has recently been expressed in a few
formal models on instruction-based control of learning
and behavior (Doll et al., 2009; Huang, Hazy, Herd, &
O’Reilly, 2013; Ramamoorthy & Verguts, 2012).
Moreover, recent neuroimaging studies have demonstrat-
ed that LPFC and striatal areas become functionally
coupled when learning is under the control of explicitly
instructed rules (Li, Delgado, & Phelps, 2011; Ruge &
Wolfensteller, 2013). Such findings support the notion
that model-based learning and model-free feedback-driv-
en learning might share the same striatal machinery (cf.
Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Doll,
Simon, & Daw, 2012). Furthermore, first evidence also
suggests a similar striatal functional differentiation in
that learning-related dynamics of LPFC–anterior caudate
coupling, but not LPFC–putamen coupling, is sensitive
to the manipulation of response–outcome contingency
during instructed stimulus–response learning (Ruge &
Wolfensteller, 2013). Hence, specifically LPFC–anterior
caudate coupling seems to reflect processes linked to
the integration of response–outcome contingencies into
an explicit model of the current task.

The primary aim of the present study was to further
refine the functional interpretation of this basic finding
regarding LPFC–caudate coupling by interrelating func-
tional connectivity measures with two distinct perfor-
mance measures that have been identified in behavioral

studies and might reflect distinct subprocesses of out-
come integration during stimulus-based response
selection.

In particular, it is commonly thought that goal-directed
action selection is enabled by integrating outcomes via an
S–O→ O–R activation chain, both according to ideomo-
tor theory and instrumental learning theory (Balleine &
Ostlund, 2007; de Wit & Dickinson, 2009; Urcuioli,
2005). In our previously reported experimental setup
(Ruge & Wolfensteller, 2013), it was impossible to
decide whether the observed LPFC–caudate coupling
effects indicated O–R association encoding by itself or
rather the active usage of increasingly learned O–R
associations through the S–O → O–R chain. In the
present study, we therefore added a test phase after each
S–R–O learning phase, in which previous outcomes now
served as imperative stimuli that required responses that
could be either compatible or incompatible with the
previously acquired O–R associations. Thereby, we were
able to obtain a relatively pure measure of O–R associ-
ation strength.

As in our previous design, S–R–O learning was
induced via the introduction of differential response
outcomes during instructed S–R learning, which means
that each distinct S–R link was followed by a distinct
outcome (Colwill & Rescorla, 1985; de Wit &
Dickinson, 2009; Noonan, Mars, & Rushworth, 2011;
Shin, Proctor, & Capaldi, 2010; Trapold, 1970; Urcuioli,
2005). Typically, in trial-and-error learning situations
this “differential outcome effect” is evidenced by a
more rapid decline of error rates from initial chance-
level performance when comparing differential outcome
conditions to common or random outcome conditions
(Trapold, 1970; Urcuioli, 2005) and when the S–R
learning task is sufficiently demanding (Estévez,
Fuentes, Mari-Beffa, González, & Alvarez, 2001;
Legge & Spetch, 2009). In instruction-based learning,
which is characterized by an extremely low error rate
from the start, this error rate effect clearly cannot serve
as an adequate marker of outcome integration. But S–R
learning that is too easy to show any further benefit of
differential outcomes on error rates is nevertheless as-
sociated with significant response-slowing across learn-
ing when compared to a common outcome condition
(Ruge, Krebs, & Wolfensteller, 2012). Analogous to
the accelerated error rate decline in demanding trial
and error learning situations, response slowing during
instruction-based S–R–O learning can be interpreted as
a putative index of active O–R usage for the online
control of goal-directed action selection. This is gener-
ally consistent with the notion that differential outcomes
are rapidly integrated into an extended model of the
current task instruction mediated via the “fast-learning
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but slow-acting” prefrontal cortex control system (cf.
Dolan & Dayan, 2013).1 In the present study, we tested
the hypothesis that such quickly established prefrontal
S–R–O representations enable goal-directed action selec-
tion via functional couplings with the anterior caudate
nucleus.

Besides O–R-related response slowing across S–R–O
learning, which we suggest is indicative of active O–R
usage, numerous studies conducted in the realm of
ideomotor theory (Greenwald, 1970) have shown that
the strength of O–R encoding by itself is expressed in
O–R compatibility effects measured in a subsequent
outcome-priming test phase (for a review, see Shin
et al., 2010). Such O–R compatibility effects are taken
to indicate that perceiving a previous outcome activates
automatically or unintentionally the action that it was
previously produced by and that can be either compat-
ible or incompatible with the current test-phase response
requirements (Elsner & Hommel, 2001; Shin et al.,
2010). Importantly, this effect can be observed even
after very short acquisition periods as in the present
study (Ruge et al., 2012; Wolfensteller & Ruge, 2011).
The size of the O–R compatibility effect can hence
serve as an index of “O–R encoding” analogously to
previous fMRI studies based on the “subsequent mem-
ory” rationale, in which postlearning behavioral indices
are correlated with brain activation recorded during
learning (Brewer, Zhao, Desmond, Glover, & Gabrieli,
1998; Summerfield et al., 2006). Hence, on the basis of
this additional O–R compatibility index we aimed to
determine the specificity of the hypothesized LPFC–
caudate coupling for active O–R usage rather than O–
R encoding by itself. Moreover, using a similar ratio-
nale, previous ideomotor learning studies reported acti-
vations in the hippocampus when extensively learnt
response outcomes served as primes that should auto-
matically trigger response tendencies consistent with
previously established O–R associations (Elsner et al.,
2002; Melcher et al., 2013). Different from these studies
that investigated highly overlearned O–R associations,

we hypothesized that hippocampal O–R encoding under
instruction-based learning conditions and especially dur-
ing an early phase of learning might depend on the
functional coupling with the LPFC (Huang et al., 2013).

Method

Subjects

Twenty-eight human subjects participated in this study.
Four of the subjects were excluded due to high error
rates exceeding 25 % on the first unguided implementa-
tion trial (see below), suggesting that the instructions
were not well memorized, thereby inducing a strong
(undesired) trial-and-error learning component. An addi-
tional subject was excluded due to early abandoning of
the experiment. The mean age of the remaining 23 sub-
jects was 24.2, ranging between 18 and 31 years (12
female, 11 male). The experimental protocol was ap-
proved by the Ethics Committee of the Technische
Universität Dresden in agreement with the World
Medical Association’s Declaration of Helsinki. All sub-
jects gave written informed consent prior to taking part
in the experiment and were paid €8 per hour or received
course credit.

Materials and procedure

S–R–O learning phase We employed a modified version of
our original instruction-based learning paradigm (Ruge &
Wolfensteller, 2010). Instructions were delivered via a “guid-
ed implementation” procedure in which the instruction was
embedded within the first few behavioral implementation
trials, which also comprised the presentation of differential
outcomes following correct responses (see Fig. 1). The guided
implementation phase comprised 12 correct trials, including
three repetitions of four distinct S–R–O triples (termed S–R–O
repetition in the following discussion). A trial started with the
presentation of the visual stimulus S for 500 ms. The visual
stimuli were four distinct abstract shapes. Following 250 ms
after S onset, an additional instruction stimulus (IS) was
displayed, which remained on screen until a response was
made or until timeout after 1,750 ms. The IS was a yellow
square highlighting one of four constantly displayed empty
boxes. The manual responses (left middle finger, left index
finger, right index finger, and right middle finger) were
mapped in a spatially compatible manner to the IS position.
The differential outcomes were four distinct naturalistic
sounds and were emitted for 500 ms directly following a
correct response. This guided implementation phase was
followed by an unguided implementation phase in which the
ISwas omitted, which comprised another 20 correct trials (i.e.,

1 Note that differential outcomes affect learning and performance in both
trial-and-error S–R learning and instruction-based S–R learning, even
though they are strictly speaking not necessary for correct performance.
In fact, differential outcomes are not even a necessary condition for goal-
directed action at all. Just implementing a novel S–R rule is sufficient to
qualify as a goal-directed action, due to the “hidden” outcome anticipa-
tion of receiving correct feedback as the rewarding event for a correctly
performed action (see also Ruge & Wolfensteller, 2013; Wolfensteller &
Ruge, 2012). However, differential outcomes, be they incentive or not
(Friedrich & Zentall, 2011; Mok & Overmier, 2007), serve as additional
“pointers” or retrieval cues for this basic relationship between S, R, and
the incentive outcome (here: “correct feedback”), and thus are an integral
part of the associational basis of goal-directed action. For the present
purposes, the differential-outcome rationale is a means to access action–
outcome integration in behavior and brain activation.
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five repetitions of the four distinct S–R–O triples). Hence,
starting from the fourth S–R–O repetition, the correct response
had to be retrieved frommemory, since it was not indicated by
the IS anymore. Erroneous trials were directly repeated in both
learning phases, and the outcome was replaced by the German
word for “error.” The experiment comprised 11 such S–R–O
learning blocks, each with novel visual stimuli and novel
outcome sounds. The intertrial interval (ITI) was randomly
selected from a distribution including interval durations of
800 ms (24 trials per block), 2,350 ms (five trials per block),
and 4,700 ms (three trials per block). Analyses of learning-
related changes in behavior and brain activationwere based on
SRO repetitions, with levels ranging between SRO-Rep1 and
SRO-Rep8.

O–R test phase Each of the 11 S–R–O learning blocks was
followed by a test phase probing the strength of the just-
encoded O–R associations, similar to the typical testing pro-
cedures used in the context of ideomotor theory (Shin et al.,
2010). The previous outcome sounds were now serving as
stimuli that again required one of the four responses (see
Fig. 2). The responses keys were the same as during the
preceding S–R–O learning phase. Two outcome sounds were
mapped to the response that had produced that sound in the
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Fig. 1 Schematic representation of the S–R–O learning phase. (A)
Exemplary mapping between stimuli (visual shapes), instruction cues
(colored squares), responses, and sound outcomes. During the experi-
ment, subjects had to learn 11 different mappings, each involving novel
visual stimuli and novel sound outcomes. (B) A novel S–R–O mapping
was learned through explicit instruction provided by the instruction cues

presented in the “guided implementation phase,” comprising the first
three repetitions of each of the four S–R–O triples. During the “unguided
implementation phase” (S–R–O Repetitions 4–8), instruction cues were
no longer presented, and hence the correct response had to be retrieved
from memory.
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Fig. 2 Schematic representation of the O–R test phase. The four sound
stimuli that had been produced by certain responses in the S–R–O
learning phase now served as imperative stimuli in the test phase. The
required response could be the same (compatible) or different (incompat-
ible), with respect to the response that had produced that sound before-
hand. The correct response was indicated by the instruction cues (letters
D, F, J, and K) during the first three repetitions of each of the four sound–
response pairs. Starting from the fourth repetition, the correct response
had to be retrieved from memory. Test-phase data were solely used to
compute the size of the behavioral O–R compatibility effect, as an index
of O–R strength, which was then correlated with the brain activation data
collected during the preceding S–R–O learning phase.
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preceding phase (compatible trials), whereas the two remain-
ing outcome sounds were mapped to responses that had pro-
duced another sound before (incompatible trials). Hence, ac-
cording to ideomotor theory, previously learned O–R associ-
ations should prime the correct response in compatible trials,
and the incorrect response in incompatible trials. As in the
preceding S–R–O learning phase, the novel sound–response
mappings were learned via the two-step instruction procedure,
comprising 12 guided and 20 unguided implementation trials.
The instruction stimuli (ISs) were now the letters D, F, J, and
K, presented centrally on the screen and mapped onto the left
middle finger, left index finger, right index finger, and right
middle finger, respectively. Different IS types were used in the
learning and test phases, to deconfound O–R and IS–R com-
patibility. The nonspatial IS–response mapping was practiced
outside the scanner until performance accuracy was greater
than 90% in two consecutive blocks of 20 trials. A trial started
with a fixation cross displayed for 500 ms, followed by the
sound, lasting 500 ms. In the guided phase, the IS was pre-
sented 150 ms after sound onset and lasted until the response
or until timeout after 1,500 ms. Accuracy feedback was
displayed for 650 ms, indicating correct, wrong, or too-slow
responses. The ITI distribution was the same as in the S–R–O
learning phase. Note that the test-phase data were exclusively
used to extract the behavioral O–R compatibility index, based
on the unguided implementation trials. This index then served
as a covariate in the fMRI analysis of the S–R–O learning-
phase brain activation data. Before entering the scanner, sub-
jects completed one S–R–O learning block and one O–R test
block to familiarize them with the task procedure.

FMRI recording

Whole-brain images were acquired on a Siemens 3-T
whole-body Trio System (Erlangen, Germany) with a
16-channel circularly polarized head coil. Headphones
(MR-Confon) dampened the scanner noise and were used
for sound presentation. Both structural and functional
images were acquired for each subject. High-resolution
structural images (1.0 × 1.0 × 1.0 mm) were acquired
using an MP-RAGE T1-weighted sequence (TR =
1,900 ms, TE = 2.26 ms, TI = 900 ms, flip = 9°).
Functional images were acquired using a gradient echo-
planar sequence (TR =2,000 ms, TE =30 ms, flip =80°).
Each volume contained 32 4.0-mm-thick slices (in-plane
resolution 4.0 ×4.0 mm) plus 0.8-mm gap. Slices were
oriented parallel to the AC–PC plane. The experiment was
controlled by E-Prime 2.0 software running on a
Windows XP PC. Visual stimuli were displayed by an
LCD projector on a back-projection screen mounted be-
hind the magnet. Subjects viewed the screen through
mirror glasses. A fiber-optic, light-sensitive keypress de-
vice was used to record subjects’ behavioral responses.

fMRI preprocessing

The fMRI data set was analyzed with SPM8 running under
MATLAB 8.0.0.783. Preprocessing included slice-time cor-
rection, rigid body movement correction (three translation,
three rotation parameters), and normalization of the functional
images by directly registering the mean functional image to
the standard Montreal Neurological Institute (MNI) echo-
planar-imaging template image provided by SPM8, with a
resulting interpolated spatial resolution of 3 × 3 × 3 mm.
Finally, images were spatially smoothed (Gaussian kernel, full
width at half maximum = 8 mm). During model estimation, a
temporal high-pass filter with a cutoff frequency of 1/256 Hz
was applied.

fMRI analysis

First-level analysis For the analysis of the functional cou-
plings between LPFC and any other voxel in the brain, we
used the psychophysiological interaction (PPI) framework
implemented in SPM8 (Friston et al., 1997; Gitelman,
Penny, Ashburner, & Friston, 2003) in its generalized form
proposed recently (McLaren, Ries, Xu, & Johnson, 2012).
Essentially, the PPI method predicts the blood-oxygenation-
level-dependent (BOLD) signal time course in “target” voxels
anywhere in the brain volume, on the basis of the BOLD
signal time course in a prespecified “seed” voxel.
Importantly, functional coupling is not simply defined by a
significant regression between two BOLD signal time
courses, but it is defined in terms of changes in regression
slopes as a function of varying psychological states associated
with two experimental conditions Aversus B. The generalized
PPI used here accommodates situations in which the two
contrasted conditions are occurring in the context of additional
experimental conditions intermixed with the conditions of
interest. For each experimental condition two regressors were
included in a generalized linear model (GLM). This includes a
standard event-related regressor obtained by convolving a
canonical BOLD response model with a stick function
representing the repeated occurrences of that condition. This
“task regressor” picks up the average event-related BOLD
activation level associated with that condition. The second
regressor is obtained by multiplying the task regressor with
the seed voxel activation time course (by first deconvolving
the seed voxel activation time course, then multiplying with
the task-related stick function, and then reconvolving with the
canonical BOLD response, all as described by Gitelman et al.,
2003). In linear combination with the task regressor, this “PPI
regressor” picks up any trial-to-trial deviation from the mean
task-related activation that is common between seed voxel and
target voxel. Hence, the PPI regressor measures task-related
synchrony between the seed-voxel and target-voxel activation
time courses, which defines the term “functional coupling”
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used in the present article. Finally, the GLM comprises the
seed voxel time course as an additional regressor to bind
unspecific sources of covariance between seed voxel and
target voxel. In the present study, we analyzed PPI regressor
estimates for early learning trials (SRO-Rep2 and SRO-Rep3)
and late learning trials (SRO-Rep7 and SRO-Rep8). Note that
we did not include SRO-Rep1 within the category of early
learning trials as this was considered to be a very special
condition comprising a strong perceptual novelty component
due to the fact that visual stimuli and sounds were perceived
for the very first time. Hence, we considered SRO-Rep2 and
SRO-Rep3 to be more “neutral” instances of early learning
trials.

Second-level analysis The primary goal of the present study
was to determine possible correlations between the two puta-
tive behavioral measures of O–R encoding strength and O–R
usage, on the one hand, and the functional coupling between
lateral PFC and other brain structures, on the other hand. We
therefore included both behavioral indices as covariates in the
group-level analysis of PPI effects. By simultaneously includ-
ing both covariates, we made sure that a correlation between
PPI effect and one covariate was uniquely driven by a covari-
ance component that was orthogonal to the other covariate. In
other words, we determined partial correlations between the
PPI effect and one covariate, with the potential influence of
the other covariate being regressed out. Note that this proce-
dure does not exclude the possibility that both covariates
might be significantly correlated with the same PPI effect in
the same target voxel. Yet, these correlations would then be
due to different covariance sources. To make sure that we
would not miss any significant correlation due to covariance
components common to both covariates, we additionally com-
puted group-level analyses that comprised only one of the two
covariates, respectively (to foreshadow the results: We did not
observe such additional effects). Furthermore, we ran comple-
mentary control analyses that included error rate changes
across learning as an additional covariate (see below, Step 3
of the analysis).

The covariance analysis proceeded in three steps. We first
identified for each covariate significant correlations with the
PPI effect defined by the difference in functional couplings in
late learning trials relative to early learning trials. Significant
activations were required to exceed a family-wise-error
(FWE) threshold p < .05, adjusted for the volume of each
selected region of interest (ROI) either on the voxel level or on
the cluster level at a cluster-forming threshold of p < .001 (see
below for our ROI selection). To search for significant effects
outside of the preselected ROIs, we also computed FWE-
corrected whole-brain statistics.

In a second step, we performed post-hoc tests to determine
whether a significant activation identified in Step 1 was linked
to correlations between the behavioral covariate and

functional couplings in early learning trials, mid learning trials
(SRO-Rep5 and SRO-Rep6), and late learning trials.

In a third step, we ran two complementary control analyses
including the subject-wise error rate difference between the
late and early learning trials as an additional covariate, either
in combination with the covariate for O–R encoding strength
or in combination with the covariate for O–R usage. These
final analyses were performed in order to control for potential
confounding effects between the indices for O–R encoding
strength and O–R usage, on the one hand, and error rate
differences across S–R–O learning, on the other hand. Even
though the mean error rates early and late in learning were low
(1.8% and 4.8 %, respectively, and given an error rate of 75%
for chance performance), this control analysis nevertheless
seemed warranted, since error rates varied considerably across
subjects (ranging between 0% and 9% early and between 0%
and 14 % late).

One possible confounding might be that relative response
slowing was directly related to difficulties in instructed S–R
translation rather than to the extent of increasing O–R usage.
Accordingly, higher error rates late in learning could poten-
tially be associated with slower responding due to higher
uncertainty about which response alternative to select given
a particular stimulus (since the correct response might not yet
be recalled with certainty).

Another possible confounding might be that functional
couplings associated with O–R encoding strength might pri-
marily engage in error-driven S–R learning, which might as a
side effect also drive O–R learning (possibly even elsewhere
in the brain).

Regions of interest Analogously to Ruge and Wolfensteller
(2013), and in line with other studies on instruction-based
learning (Dumontheil, Thompson, & Duncan, 2011;
Hartstra, Kuhn, Verguts, & Brass, 2011), the left posterior
LPFC was selected as a seed region (MNI coordinates: –42
8 32). Likewise analogously to Ruge and Wolfensteller
(2013), this voxel was selected on the basis of a standard
univariate analysis that identified the strongest learning-
related activation changes within posterior LPFC via an F test
computing the main effect across all eight S–R–O repetition
levels, with p(F) < .05, FWE-corrected on the whole-brain
level.

We looked for significant PPI effects in three ROIs, includ-
ing most importantly the left and right basal ganglia as the
regions of primary theoretical interest. Additionally, we in-
cluded the left and right hippocampus, which has been report-
ed in previous studies on instruction-based control (Li et al.,
2011; Ruge &Wolfensteller, 2013) and has been suggested to
play a critical role in such processes in a formal
neurocomputational model (Huang et al., 2013). As a third
ROI, the orbitofrontal cortex (OFC) was included, defined by
Brodmann areas BA11 and BA47. We included this region
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because previous studies had suggested its importance in goal-
directed action control (e.g., Noonan, Kolling, Walton, &
Rushworth, 2012; Ruge & Wolfensteller, 2013; Valentin,
Dickinson, & O’Doherty, 2007). Anatomical information
was taken from the automatic anatomic labeling atlas (AAL)
for the basal ganglia and hippocampus (Tzourio-Mazoyer
et al., 2002) and from the Brodmann parcellation used in the
MRICRON software for the OFC ROI (Rorden, Karnath, &
Bonilha, 2007).

Results

Behavior (S–R–O learning phase)

We computed two separate one-way repeated measures anal-
yses of variance (ANOVAs) with the factor S–R–ORepetition
(SRO-Rep1 through SRO-Rep8) for mean response times
(RTs) and mean error rates using SPSS 21. The analyses
revealed highly significant S–R–O repetition effects for both
RTs [F(3, 63) = 67.3, p(F) < .001, Greenhouse–Geisser
corrected] and errors [F(3, 70) = 15.1, p(F) < .001,
Greenhouse–Geisser corrected]. As expected, we observed a
sharp drop in RTs from SRO-Rep1 to SRO-Rep2, likely
reflecting a strong “orienting response” upon the introduction
of novel stimuli at SRO-Rep1 (see Fig. 3). This was followed
by a slight RT increase at SRO-Rep4, indicating the transition
into the unguided phase, in which responses had to be selected
on the basis of memorized S–R association from the preceding
guided learning phase. Then, RTs gradually declined until
SRO-Rep8. The learning curve for error rates is mainly char-
acterized by a sharp increase in errors at SRO-Rep4, again
indicating the transition into memory-based response selec-
tion. Notably, the group mean was 11 % errors at SRO-Rep4,

which quickly dropped down to 5 % (see Fig. 3). This indi-
cates that the S–R instruction was well learned, given an
expected error rate of 75 % for chance-level performance,
due to the four independent and equally probable response
choices. The subject-wise behavioral index of active O–R
usage entered into the fMRI covariance analysis was defined
as the individual RT difference between late learning trials
(the mean of SRO-Rep7 and SRO-Rep8) and early learning
trials (the mean of SRO-Rep2 and SRO-Rep3). Note that on
the mean group level, a significant mean response speed-up
was indicated by a negative mean difference between SRO-
Rep7/8 and SRO-Rep2/3. Hence, as in previous experiments
(Ruge et al., 2012), the O–R-related relative slowing effect
was supposed to be embedded in a general speeding effect.
This overall speeding effect likely reflects increasingly fluent
S–R translation associated with decreasing error rates, which
indicates decreasing response uncertainty as fewer response
alternatives have to be considered (see also the third step of the
second-level fMRI analysis, in the Method section).2 To de-
termine the extent to which intersubject variability in response
slowing might in fact be due to variability in the S–R-related
speed up rather than in O–R-related slowing, we computed the
correlation between the RT differences (late – early) and the
error rate differences (late – early). This correlation was,
however, close to zero, with r = .033 (p < .88, two-sided),
suggesting that variability in response slowing cannot be
reduced to the degree of uncertainty in S–R translation,
expressed in error rates. In fact, this nonsignificant result
might be due to the relatively tiny error rates and error rate
changes from early to late in learning, which might hence
affect RTs only very marginally.

Behavior (test phase)

We computed two one-sided paired t tests to determine the O–
R compatibility effect (incompatible > compatible) for RTs
and mean error rates collected during the unguided test phase.
The analyses revealed highly significant O–R compatibility
effects for RT [t(22) = 3.1, p(t) < .005] and a just-significant
effect also for errors [t(22) = 1.7, p(t) < .05]. The subject-wise
behavioral index of O–R encoding strength that entered the
fMRI covariance analysis was defined as the individual O–R
compatibility effect in RT. The correlation between the O–R
compatibility effect in the test phase and SRO-related re-
sponse slowing during the preceding S–R–O learning phase
was not significant (r = –.28, p(r) < .20, two-sided). Notably,

2 A previous behavioral study comprised an additional control condition
in which all responses were followed by one common outcome sound,
rather than differential outcome sounds, as in the present study (Ruge
et al., 2012). Thereby, we could demonstrate more directly that the
presence of differential outcomes during rapid S–R learning is associated
with response slowing (but not error rates) on top of the general response
speed-up related to S–R learning.
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Fig. 3 Behavioral data from the S–R–O learning phase. The solid line
represents mean response times (RT), and the dashed line represents mean
percent error rates. Correct responses were guided by an instruction cue in
S–R–O Repetitions 1–3. The instruction cue was omitted in S–R–O
Repetitions 4–8.
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this is a deviation from previous results, in which we did find
significant positive correlations between slowing and the sub-
sequent O–R compatibility effect (Ruge et al., 2012).
Currently, it remains elusive which of the various design
differences between the present study and the previous study
might be responsible for the diverging results.

We also computed the correlation between O–R com-
patibility effect and the error rate difference during
learning, to assess the potential confound between
feedback-driven S–R learning and O–R encoding (see
also the third step of the second-level fMRI analysis, in
the Method section). This correlation was positive but
nonsignificant, with r = .32 (p < .14, two-sided), sug-
gesting that the O–R compatibility effect was not sub-
stantially related to uncertainty in S–R translation,
expressed in the error rates. Note that during the fMRI
analysis we nevertheless performed a control analysis
including error rate as an additional covariate, to partial
out any common covariance between O–R compatibility,
error rate difference, and brain activation.

fMRI

We first assessed general changes in functional couplings with
the LPFC seed from early to late S–R–O learning trials. This
analysis replicated previous findings by Ruge and
Wolfensteller (2013). Specifically, we found increasing func-
tional couplings between LPFC and anterior caudate, as well
between LPFC and OFC (Table 1).

The analysis of primary importance assessed potential cor-
relations between changes in LPFC couplings and the two
behavioral covariates. A learning-related increase in the func-
tional coupling between LPFC and bilateral anterior caudate
was positively correlated with response slowing as the puta-
tive maker of active O–R usage, but not with the O–R com-
patibility effect as a putative marker of O–R encoding (see
Table 2 and Figs. 4 and 5). The positive correlation between
response slowing and LPFC–caudate coupling evolved during
learning, with a significant effect late in learning but no
significant effect early in learning. This pattern was confirmed
by a median split sorting subjects into two groups according to
the size of the O–R usage index (Fig. 5B). Moreover, the same

correlational pattern was observed for the left posterior hip-
pocampus (note that a similar, but nonsignificant, effect was
observed in the homologous right posterior hippocampus).
Supplementary Table S1 additionally includes the correlation
coefficients for the association between response slowing and
functional couplings for mid learning trials in relation to early
and late learning trials. For all identified areas, this comple-
mentary analysis demonstrates a gradual increase from early
to late with mid-learning correlations always lying between
these two values. This means that the observed effects were
not just driven by differences in functional couplings between
guided (SRO-Rep1/2/3) and unguided (SRO-Rep4/5/6/7/8)
learning trials, which might have been potentially associated
solely with differences in S–R retrieval demands.

In contrast to O–R usage, O–R encoding strength by itself
(i.e., size of the postlearning O–R compatibility effect) was
correlated with a different set of functional couplings, and this
correlation was structured in a completely different way (see
Table 3 and Figs. 4 and 5). Specifically, O–R encoding
strength was negatively correlated with LPFC–putamen func-
tional coupling late in learning, and additionally positively
correlated with LPFC–putamen functional coupling early in
learning. Again, this pattern was confirmed by a median split
sorting subjects into two groups according to the size of the
O–R encoding-strength index (Fig. 5B). The same correla-
tional pattern was also observed for the left and right anterior
hippocampi. Supplementary Table S2 additionally includes
the correlation coefficients for the association between O–R
compatibility and functional couplings for mid learning in
relation to early and late in learning. For all identified areas,
this complementary analysis demonstrates a gradual decrease
from early to late, with mid-learning correlations always lying
between these two values. Again, this means that the observed
effects were not primarily driven by differences in functional
couplings between guided (SRO-Rep1/2/3) and unguided
(SRO-Rep4/5/6/7/8) learning trials.

Finally, we found no significant correlation between the
behavioral indices and learning-related BOLD activation in
striatal or orbitofrontal areas without considering their func-
tional coupling with LPFC. A direct correlation with O–R
strength was observed only for the most dorsal section of the
left and right hippocampi [MNI –18 –37 1 and MNI 21 –34 4,

Table 1 Functional coupling with LPFC during S–R–O learning (late > early)

Region of interest Subregion MNI coordinates Coupling at late – early

x y z t p Voxel (FWE-Corr.) Cluster Size p Cluster (FWE-Corr.)

Left basal ganglia Ant. caudate –12 20 –8 4.47 .028 8 .059

Left orbitofrontal Lateral OFC (BA47) –42 47 –8 4.45 .060 32 .032

Lateral OFC (BA47) –36 41 –8 4.10 .112 Same cluster as above

Right orbitofrontal Medial/central OFC (BA11) 18 56 –5 4.69 .042 3 .180
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t = 4.78; p(FWE) < .015 and t = 7.1, p(FWE) < .001]. But
these hippocampal activation clusters were entirely nonover-
lapping with the posterior hippocampal regions that exhibited
a correlation between LPFC coupling and O–R usage.

Control analyses

Two additional analyses were performed in order to exclude
the possibility that any of the above reported correlations
between functional couplings and the behavioral indices of
O–R usage and O–R encoding strength might equally well be
explained by interindividual differences in error rates related
to S–R learning (see also the third step of the second-level
fMRI analysis in the Method section). In general, the opposite
seems to be true. Simultaneously entering response slowing
and error rate difference (late vs. early) as covariates slightly
increased rather than decreased the t values for the response-
slowing covariate (Supplementary Table S3). The error rate
covariate did not reach significance after small-volume FWE
correction. Simultaneously entering the two covariates O–R
compatibility and error rate difference (late vs. early) substan-
tially increased rather than decreased the t values for the O–R
compatibility covariate (Supplementary Table S4). This sug-
gests that interindividual differences in error rates and O–R
compatibility effects bind different variance components in
the relevant brain areas that would otherwise be part of the
residual, and hence would reduce t values. This interpretation
is further corroborated by the finding that the error rate differ-
ence (late vs. early) significantly correlated with the learning-
related coupling between LPFC and areas within putamen and
anterior hippocampus that are highly similar to those found for
the O–R compatibility covariate (Table 4).

Discussion

This study was set up to characterize the relationship between
behavioral and neural indices of model-based (here: instruc-
tion-based) learning of novel goal-directed actions.
Specifically, by combining the two data modalities, we aimed
to gain novel insights about possible subprocesses of integrat-
ing O–R contingencies into the current task model that are
difficult to obtain by separately assessing behavioral and
neural data in isolation. One specific focus was on the anterior
caudate, a region implicated in goal-directed behavior in
feedback-driven learning situations (O’Doherty et al., 2004;
Tanaka, Balleine, & O’Doherty, 2008; Tricomi, Delgado, &
Fiez, 2004) and tightly coupled to the LPFC in instruction-
based learning situations, especially with high rather than low
O–R contingency (Ruge & Wolfensteller, 2013).

In the present study, we found clear indication that active O–
R usage (increasing response slowing across S–R–O learning)T
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was specifically associated with increasing learning-related
functional coupling between the LPFC and anterior caudate.
By contrast, O–R encoding strength by itself (test-phase O–R
compatibility effect in response times) was linked to the cou-
pling between LPFC and putamen (i.e., the rodent dorsolateral
striatum), which constitutes the putative striatal subdivision held
to be responsible for habit formation (Balleine &Ostlund, 2007;
Yin & Knowlton, 2006) at least during intermediate stages of
automatization (Ashby et al., 2010). Similar to the functional
differentiation of striatal couplings with the LPFC, we also
found distinct hippocampal areas that were coupled with
LPFC as a function of either O–R usage (posterior hippocam-
pus) or O–R encoding strength (anterior hippocampus).

Importantly, none of the mentioned correlations between
LPFC-seeded couplings and O–R encoding strength or O–R
usage could be reduced to interindividual variability in S–R
learning as indexed by error rates. On the contrary, variability in
S–R learning and variability in O–R learning seem to be

independently associated with couplings between LPFC and
almost identical locations in putamen and hippocampus under
instruction-based learning conditions. Thus, although S–R
learning and O–R learning seem to share common neural
substrates, the engagement of these shared neural resources
for S–R learning and O–R learning is dissociated across sub-
jects (e.g., a good early S–R learner is not necessarily a good
early O–R learner and vice versa). This independence of cor-
relations might be surprising on the one hand, as O–R learning
can be regarded as being closely related to S–R learning (cf.
Balleine & Ostlund, 2007). In both cases a mental representa-
tion of a stimulus becomes associated with a response.
However, on the other hand, it is also clear that additional
sources of variability might affect O–R learning even though
the O is essentially also just a stimulus. First, the S in S–R
learning is sensorially present prior to responding whereas the
O is only mentally represented prior to responding. Second, to
become mentally represented in the first place, the O needs be

Fig. 4 Visualization of the results obtained by the left lateral-prefrontal-
cortex-seeded (MNI –42 8 28) psychophysiological interaction (PPI)
analysis, comparing interregional couplings in late learning trials (mean
S–R–O Repetitions 7 and 8) and in early learning trials (mean S–R–O
Repetitions 2 and 3). Voxels colored in blue (Putamen and anterior
Hippocampus) depict significant correlations across subjects between

the PPI effect and the behavioral index of O–R encoding strength. Voxels
colored in red (anterior Caudate and posterior Hippocampus) depict
significant correlations between the PPI effect and the behavioral index
of active O–R usage. For visualization purposes, the images were
thresholded at p < .005 uncorrected.
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retrieved through S–O associations that must have been learned
beforehand. Both aspects might add across-subjects variability
specifically in O–R learning that is not present in S–R learning.

Another important observation is that, without considering
functional couplings to the LPFC, neither caudate nor puta-
men were correlated with the behavioral indices of O–R
strength or O–R usage, respectively. This is generally a crucial

point to make as the striatal dependency on LPFC activation is
exactly what is expected for theoretical reasons when learning
is based on an explicit model of O–R contingencies tempo-
rarily being stored in the LPFC (Doll et al., 2009; Doll et al.,
2012; Ramamoorthy & Verguts, 2012). However, it should be
noted that the type of connectivity analysis chosen here does
not warrant unequivocal statements about causal
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Fig. 5 Summary of the results obtained by the left lateral prefrontal
cortex (LPFC)-seeded (MNI –42 8 28) PPI analysis for two exemplary
clusters exhibiting significant correlations with the behavioral indices of
either active O–R usage (i.e., RT slowing; red/light grey in print) or O–R
encoding strength (i.e., O–R compatibility effect; blue/dark grey in print).

(A) Scatterplots depict correlations between the behavioral indices and
the gPPI effects for late versus early learning trials. (B) The bar graphs
depict the size of the gPPI effects in early and late learning trials, shown
separately for two groups of subjects defined by median splits according
to O–R usage (left) and O–R encoding strength (right).
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relationships. Hence, it might well be that the functional
couplings between LPFC and striatal areas are in fact driven
by common input from other areas. For instance, O–R learn-
ing might take place in the putamen as well as in the LPFC,
but both might be only indirectly coupled via a common
driving input from S–O encoding processes that might possi-
bly be mediated by orbitofrontal regions, especially for
nonincentive outcomes like the ones employed in the present
study (Clark, Hollon, & Phillips, 2012; McNamee, Rangel, &
O’Doherty, 2013).

Furthermore, the observed fronto-striatal couplings were
not only differentially correlated with O–R usage and O–R
encoding, but the temporal structure of these correlations was
entirely different. O–R usage was positively correlated with
LPFC–caudate coupling late in learning but not yet early in
learning. This might simply suggest that it takes a few learning
cycles before the full S–R–O contingency model is being
integrated into caudate-based action selection processes.
These “few learning cycles” do not seem to be directly related
to our O–R encoding index, which was neither correlated with
the behavioral O–R usage index nor modulated the correlation
between O–R usage and LPFC–caudate coupling. Hence,
although it is a necessary element in the putative S-O → O–
R chain, successful O–R encoding alone is not sufficient for
O–R usage.

The correlational dynamics regarding LPFC–putamen cou-
pling were different. Specifically, O–R encoding strength was
negatively correlated with LPFC–putamen coupling late in
learning and additionally positively correlated with LPFC–
putamen coupling early in learning. This seems to suggest that
good O–R learners (indicated by strong O–R compatibility
effects) benefited from an early boost in LPFC–putamen
coupling leaving quite some time for subsequent O–R consol-
idation. By contrast, the late boost of the same couplings in
weak O–R learners might imply less remaining time for O–R
consolidation, which in sum results in relatively poorly
encoded O–R associations. Interestingly, the LPFC showed
a similar temporal pattern of couplings with quite similar areas
in the putamen (and anterior hippocampus, for that matter) as
a function of the error rate difference between late and early
stages in learning. Specifically, when the error rate was rela-
tively high late (i.e., small error rate difference relative to early
learning trials), LPFC–putamen coupling was relatively weak
early and relatively strong late. By contrast, when the error
rate was relatively low late, LPFC–putamen coupling was
relatively strong early and relatively weak late. Together this
suggests that the LPFC–putamen coupling increases whenev-
er S–R learning is ongoing. In some subjects, S–R learning
occurs early (accompanied by strong coupling) resulting in
strongly reduced error rates late (accompanied by weak cou-
pling). Other subjects show weak S–R learning early (accom-
panied by weak coupling) and have to catch up with S–R
learning late (accompanied by strong coupling).T
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Specificity of LPFC–anterior caudate functional couplings

Together, the present findings clearly suggest that the func-
tional coupling between LPFC and anterior caudate is specif-
ically linked to active O–R usage rather than O–R encoding
by itself. Our findings go beyond previous studies that dem-
onstrated an involvement of anterior caudate in instruction-
based learning but did not look into possible functional cou-
plings (Ruge & Wolfensteller, 2010; Stocco, Lebiere,
O’Reilly, & Anderson, 2012), or that demonstrated functional
couplings between PFC and caudate but did not establish a
clear link with the expression of overt goal-directed behavior
(Li et al., 2011; Ruge & Wolfensteller, 2013). It is interesting
to note that the observed correlation between O–R usage and
LPFC-seeded functional coupling was located rather dorsally
in the anterior caudate (z = +4). This corresponds roughly to a
“dorsal striatum” region (z =0) that has previously been
interpreted to be relevant for linking predicted outcomes to
actions under trial-and-error learning conditions (O’Doherty
et al., 2004). By contrast the same previous study implicated
the “ventral striatum” region (z = –10) in stimulus-based
outcome prediction. In the present study the ventral striatum
(z = –8) exhibited a generally increased learning-related cou-
pling with the LPFC without being modulated by O–R usage.
Hence together, this might suggest that S–O prediction sup-
ported by the ventral anterior caudate region is relatively
stable across subjects and only action selection based on that
predicted outcome varies considerably between subjects.

Generally, the convergence of results between trial-and-
error learning and instruction-based learning highlights the
strikingly similar functional differentiation within the anterior
striatum. Yet, the important distinction seems to be that in the
latter case it emerges through functional coupling with the
LPFC.

Stimulus–response associations, outcome–response
associations, and the habit concept

The putamen is typically thought to be part of the habit system
(Ashby et al., 2010; Dolan & Dayan, 2013; Seger & Spiering,
2011; Yin & Knowlton, 2006). Accordingly, the association
between LPFC–putamen coupling and S–R encoding (error
rate index) and O–R encoding (O–R compatibility index)
suggests an early formation of habit-like S–R and O–R mem-
ory traces under instructed learning conditions. These obser-
vations are in line with recent re-assessments of certain aspects
of the traditional habit concept (e.g., Seger & Spiering, 2011).
First, it is well known that behavioral control shifts from goal-
directed to habitual with extended practice. Contrary to this
notion, in the present study the extent of practice was minimal
(eight S–R–O repetitions). It is therefore likely that putamen
involvement in the present context reflected not the behavioral
control by habit-like representations, which would becomeT
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increasingly dominant only with extended practice, but rather
the initial formation of habit-like representations. Hence,
learning-related LPFC–putamen coupling seems to reflect
the initial formation of S–R and O–R representations as pre-
cursors of “true” habits, that would develop if practice would
proceed substantially longer up to a point at which the puta-
men might act independently of the lateral PFC. This is in line
with the classical distinction between latent learning and
performance (Tolman, 1948) and with results showing that
deactivations of certain cortical regions in the rodent brain can
shift behavioral control back-and-forth between habitual and
goal-directed independent of the amount of practice (Killcross
& Coutureau, 2003). Generally, increasing evidence seems to
support a concurrent engagement of both habit-related and
goal-related computations early in practice (Brovelli,
Nazarian, Meunier, & Boussaoud, 2011; Dolan & Dayan,
2013; Seger & Spiering, 2011).

Second, a habit is typically thought to be operating auto-
matically and in the absence of voluntary control based on
explicit knowledge buffered in the PFC. Contrary to this
notion, in the present study the neural instantiation of precur-
sors of both “S–R habits” and “O–R habits” emerged specif-
ically via LPFC–putamen interaction suggesting an involve-
ment of explicit contingency knowledge stored in the LPFC.
Based on this we suggest the possibility that habits might be
established via two different mechanisms. The classical mech-
anism would operate in the absence of awareness, completely
model-free and solely relying on the putamen. Alternatively,
habit (S–R as well as O–R) formation in the putamen might
occur in the presence of awareness, scaffolded by an explicit
model held in the LPFC. From a broader perspective, this
characterization of LPFC function in rule-guided behavior is,
for instance, in line with data showing that the LPFC is
becoming engaged once a subject becomes aware of “hidden”
(i.e., relatively complex) event contingencies (Rose, Haider, &
Büchel, 2010).

Functional couplings between LPFC and hippocampus

Although previous studies have already demonstrated that
instruction-based influences on learning are associated with
fronto-hippocampal interactions (Li et al., 2011; Ruge &
Wolfensteller, 2013), the present dissociation between hippo-
campal subregions appears more difficult to account for con-
ceptually than the dissociation between caudate and putamen
discussed above. However, the hippocampus has recently
been suggested to play an important role in predicting future
states and this hippocampal capacity has in fact been linked to
the goal-directed control of action (Fouquet et al., 2013;
Johnson, van der Meer, & Redish, 2007; Kennedy &
Shapiro, 2009; Zilli & Hasselmo, 2008). Indeed it seems
that—consistent with our results—a number of such studies
have specifically implicated the posterior/dorsal hippocampus

in goal-directed action control (Fouquet et al., 2013; Gourley,
Lee, Howell, Pittenger, & Taylor, 2010).

More generally, the hippocampus is known to play a piv-
otal role in experience-based single-trial episodic memory
formation and retrieval (e.g., O’Reilly & Rudy, 2001; Rolls,
2010; Tulving & Markowitsch, 1998). Importantly, there is
also ample evidence for an interaction between working mem-
ory and episodic memory processes that seems to be based on
an interact ion between LPFC and hippocampal/
parahippocampal areas (Bergmann, Rijpkema, Fernández, &
Kessels, 2012; Meyer-Lindenberg et al., 2005; Ranganath,
Cohen, & Brozinsky, 2005; Zilli & Hasselmo, 2008). For
instance, anterior hippocampus activation at the time point
of encoding has been shown to differentiate particularly well
between subsequent correct and erroneous recall of an expe-
rienced episode (Summerfield et al., 2006). Notably, the same
study also showed that the functional coupling between LPFC
and anterior hippocampus predicted subsequent memory per-
formance. Such a finding is in line with the present study
results, which suggest a similar relevance of LPFC coupling
with the anterior hippocampus during encoding for the subse-
quent retrieval of O–R associations as expressed in the size of
the O–R compatibility effect. This coupling might indicate
either the transfer of O–R working memory representation
into episodic long-term memory (e.g., Ranganath et al.,
2005) or it might reflect the integration of episodic O–R
memories into the current task model stored in LPFC working
memory.

Interestingly, two other studies reported activations in the
anterior hippocampus without LPFC coupling when exten-
sively learnt response outcomes served as primes that should
automatically trigger response tendencies consistent with pre-
viously established O–R associations (Elsner et al., 2002;
Melcher et al., 2013). This suggests that the anterior hippo-
campus might become independent of LPFC after extensive
learning of O–R associations and is not exclusively relevant
for short-term O–R encoding/retrieval processes accom-
plished in cooperation with LPFC as is the case under
instruction-based learning conditions in the present study.

Conclusions

Together, our results suggest that fronto-striatal couplings
enable the learning of novel goal-directed actions via an
internal model of response–outcome contingencies buffered
in LPFC “procedural working memory” (cf. Oberauer, 2009).
More specifically, the learning-related functional coupling
between LPFC and anterior caudate is associated with O–R
usage rather than with O–R encoding by itself. This suggests a
pivotal role of the anterior caudate for establishing the online
control of goal-directed action and implies a similar striatal
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specialization as in model-free feedback-driven learning, yet
emerging through functional couplings with the LPFC. As
another novel contribution, our study shows that hippocampal
involvement in goal-directed action also emerges through
functional couplings with the LPFC, and that this hippocam-
pal involvement can be differentiated according to O–R usage
(posterior/dorsal) and O–R encoding (anterior/ventral). It re-
mains to be clarified whether the reported correlational effects
between behavior and functional couplings are specific for
instruction-based learning situations or would generalize to
situations in which novel rules are entirely and solely extract-
ed via trial and error.
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