
ARTICLE

The protein translation machinery is expressed for
maximal efficiency in Escherichia coli
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Protein synthesis is the most expensive process in fast-growing bacteria. Experimentally

observed growth rate dependencies of the translation machinery form the basis of powerful

phenomenological growth laws; however, a quantitative theory on the basis of biochemical

and biophysical constraints is lacking. Here, we show that the growth rate-dependence of the

concentrations of ribosomes, tRNAs, mRNA, and elongation factors observed in Escherichia

coli can be predicted accurately from a minimization of cellular costs in a mechanistic model

of protein translation. The model is constrained only by the physicochemical properties of the

molecules and has no adjustable parameters. The costs of individual components (made of

protein and RNA parts) can be approximated through molecular masses, which correlate

strongly with alternative cost measures such as the molecules’ carbon content or the

requirement of energy or enzymes for their biosynthesis. Analogous cost minimization

approaches may facilitate similar quantitative insights also for other cellular subsystems.
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Protein translation is central to the self-replication of bio-
logical cells. While the workings of its individual compo-
nents are well understood, the translation apparatus is a

complex machine with many degrees of freedom, where the same
rate of protein production could be achieved with very different
relative abundances of its components. Although a large body of
quantitative experimental data on these abundances in E. coli
across different growth conditions is available, it is still unclear
according to which organizing principle(s)—if any—they are set
by the cell. Given that translation is the energetically most
expensive process in fast growing E. coli cells, accounting for up
to 50% of the proteome1 and 2/3 of cellular ATP consumption2, it
is likely that natural selection acted to optimize the efficiency of
translation. But what exactly is efficiency in the evolutionary
context?

In the late 1950s, it was hypothesized that ribosomes operate at
a constant, maximal rate3,4, consistent with the observed linear
dependence of ribosome concentration on growth rate3,5–7. This
hypothesis was later proven untenable, as the activity of ribo-
somes was observed to increase with growth rate8. Klumpp et al.9

suggested that optimal translational efficiency corresponds to the
parsimonious usage of translation-associated proteins, most
notably ribosomal proteins, elongation factor Tu, and tRNA
synthetases. While these authors were able to fit a coarse-grained
phenomenological model to the data, their suggested evolutionary
objective could also not explain the observed growth rate
dependencies quantitatively (see Supplementary Note 1 for a

discussion of ref. 9 and of the phenomenological model of bac-
terial growth it is based on5,10). Thus, it is currently unclear to
what extent translation has indeed been optimized by natural
selection, and—if such optimization indeed occurred—whether
its action can be expressed in terms of a simple objective function.

In principle, these questions would best be addressed in the
context of a whole-cell model of balanced growth that combines
mechanistic descriptions of metabolism and protein production.
However, while such models have been described con-
ceptually11,12, kinetic parameterizations are unavailable for a
majority of the relevant enzymatic reactions13, preventing a truly
mechanistic description that combines metabolism and protein
translation. Thus, we here focus on protein production alone,
taking the experimentally observed output of translation (pro-
teome production rate and composition in a given growth con-
dition), the corresponding input (charged tRNAs), and the
kinetics of individual translation reactions as given. We then use
this mechanistic description of translation to find the combina-
tion of the concentrations of mRNA, ribosomes, elongation fac-
tors, and tRNAs that results in minimal cellular costs in the given
condition. Thus, our estimate of the optimal efficiency of the
translation machinery is not based on the maximization of
ribosome activity, but on the minimization of the combined cost
of the complete translation machinery at an observed protein
production output.

We base our cost definition on the experimental observation
that cellular dry mass per cell volume is approximately constant
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Fig. 1 Schematic overview of the translation model. A reduced pathway for elongation with amino acids cysteine (aminoacyl-tRNA Cys) and glutamine
(aa-tRNA Gln1, Gln2) is represented in Systems Biology Graphical Notation. Initiation: free (unbound) ribosome gets converted to active ribosome,
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state transition: active ribosome instantaneously binds to codons (61 codons in full model, 4 here) at the fractions set by the specified proteome
composition. Ternary complex formation: charged tRNAs (40 aa-tRNAs in full model, 3 here), replenished from a pool, combine with EF-Tu*GTP to form
ternary complexes (40 TCs in the full model). Kinetic parameters of these reversible processes depend on the aa-tRNA. Elongation: labeled ribosome binds
with the cognate TC to elongate the protein with the respective amino acid. The ribosome returns to its active state and EF-Tu*GDP is released. Other
products of this reaction, such as deacylated tRNA, are not modeled. Nucleotide exchange (see right panel): EF-Tu*GDP is reactivated to EF-Tu*GTP in a
sequence of steps modeled by reversible mass action kinetics. GTP and GDP pools are modeled with fixed concentrations. The nucleotide exchange is
supported by EF-Ts, and the main flux is carried through the complexes formed by EF-Tu with EF-Ts.
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across environments and growth rates in E. coli14, as is the total
mass concentration in the cytosol15. If the cell allocates more of
this limited mass concentration budget to one particular process,
less is available to other processes. The upper bound for the
cytosolic mass concentration, beyond which diffusion becomes
inefficient, is a fundamental constraint on cellular growth16–18,
and we thus use the cytosolic mass concentration of a particular
molecule type as an approximation to its cost. Theoretical models
of cellular growth that account for all major biochemical and
biophysical constraints indicate that the limit on cellular dry mass
indeed represents a dominant constraint on bacterial growth
rates12.

We hypothesize that to maximize the E. coli growth rate in a
given environment, natural selection minimizes the total mass
concentration of translation components utilized to achieve the
required protein production rate. A corresponding optimality
principle has been used to understand the relationship between
the concentrations of enzymes and their substrates19.

We find that a theoretical minimization of the combined cel-
lular costs of the translation machinery components indeed leads
to accurate predictions for their abundances, the resulting elon-
gation rate, and the RNA/protein ratio. In addition to molecular
masses, we also examine four alternative cost measures for cel-
lular components that have been explored in the literature: (i)
their protein content9,20; (ii) their carbon content21; and (iii) the
energy22,23 or (iv) the amount of catalysts5,24 required for their
production. We find that these alternative cost measures are
strongly correlated for the studied components of the translation
machinery and lead to very similar predictions for their abun-
dances; the only cost measure that leads to substantially different
predictions is the protein content, which does not assign any cost
to tRNA and mRNA molecules.

Results
Cost minimization in a mechanistic model of translation. To
test our hypothesis, we constructed a translation model consisting
of 274 biochemical reactions, including 119 reactions with non-
linear kinetics. Figure 1 shows the modeled reactions for a subset
of the 61 codons and the 40 species of charged tRNAs; for details
see Methods, Supplementary Table 1, and Supplementary Data 1.
This mechanistic model accounts for the concentrations of
mRNA, the ribosome, the different charged tRNAs, and the
elongation factors Ts (EF-Ts) and Tu (EF-Tu). We fully para-
meterized the model with molecular masses and kinetic constants
measured experimentally25–27; the only exceptions are the
translation initiation parameters, which were previously esti-
mated from gene expression data25, and the ribosomal Michaelis
constant for the ternary complexes, which was previously esti-
mated based on the diffusion limit9. The model is based purely on
biochemical and biophysical considerations; it contains no
adjustable parameters, nor does it include any explicit growth-
rate dependencies.

For E. coli growing under different experimental conditions, we
used measured growth rates and protein concentrations28 to
determine the required translation rate and the proportions of the
different amino acids incorporated into the elongating proteins.
At this required protein production rate, we minimized the
combined cost of the translation machinery in our model,
treating the concentrations of all components as free variables;
the values of individual reaction fluxes result deterministically
from these concentrations according to the respective rate laws
(Methods). As the modeled kinetic rate laws are non-linear, all
optimizations were performed numerically. In repeated optimiza-
tion runs with two different solvers, we never found alternative
optima, indicating that the optimization problem may be convex.

The results shown in the main text and figures are based on the
assumption that costs are proportional to molecular masses;
results based on other cost functions are shown in Supplementary
Figs. 5 and 7.

Predicted concentrations agree with observations. We first
compared our predictions to experimental data for exponentially
growing E. coli in different conditions8,28–31. Figure 2 shows the
results for growth in a glucose-limited chemostat at growth rate μ
= 0.35 h−1; for other conditions, see Supplementary Fig. 1. The
mechanistic model accurately predicts the absolute concentra-
tions of ribosomes, EF-Tu, EF-Ts, mRNA, and total tRNA in each
condition. Predictions for individual tRNA concentrations are
less accurate but are still mostly within a 2-fold error (Fig. 2,
Supplementary Fig. 1); the discrepancies may be due to the
simplifying assumption of the same ribosomal Michaelis constant
Km for all tRNA species9.

We next tested if this systems-level view on the total cost of
translation explains the observed growth rate-dependencies of the
expression of translation machinery components8,28,29,31,32, of
the elongation rate32, and of the RNA/protein ratio5,32,
considering experimental data across 20 diverse conditions
(14 minimal media, including 3 stress conditions; 4 chemostats;
and 2 rich media)28. The predicted concentrations of ribosomes,
EF-Tu, and EF-Ts increase with growth rate in line with
experimental observations (Fig. 3).

Predicted absolute abundances of EF-Tu (Fig. 3a), EF-Ts
(Fig. 3b), and mRNA (Supplementary Fig. 2a) account quantita-
tively for the experimental data8,28–31, with average deviations
(geometric mean fold-error) GMFE ≤ 27% for the elongation
factors and GMFE= 6% for mRNA. At low growth rates,
experimentally observed concentrations of EF-Tu (Fig. 3a) and
tRNA (Supplementary Fig. 2b) are higher than predicted. The
model only includes charged (aminoacyl-) tRNA concentrations,
and it is likely that the unknown fraction of uncharged tRNA
explains at least part of this deviation. Overall, the largest
deviations between observed concentrations and predictions are
seen in the two non-minimal conditions, which also exhibit the
fastest growth (µ > 1 h−1). A recent analytical study of balanced
cellular growth indicates that these deviations may result from the
influence of an increased growth-related dilution of cofactors and
other intermediate metabolites, a phenomenon not included in
our simulations12.

Active and de-activated ribosome fractions. At low growth rates
(µ < 0.3 h−1; Fig. 3c), observed ribosome concentrations exceed
those predicted from cost minimization, a deviation consistent
with a substantial reserve of deactivated ribosomes at low growth
rates32. Such deactivated ribosomes may provide fitness benefits
in changing environments33,34, but cannot be maximally efficient
in a constant environment and thus cannot be predicted by our
optimization strategy. To allow a meaningful comparison
between predictions and experiment, we thus estimated the
experimental concentration of ribosomes actively involved in
elongation (Methods). Cost minimization predicts these experi-
mental estimates with high accuracy across the full range of
assayed growth rates; observed values deviate from predictions on
average by GMFE= 14% (Fig. 3d).

The remaining, non-active ribosome fraction comprises two
parts: the deactivated ribosome reserve currently unavailable for
translation32, and free, potentially active ribosomes not currently
bound to mRNA (see Supplementary Note 2 for the nomen-
clature on ribosome states). As our model quantifies the
abundance of both active and free ribosomes, their subtraction
from observed total ribosome concentrations provides an

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18948-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5260 | https://doi.org/10.1038/s41467-020-18948-x | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


estimate of the deactivated ribosome reserve as a function of the
growth rate (Fig. 4). While this reserve accounts for less than 20%
of total ribosomes at fast to moderate growth, it reaches almost
50% at the lowest growth rate assayed in ref. 28.

RNA/protein ratio and elongation rate. A linear correlation
between the RNA/protein ratio and growth rate was discovered in
the 1950s3,6,7,35 and forms the basis of phenomenological bac-
terial growth laws5,9,32. Relating the predicted total RNA (ribo-
somal RNA+ tRNA+mRNA) with measured protein
concentrations28 indeed results in a near-linear relationship,
accurately matching observed values at high to intermediate
growth rates (µ > 0.3 h−1; Fig. 5a). At lower growth rates, model
predictions are slightly too low, likely because of the deactivated
ribosome reserve32 (Fig. 4). At low growth rates (µ= 0.12 h−1),
predictions of RNA and proteins allocated to an optimally effi-
cient translation machinery (including deactivated ribosomes)
account for 13% of total dry mass, rising almost linearly to 49% at
high growth rates (µ= 1.9 h−1; Supplementary Fig. 3).

The concentrations of the individual components of the
translation machinery determine the average translation elonga-
tion rate (ribosomal activity), defined as the total cellular
translation rate divided by the total active ribosome content34.
The predicted elongation rates closely match the experimental
data32 over a broad range of growth rates (Fig. 5b).

Cost minimization predicts response to antibiotics. The
expression of E. coli’s translation machinery reacts strongly to the

exposure to antibiotics that inhibit the ribosome, such as chlor-
amphenicol5,32,36. The details of these changes can also be
understood from our hypothesis of cost minimization. The con-
centrations of ribosomes and EF-Tu, the RNA/protein ratio, and
the elongation rate of active ribosomes increase under chlor-
amphenicol stress (Supplementary Fig. 4); these changes partially
compensate for the reduced fraction of active ribosomes. The
concentration of EF-Ts instead decreases with increasing chlor-
amphenicol concentration (Supplementary Fig. 4c). EF-Ts con-
tributes to translation by converting EF-Tu·GDP to EF-Tu·GTP,
which then forms a ternary complex with charged tRNA. Under
chloramphenicol stress, fewer ternary complexes are turned over,
and hence less EF-Ts is needed.

Alternative cost measures lead to similar results. The biological
fitness of E. coli cells depends on many factors, and hence any
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simple assignment of fitness costs to molecules can only be
approximate. The results presented so far are based on the
assumption that costs are proportional to molecular masses. To
test if alternative cost measures lead to consistent results, we
repeated our calculations using four distinct costs that have been
employed in the literature.

Across most conditions, we obtained very similar predictions
for the concentrations of translation machinery components
when our model assigned molecular costs based on the carbon
content of the molecules21, on the amount of energy22,23 spent on
their production (ATP cost), or on the total investment into
macromolecular catalysts24 required for their production (synth-
esis cost) (Supplementary Figs. 5 and 6; we estimated ATP costs
based on refs. 37,38, and calculated synthesis costs using flux
balance analysis with molecular crowding39–41, see Methods). All
components whose concentrations we predict consist of protein,
RNA, or both, and all costs examined are approximately
proportional to the lengths of RNA and protein molecules. Thus,
the relative costs of all components are essentially a function of
the RNA/protein cost ratio r, i.e., the cost of RNA per nucleotide
divided by the cost of protein per amino acid. We assume that the
cost of RNA per nucleotide is identical for tRNA and rRNA; the
corresponding cost ratio is broadly similar between molecular
masses (r= 3.0), carbon content (r= 2.0), ATP cost (r= 1.6), and
synthesis costs (r= 1.7–2.1) across minimal growth conditions (µ
< 1 h−1; Supplementary Fig. 7). In contrast, assuming that costs
are proportional to only the protein content of the molecular
assemblies9,20 results in an RNA/protein cost ratio of zero.
Predictions based on protein costs hence overestimate mRNA
and tRNA concentrations (which cost nothing), resulting in
corresponding underestimates of EF-Ts and especially EF-Tu
concentrations (Supplementary Figs. 5, 6).

We note that in rich medium (µ= 1.9 h−1), the RNA/protein
cost ratio for synthesis costs is much lower than across minimal
media, falling to r= 0.21 for tRNA and rRNA (Supplementary
Fig. 7). This results in an overprediction of the observed tRNA
concentration8,29,31 by a factor of almost 2 (Supplementary
Fig. 6). Moreover, while the predicted tRNA concentration is also
almost twice the predicted EF-Tu concentration, experimental
estimates for tRNA and EF-Tu are very similar8,28,29,31,42. We
conclude that if the translation machinery has been optimized for

efficiency at high growth rates by natural selection, the synthesis
cost of its components is unlikely to have been central to this
optimization.

In sum, cost minimization in a mechanistic bottom-up model
of optimal translation efficiency, fully parameterized with known
kinetic constants and molecular masses, accounts quantitatively
for the concentrations of all molecule species involved without
any adjustable parameters. The optimal concentrations of
different components change differentially with growth rate,
explaining the observed scaling of E. coli’s translation machinery
composition, RNA composition, and elongation rate. At least for
the translation machinery part of the cellular economy, whose
components consist largely of protein and RNA, approximate
cost measures appear to be sufficient: several alternative cost
measures provided predictions very similar to those based on
molecular masses, emphasizing the generality of our findings.

We conclude that E. coli’s translation machinery works close to
optimal cost efficiency. Accordingly, our findings are consistent
with the hypothesis that natural selection has minimized a cost
function similar to those examined here. Our results further
support the idea that phenomenological growth laws of proteome
composition5,9,32,36 may have their root in the costs associated
with the non-protein molecules involved in particular processes,
and that their explicit inclusion in systems biology models of
cellular growth9,25,43,44 may eventually allow these models to
abandon any reliance on phenomenological parameters.

Methods
Experimental concentrations of ribosomes, EF-Tu, and EF-Ts. We used molar
concentrations (µM) in the model; thus, all experimental data were converted to
molar concentrations. We first calculated the total protein density during expo-
nential growth on a glucose minimal medium at growth rate μ= 0.58 h−1. In this
condition, the total protein mass per cell is 280 fg (Supplementary Note 3 in
ref. 28), and cell volume is 1.90 fL (the cell volume 2.84 fL modified by a factor of
0.67 according to Supplementary Note 3 in ref. 28). Accordingly, the protein mass
density on glucose is ρp,glc= 147.15 g L−1.

We then fitted a second-order polynomial function ϕ(μ) to the fraction of total
protein in dry mass provided in ref. 1 across different growth rates µ. With ϕ(μ), ρp,
glc= 147.15 g L−1 at μ= 0.58 h−1, and the observed constant dry mass density of E.
coli across growth conditions14,15, we obtained the condition-specific total protein
concentration, ρp, for all other growth conditions based on the respective observed
growth rates.

For a given growth rate, μ′, the total protein concentration ρp, μ = μ′ is given by

ρp;μ¼ μ0 ¼
ϕ μ ¼ μ0ð Þ � ρp;glc
ϕ μ ¼ 0:58ð Þ ð1Þ

With the measured fraction of each protein (fp,i) in the proteome28, the molar
concentration of each protein was then calculated as

ci ¼
ρp � fp;i
MWp;i

; ð2Þ

where MWp,i is the molecular weight of protein i in g·mole−1. The ribosome
concentration was calculated as the arithmetic mean of the molar concentrations of
all ribosomal proteins.

Experimental concentration of active ribosome. Active ribosomes are defined
here as ribosomes engaged in peptide elongation. Dai et al. estimated the fraction of
active ribosomes, factive, in E. coli at different growth rates32. We fitted a Michaelis-
Menten type equation to their data, resulting in factive= μ/(0.124+ μ). For each
total ribosome concentration cribosome in ref. 28, we then estimated the corre-
sponding active ribosome concentration as cactive-ribosome= factive·cribosome.

Experimental concentrations of GTP and GDP. GTP and GDP concentrations
are from ref. 45. We chose the data for growth on glucose for all simulations (See
Supplementary Note 3 for details).

Experimental concentration of mRNA. mRNA concentration was calculated from
the data given in ref. 30 as the ratio of mRNA copy number per cell and cell volume.
To estimate the mRNA concentrations at the growth rates shown in Fig. 2 and
Supplementary Fig. 1, we fitted a second order polynomial to the mRNA con-
centration as a function of growth rate; we then read off the values at the required
growth rates. mRNA concentrations were assayed only at growth rates between
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elongation rates of actively translating ribosomes (ribosome activities); R2

= 0.93, GMFE= 1.06. At the lowest assayed growth rates, non-growth-
related translation—which is not included in the model—may become
comparable to growth-related translation; at these growth rates, the
numerical optimization of our model did not converge (μ < 0.1 h−1), and
thus the red lines are not extended into this region. Source data are
provided as a Source Data file.
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0.11 h−1 and 0.49 h−1, and we did not attempt to extrapolate values beyond
this range.

Experimental concentration of tRNA. We collected three independent datasets of
tRNA concentrations. Dataset 129 contains tRNA concentration for each individual
tRNA, whereas both dataset 28 and dataset 331 contain only total tRNA con-
centrations. In each of these experiments, tRNA abundance was measured as the
ratio of tRNA to ribosomal RNA (rRNA). We scaled these values to absolute tRNA
concentrations assuming that the rRNA concentration corresponds to the ribo-
some concentration estimated from the proteomics data (see the subsection
“Experimental concentrations of ribosomes, EF-Tu, and EF-Ts”). To estimate the
tRNA concentrations at the growth rates shown in Fig. 2 and Supplementary Fig. 1,
we used the same fitting procedure as for mRNA.

Concentrations of individual tRNAs and relationship to model. Our model
differentiates tRNAs by their anticodons (see below for details). Thus, 40 tRNAs
were used to represent all elongator tRNAs. The tRNAs modeled in this work are
listed in Supplementary Table 1 together with their common names used in dataset
129 and their gene IDs.

In the experiments by Dong et al. (dataset 1)29, tRNAs were classified into 41
distinct sets based on two-dimensional polyacrylamide gel electrophoresis. We
combined two tRNA sets corresponding to different tRNA weights if they have the
same anticodon (i.e., the pairs of Val2A+Val2B, Thr1+ Thr3, and Tyr1+ Tyr2).
The experimenters could not distinguish between the tRNAs Gly1 and Gly2, as
these have very similar molecular weights and isoelectric point; the same was true
for Ile1 and Ile2. We estimated the individual concentrations of these four tRNAs
based on the ratios 3:2 between Gly1 and Gly2 and 20:1 between Ile1 and Ile2
observed by Ikemura et al.46.

To estimate the tRNA concentrations at the growth rates shown in Fig. 2 and
Supplementary Fig. 1, we fitted the concentration of each tRNA in dataset1
(measured for growth rates ranging from 0.28 h−1 to 1.73 h−1) to a second
order polynomial of growth rate and extended this function to the required range,
0.12 h−1 to 1.9 h−1.

Combination of tRNAs that are predicted to be non-expressed. The predicted
concentrations of 6 tRNAs are 0 μM; these are highlighted in red in Supplementary
Table 2. This result is a straightforward consequence of the model structure. The
relationship between codons and tRNAs is not one-to-one in E. coli. Consider a
given codon (codon1) that has more than one cognate tRNA, say, tRNA1 and
tRNA2. If tRNA2 is also the cognate tRNA of another codon (codon2), the pre-
dicted concentration of tRNA1 will be zero: for the same “price” (the same con-
tribution to the limited total mass concentration), tRNA2 can service two codons,
while tRNA1 can service only one. For example, codon GGG has two cognate
tRNAs, gly1 and gly2; gly2 is also the cognate tRNA of codon GGA. Thus, both
gly1 and gly2 can translate GGG, but gly2 can translate GGA, too, and is thus more
valuable to the cell if we assume that both tRNAs are processed equally efficiently,
as done in the model. Therefore, the predicted optimal concentration of gly1 will be
zero (note that this might not occur in models that consider different ribosomal kcat
or Km values for the two tRNAs). To compare our predictions to the experimental
data29, we combined tRNAs with predicted zero concentration with their co-
functioning tRNAs in both the predictions and the experimental data. The
resulting six combined tRNA pairs are: GLy1+Gly2; Leu1+ Leu3; Leu4+ Leu5;
Pro1+ Pro3; Ser2+ Ser1; Thr2+ Thr4. In all reported figures, the total number of
tRNAs shown is thus 34.

Concentrations of amino acids and total protein. We first calculated a typical
molecular protein mass for each condition. MWp is the weighted average over the
molecular masses of all proteins assayed by Schmidt et al., where the weights are
the corresponding proteome fractions in that condition.The molar concentration of
protein, cprotein, is given by

cprotein ¼ ρp
MWp

ð3Þ

where ρp is the mass concentration of total protein at the given condition (Eq. 1).
The concentration of amino acids encoded by codon-i is given by:

ccodon�i ¼ fcodon�i � Lprotein � cprotein ð4Þ

where Lprotein is the abundance-weighted average protein length at the given
condition; fcodon-i is the frequency of codon i in the genome, where each gene is
weighted by its relative abundance in the proteome.

Note that for an amino acid AAj encoded by multiple synonymous codons,
ccodon-i is not the total concentration of AAj in cellular proteins, but only of the
fraction encoded by codon-i; the total concentration of AAj is obtained by summing
the ccodon-i values for all synonymous codons for AAj.

For simulations under chloramphenicol stress, cprotein and ccodon-i are not
available. We approximated their values by the corresponding concentrations for
growth on glucose in the absence of the antibiotic.

Mass fraction of translation machinery in total dry weight. The dry mass
fraction of the translation machinery shown in Supplementary Fig. 3 includes
ribosome, mRNA, charged tRNAs, EF-Tu, and EF-Ts; it does not include GDP,
GTP, free tRNA, tRNA-synthetases, and elongation factor G (FusA). We converted
from protein fractions to mass fractions of total dry weight using the relationship
between total protein mass and dry mass discussed in the subsection “Experimental
concentrations of ribosomes, EF-Tu, and EF-Ts”.

Experimental estimate: The mass fraction of the translation machinery in total
dry weight is the sum of two parts: (1) protein and (2) RNA.

(1) We calculated the mass fraction of translational proteins (including
ribosomal protein, EF-Tu, and EF-Ts) in dry weight from the proteomics data
in ref. 28.

(2) We fitted the reported total RNA/protein ratio in refs. 5,32 to a second order
polynomial of growth rate. We then used this fitted function to calculate the RNA/
protein ratio at the growth rates assayed by Schmidt et al.28, and multiplied this
ratio with the dry mass fraction of protein.

Theoretical prediction: The predicted dry mass fraction of the translation
machinery was the ratio of the total mass concentration of the translation
machinery (including free ribosome, active ribosome, EF-Tu, EF-Ts, charged
tRNA, and mRNA) to the total dry mass density. The total dry mass density was
estimated as ρp,glc/ϕ(0.58 h−1)= 147.15 g L−1/0.631= 233.30 g L−1. For the
prediction including de-activated ribosome concentrations (dashed line in
Supplementary Fig. 3), we added estimates of de-activated ribosome concentrations
according to Fig. 4 of the main text.

Molecular weights. Molecular weights of ribosome, charged tRNAs (aa-tRNAs),
EF-Tu, EF-Ts, and the ternary complexes (TC, EF-Tu·GTP·aa-tRNA) were calcu-
lated from their sequences. The stoichiometry of ribosomal proteins and RNAs in
the ribosome was obtained from the EcoCyc database47; the stoichiometry of all
components is 1 except for RplL, for which it is 4.

We used an average mRNA to represent the total mRNA. The molecular weight
of an average mRNA (MWmRNA) is the sum of two parts: (1) the molecular weight
of the coding sequence (CDS) of mRNA (MWmRNA-CDS), which was calculated
from protein-expression-weighted mRNA length and nucleotide composition of
E. coli protein-coding sequences in each growth condition28; (2) the weight of the
untranslated region (UTR) of mRNA (MWmRNA-UTR), which was calculated from
the average nucleotide composition of the genome and the typical length of UTR.
The length of UTR was assumed to be 85 nt, a typical length of the untranslated
region in E. coli48. Thus,

MWmRNA ¼ MWmRNA�CDS þMWmRNA�UTR : ð5Þ

In the simulations of translation under antibiotic stress, the molecular weight of
chloramphenicol was set to 0.

Alternative costs of translation machinery components. The hypothesis
underlying our analysis is that the components of the translation machinery are
expressed to minimize the total cost of translation at a given protein production
rate. For the calculations underlying the figures of the main text, we assumed that
molecular costs are proportional to molecular mass concentrations. To test alter-
native cost measures proposed in the literature, we estimated the costs of each
translation machinery component in terms of (1) its carbon content21 (carbon
cost); (2) the total number of high-energy phosphate bonds required for its pro-
duction (ATP cost); (3) the total enzyme mass required for its production
(synthesis cost)24; and (4) its protein content9,20 (protein content). Some of these
cost measures are condition-dependent. The estimated costs are provided in
Supplementary Data 2; the RNA/protein cost ratios are compared in Supplemen-
tary Fig. 7 and listed in Supplementary Table 3. All costs were estimated per
component (i.e., per molecule or per macromolecular complex). Note that all
components whose costs are considered in the model consist of protein, RNA,
or both.

Carbon cost as an alternative cost measure. The carbon cost of a component is
its total number of carbon atoms.

ATP cost as an alternative cost measure. The ATP cost of a component is the
number of high-energy phosphate bonds (denoted ~P) that were invested into its
production. The ATP costs includes (1) the ATP invested into the synthesis of the
precursors (nucleoside triphosphates or amino acids) and (2) the ATP cost of
polymerization during RNA transcription or protein translation.

The ATP cost of amino acid synthesis: For cells growing on minimal carbon
media, the ATP cost of amino acid production was obtained from ref. 37. Since the
ATP costs of a given amino acid are very similar across minimal media with
different carbon sources37, we used the ATP costs for amino acid synthesis on
glucose for all minimal media considered. For E. coli growing on glycerol+ amino
acids28, the ATP production cost for amino acids was assumed to be zero.

The polymerization cost of protein: The polymerization cost of protein is 4 ATP
per amino acid: two ATP for tRNA charging, 1 ATP for EF-Tu in elongation, and 1
ATP for elongation factor G (EF-G) in elongation.
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The ATP cost of NTP synthesis: For cells growing on minimal carbon media, the
de novo synthesis cost of NTP was obtained from ref. 38. The glycerol+ amino
acids medium used in the proteomics study28 also contains adenine and uracil;
here, we assumed that the synthesis of ATP and GTP starts from adenine and that
the synthesis of UTP and CTP starts from uracil. PRPP (5-phospho-α-D-ribose 1-
diphosphate), whose production consumes 29 ATP37, was considered to be the
donor of ribose to the synthesis of NTPs. Finally, we estimated the total energy
(~P) costs in the glycerol+ amino acids medium for ATP, UTP, CTP, and GTP as
31, 31, 29, and 32, respectively. We did not attempt to estimate the ATP cost of
NTP synthesis in the LB condition, as it is not clear to what extent NTPs are taken
up from the medium.

The polymerization cost of RNA: The polymerization cost of RNA is 0 ATP per
base, as no high-energy phosphate bonds beyond those of the polymerized NTPs
are required.

The degradation cost of mRNA: The degradation rates of tRNA and rRNA are
much lower than their production rates, and hence we did not account for their
degradation. In contrast, mRNA is degraded much more quickly than tRNA and
rRNA, and we thus considered the influence of degradation on the mRNA
polymerization cost. At steady state, all degraded mRNA (in the form of nucleoside
mono-phosphates, NMPs) is assumed to be recycled to re-transcribe mRNA. These
recycled NMPs require two ~P to form NTPs, so the mRNA recycling cost
(costNTP-deg) is 2 ~P per NTP. At a given mRNA concentration cmRNA-NTP (in units
of NTPs built into mRNA), the production of mRNA must offset the combination
of mRNA degradation and mRNA dilution by cellular growth at rate µ. The rate of
ATP consumption for this production is thus given by

vcost�ATP�mRNA ¼ μ � costNTP � cmRNA�NTP þ kdeg � costNTP�deg � cmRNA�NTP ð6Þ
where costNTP is the synthesis cost of NTPs (estimated above, “The ATP cost of
NTP synthesis”) and kdeg is the mRNA degradation rate constant. kdeg is calculated
from mRNA half-life (thalf), kdeg= ln(2)/thalf, with thalf= 5 min for all growth
conditions49. To obtain the ATP cost per NTP in mRNA, we must divide this rate
by μ· cmRNA-NTP:

costNTP�mRNA ¼ vcost�ATP�mRNA
μ�cmRNA�NTP

¼ costNTP þ kdeg
μ � costNTP�deg ¼ costNTP þ 2kdeg

μ
ð7Þ

Thus, mRNA degradation dominates the ATP cost of mRNA at very low
growth rates, but becomes insignificant at growth rates higher than the mRNA
degradation rate.

Synthesis cost as an alternative cost measure. The synthesis cost is the total
macromolecular dry mass, which includes transporters, enzymes, RNA polymerase,
and ribosome, that is needed to synthesize each component of the translation
machinery. To estimate the synthesis cost of each component, we first estimated
the macromolecular dry mass that is needed to synthesize one millimole of amino
acid (costAA) and one millimole of nucleotide (costnucl). Based on these estimates,
the synthesis cost of a protein is costprotein= Lprotein·costAA, where Lprotein is the
protein length in amino acids, and the synthesis cost of an RNA molecule is
costRNA= LRNA·costnucl, where LRNA is the length of the RNA molecule in
nucleotides.

We calculated costAA and costnucl using ccFBA40,41, which is an implementation
of the MOMENT39 algorithm for flux balance analysis with molecular crowding,
featuring an improved treatment of co-functional enzymes. Briefly, ccFBA assigns
each enzyme a constant catalytic rate (kcat) and molecular weight, and then finds
the flux distribution that maximizes biomass production while not exceeding a
threshold on the total enzyme mass.

Synthesis cost of protein: We first added a protein synthesis reaction to the
iML1515 model implemented in ccFBA. The stoichiometric coefficient of each
amino acid consumed in this reaction was set to its proportion in the biomass
reaction of the iML1515 model. In E. coli, there are approx. 9 TCs per ribosome at
high growth rates29,42; we thus designated the ribosome plus 9 ternary complexes
(TCs) as the “enzyme” of the protein synthesis reaction. We parameterized this
“enzyme” with kcat= 22 s−1 and molecular weight= 2933.241 kD1. We then set the
objective function to the rate of protein production, vAA, instead of the biomass
production rate vbio. We simulated different growth conditions by only allowing
the model to import nutrients available in the respective medium, setting the lower
bound of the corresponding exchange reactions to −1000 (mmol·gDW−1·h−1). For
cells growing on LB medium, the lower bound of all exchange reactions was set to
-1000, i.e., all metabolites for which there is a transporter in the model can be taken
up. We maximized the protein synthesis rate vAA, given a limit on the dry mass
fraction of macromolecules involved in metabolism (a “budget”) of C = 0.27. As
the lower bound chosen for the exchange rates was very high, the optimizations
were constrained by C, i.e., the optimal vAA value is the maximal rate of protein
production with this macromolecular budget. Accordingly, the synthesis cost of
amino acids is costAA= 0.27/vAA, expressed as the dry mass fraction required to
produce 1 mmol·gDW−1·h−1 of amino acids. The computed protein synthesis costs
for all 20 conditions considered are shown in Supplementary Table 4.

Synthesis cost of stable RNA: To estimate the cost per nucleotide of stable RNA
production, costnucl, we implemented an analogous algorithm. We first added an
RNA synthesis reaction to the iML1515 model50 and set this reaction as the
objective function. The stoichiometry of NTPs consumed in this reaction was set to
the corresponding fractions of NTPs in the biomass reaction of the iML1515

model. We designated the RNA polymerase (molecular weight= 389.11 kD) as the
enzyme catalyzing this reaction. For stable RNA (tRNA and rRNA) synthesis, the
turnover rate of the RNA polymerase (RNA-P)1 is kRNAP-sRNA= 85 s−1. We
maximized the flux of the RNA synthesis reaction, vsRNA, constrained by the
macromolecular budget C= 0.27. The synthesis cost of stable RNA per nucleotide
was then calculated as costnucl-sRNA= 0.27/vsRNA, expressed as the dry mass
fraction required to produce 1 mmol·gDW−1·h−1 of NTP in stable RNA. The
computed stable RNA synthesis costs for all 20 conditions considered are listed in
Supplementary Table 4.

Synthesis cost of mRNA: In E. coli, mRNA transcription is slower than stable
RNA transcription. The turnover rate of RNA-P for mRNA is kRNAP-mRNA= 66 s−1

(i.e., the fastest rate of mRNA transcription has been observed to be about three
times the maximal translation rate)51. As for the calculation of the ATP cost of
mRNA, we need to account for mRNA degradation at rate kdeg (which is much
faster than the degradation of stable RNA). We again assumed that nucleotides from
degraded mRNA are re-used by RNA-P to synthesize mRNA. As before, we note
that at a given mRNA concentration cmRNA, the production of mRNA must offset
the combination of mRNA degradation and mRNA dilution by cellular growth at
rate µ. The rate of mRNA production by the RNA-P is thus

vmRNA ¼ μ � cmRNA þ kdeg � cmRNA ð8Þ
To obtain the concentration of RNA-P necessary to catalyze this rate, we need

to divide this expression by kRNAP-mRNA:

cRNAP�mRNA ¼ vmRNA
μ ¼ cmRNA 1þ kdeg

μ

� �
ð9Þ

Thus, the concentration of RNA-P required for mRNA production is larger by a
factor (1+ kdeg/μ) when accounting for mRNA degradation than it would be
otherwise. To account for mRNA degradation, we thus set the effective turnover

number of RNA-P to keff�mRNA ¼ kRNAP�mRNA= 1þ kdeg=μ
� �

. We maximized the

flux of the mRNA synthesis reaction, vmRNA, constrained by the macromolecular
budget C= 0.27. The synthesis cost of mRNA per nucleotide was then calculated as
costnucl-mRNA= 0.27/vmRNA, expressed as the dry mass fraction required to produce
1 mmol gDW−1 h−1 of NTP in mRNA. The computed costs for all 20 conditions
considered are provided in Supplementary Table 4.

Protein content as an alternative cost measure. The protein content was con-
sidered as the only relevant cost of the translation machinery in two previous
models9,20. These models accurately predicted the ribosomal protein fraction in
total protein, whereas they substantially underestimated the EF-Tu proteome
fraction compared to measurements data9,20.

Following these earlier works, we calculated the protein cost of a component as
the number of amino acid residues it incorporates. Since mRNA and tRNA have
zero protein content, this definition assigns no costs to their expression, potentially
leading to a prediction of infinite concentrations. To avoid such pathological
predictions, we set the protein content costs of mRNA and charged tRNAs to small,
arbitrary values in the model (mRNA: 10 amino acid residues; tRNA: 5 amino acid
residues).

Model overview. The mechanistic translation model encompasses the processes of
translation initiation, elongation, termination, nucleotide exchange in EF-Tu, and
ternary complex (TC) formation. Figure 1 of the main text illustrates the modeled
reaction; for better readability, the figure shows only a subset of codon/charged
tRNA combinations. In total, the model includes 274 reactions.

Translation initiation. During initiation, mRNA converts free ribosomes to active
ribosomes:

Ribosomefree ! Ribosomeactive: ðr1Þ
Translation initiation consists of multiple elementary reactions52. However, a

recent study found that at steady state, the kinetics of initiation effectively follow
Michaelis–Menten kinetics, with mRNA in the enzyme position (with
concentration cmRNA) and free (unbound) ribosomes in the substrate position (with
concentration cribo-free)53,

vtl�init ¼ kcat�mRNA � cmRNA � cribo�free
KM�riboþcribo�free

ð10Þ
with kcat–mRNA= 1.33 s−1 and KM-ribo= 8.5 µM from ref. 25.

We assume that the turnover number of mRNA for ribosome binding (kcat-
mRNA) is growth rate-independent, and hence that the observed growth rate-
dependent activity is due to changes in the concentration of free ribosomes
available for initiation54. Thus, we used the maximal reported mRNA activity as an
estimate of kcat-mRNA.

Ternary complex formation and EF-Tu nucleotide exchange. Ternary complex
formation and nucleotide exchange in EF-Tu are the processes by which the
translation machinery recycles its substrates, the ternary complexes, for elongation.

TC formation: The binding of EF-Tu·GTP to charged-tRNA (aa-tRNA) forms
the ternary complex (ternary complex formation in Fig. 1), which is the substrate of
translation elongation.
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Nucleotide exchange in EF-Tu: EF-Tu·GDP is released after the formation of a
new peptide bond. Elongation factor Ts (EF-Ts) binds to EF-Tu·GDP and induces
the exchange of GDP for GTP (right panel in Fig. 1).

The individual steps of these two processes are modeled with mass action
kinetics26,27.

In the implementation of the model, we divide each reversible reaction into two
irreversible reactions. The TC formation reaction is a set of reactions that include
the binding of 40 aa-tRNAs to Tu·GTP, and its rate constants depend on which
amino acid is involved27 (for the parameter values see Supplementary Data 1).

Elongation. Elongation is a very complex process55,56. For simplicity, we model
elongation as a single reaction with an active ribosome as the enzyme and TC as
the substrate, which was proposed by Klumpp et al.9. In this single reaction model,
TC is discriminated by the anticodon and all TCs are treated with the same activity.
Michaelis–Menten kinetics are used to describe the reaction rate9. There are 40
anticodons in total for all elongator tRNAs in E. coli; accordingly, our model uses
40 tRNAs to represent all tRNAs.

At steady state, the total translation rate (per cytosolic volume) of each codon
remains constant. We do not model the translation of a whole protein. Instead, we
decompose protein synthesis into the translation of 61 codons (see also “Modeling”
below).

Active ribosome state: We distinguish active ribosomes according to their
binding codons (codon in ribosome A site). Thus, there are 61 types of active
ribosome in the model, distinguished in the model by subscripts indicating the
codon currently presented by the ribosome:

Ribosomeactive ! Ribosomecodon�i ðr2Þ
here, codon-i is one of the 61 codons and Ribosomecodon-i is the active ribosome
that binds codon-i. This reaction is constrained by mass balance, but is considered
to be instantaneous. We assume that when an active ribosome binds with a specific
codon, it only translates the codon’s cognate tRNA.

In the model, there are 61 codons and 40 tRNAs, and the relation between
tRNA and codon is not one-to-one. Based on the number of cognate tRNAs, we
partition the 61 codons into 2 classes: class 1 codons have one cognate tRNA,
whereas class 2 codons have two cognate tRNAs. The lists of class 1 and class 2
codons are provided in Supplementary Table 5.

For class 1 codons (n= 51), the elongation reaction is:

TCcodon�i to
Ribosomecodon�i

EF� Tu � GDPþ tRNAcodon�i þ aacodon�i;
ðr3Þ

where TCcodon-i is the cognate TC of codon-i, tRNAcodon-i is the released free tRNA,
and aacodon-i symbolizes the amino acid that was just appended to the growing
peptide. The tRNAcodon-i and aacodon-i are included here for completeness, but are
not included explicitly in the optimized model, as they do not influence the results
once appropriate exchange reactions have been added. Simultaneously, the
Ribosomecodon-i is converted to Ribosomeactive, which is ready to participate in the
next round of elongation,

Ribosomecodon�i ! Ribosomeactive: ðr4Þ
For simplicity, we combine r3 and r4 into the new reaction r5, with

Ribosomecodon-i as a substrate and Ribosomeactive as a product (the same for r6 and
r7),

TCcodon�iþRibosomecodon�i !Ribosomecodon�iRibosomeactive þ EF� Tu � GDP
þtRNAcodon�i þ aacodon�i:

ðr5Þ

The translation rate of codon-i is described by Michaelis–Menten kinetics,

vtl�codon�i ¼ cribo�codon�i � kcat�ribo � cTC�codon�i
cTC�codon�iþKM�TC

; ð11Þ
where cribo-codon-i is the concentration of ribosomes that present codon-i
(Ribosomecodon-i), cTC-codon-i is the concentration of cognate TC of codon-i (TCcodon-i),
kcat-ribo= 22 s−1, and KM-TC= 3 μM (parameters from ref. 9).

For class 2 codons (n= 10), the active ribosome can translate two TCs and thus
there are two reactions:

TCcodon�i�1þRibosomecodon�i !Ribosomecodon�i Ribosomeactive þ EF� Tu � GDP
þtRNAcodon�i�1 þ aacodon�i

ðr6Þ

and

TCcodon�i�2þRibosomecodon�i !Ribosomecodon�i Ribosomeactive þ EF� Tu � GDP
þtRNAcodon�i�2 þ aacodon�i:

ðr7Þ

The translation rate of codon-i is the sum of these two reactions:

vtl�codon�i ¼ v1 þ v2; ð12Þ
with

v1 ¼ cribo�codon�i � kcat�ribo � cTC�codon�i�1
cTC�codon�i�1þcTC�codon�i�2ð ÞþKM�TC

ð13Þ

and

v2 ¼ cribo�codon�i � kcat�ribo � cTC�codon�i�2
ðcTC�codon�i�1þcTC�codon�i�2ÞþKM�TC

: ð14Þ

Termination. In termination, an active ribosome is converted to a free ribosome:

Ribosomeactive ! Ribosomefree: ðr8Þ
The termination rate is equal to the protein synthesis rate at steady state:

vterm ¼ vprotein�syn ¼ μ � cprotein; ð15Þ
where cprotein (Eq. 3) is the absolute concentration of protein measured experimentally.

Modeling exchange reactions. Besides the reactions mentioned above, we also
add exchange reactions that allow the influx of free ribosome, charged tRNA,
mRNA, EF-Tu, EF-Ts, and GTP into the system. We also add exchange reactions
that allow efflux of GDP out of the system.

Modeling antibiotic stress. To model chloramphenicol (cm) stress, we add the
exchange reaction for chloramphenicol. All forms of ribosome can be inhibited by
chloramphenicol:

Ribosomeþ cm $ Ribosome � cm; ðr9Þ
where Ribosome includes both free and active ribosomes. The reaction rate is

described by mass action kinetics with kon= 0.00057 µM s−1 (0.034 µMmin−1)
and koff= 0.0014 s−1 (0.084 min−1)57.

For simplicity, we make the following assumptions:

(1) chloramphenicol diffuses freely across cell membranes, such that the
intracellular concentration of free chloramphenicol is the same as that
in the medium;

(2) chloramphenicol bound to an active ribosome (ribosome·cm) causes
the ribosome·cm complex to dissociate quickly from the mRNA, thus
not affecting further translation of the mRNA.

We assume that the reaction of ribosome and chloramphenicol binding is at
steady state (dynamic equilibrium), and thus the active ribosome concentration will
be constant. However, not all active ribosomes will be able to successfully finish
translation, as the active ribosome can be inhibited by chloramphenicol during
translation. Thus, to estimate the production rate of functional proteins, we need to
estimate the probability that the active ribosome can finish translation without
chloramphenicol inhibition.

To calculate this probability, we use the method proposed in ref. 32. The
probability of chloramphenicol binding to a ribosome in a given time unit is:

khit ¼ konccm; ð16Þ
where kon is the binding constant. The probability that the ribosome is bound n
times in the time interval t follows the Poisson distribution

P nð Þ ¼ e�khit ttl khit ttl
n! ; ð17Þ

where ttl is the experimental measured translation time of the translated gene. The
probability that the ribosome can finish translation without inhibition by
chloramphenicol is P(0):

Ptl ¼ e�khit ttl : ð18Þ
Here, ttl is the time for LacZ and ttl= 72 s (from ref. 32). For simplicity, we assume

that all codon-presenting active ribosomes (61 forms of active ribosome) have the
same Ptl, and thus the effective concentration of the ribosome presenting codon-i is

cribo�eff�i ¼ Ptlcribo�i: ð19Þ
Under inhibition by chloramphenicol, this effective ribosome concentration of

codon-i (cribo-eff-i) replaces the ribosome concentration of (cribo-i) in the model.

Model optimization. We assume translation at steady state and use a constraint-
based optimization model. The constraints are given by the above equations
and by the requirement of a given total cellular rate of protein synthesis (estimated
as the product of growth rate and experimental proteome composition at this
growth rate). For simplicity, we decomposed protein synthesis into the translation
of 61 codons, and so the constraint on protein synthesis rate is implemented as 61
individual equations, each representing the translation rate of one codon. At steady
state, the codon translation rate equals the dilution rate of amino acids incorpo-
rated at protein positions encoded by codon-i, i.e., the growth rate μ multiplied by
the concentration of amino acids coded by codon-i in proteome data:

vtl�codon�i ¼ μ � ccodon�i; ð20Þ
note that if multiple codons encode the same amino acids, then the total con-
centration of that amino acid in cellular proteins is the sum over the ccodon-i values
for the individual codons.

Given these constraints, we minimize the total mass concentration of the
modeled translation apparatus, consisting of ribosome, EF-Tu, EF-Ts, mRNA,
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GTP, GDP, and charged tRNAs (aa⋅tRNA),
P
m2C

MWm � cm; ð21Þ
where the molecule types together form the set C, MWm is the molecular weight,
and cm is the concentration of molecule type m. We do not minimize the
contributions of GTP and GDP, who participate in multiple other cellular
processes58 and whose concentrations are thus unlikely to be dominated by
translation; their concentrations are consequently fixed to experimentally observed
values in our simulations (see Supplementary Note 3).

Let R be the set of reactions that together comprise translation. We also
consider the dilution of the molecules involved in these reactions due to cellular
volume growth at rate µ:

S � v cð Þ � μ � c ¼ 0; ð22Þ
where S is the stoichiometric matrix for the reactions in R, c is a vector of the
concentrations cm, and v(c) is the corresponding vector of reaction rates vi, with the
concentration-dependent kinetics described above.

Thus, we solve the non-linear constrained optimization problem:

min
c

P
m2C

MWm � cm: ð23Þ
subject to:

S � v cð Þ � μ � c ¼ 0
vtl�codon�i ¼ μ � ccodon�i for i=1, …, 61
vterm ¼ μ � cprotein
We formulated the optimization problem in GAMS and used the BARON global

solver59 on NEOS Server60 with 8 h as the time limit to solve this problem. Because
the problem is non-linear, it is not clear a priori if it is convex, in which case only a
single optimum would exist. The problem is conceptionally similar to the one studied
by Noor et al.24, and thus convexity is conceivable. A first optimum was returned by
the solver within at most a few minutes for all optimizations performed. However, to
guard against the existence of overlooked alternative optima, we allowed the search to
continue for a total of 8 h in each case. In addition, we repeated all simulation with the
global non-linear solver in Lingo 13 (LINDO Systems, Inc., https://www.lindo.com/
index.php/products/lingo-and-optimization-modeling). No alternative optima were
ever found; we thus have no evidence of non-convexity.

To assess the alternative costs, the molecular weight of each component was
replaced by the corresponding cost measure (see the section “Alternative costs of
translation machinery components”). The costs for each component are shown in
Supplementary Data 2, and the corresponding predictions are shown in
Supplementary Data 3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The experimental data that support the findings of this study are available from the
original publications5,8,28–32,36. Source data are provided with this paper.

Code availability
Model: The optimization problem, including the model and its parameterization, is
provided as an SBML file (Supplementary Data 4) and as a GAMS input file
(Supplementary Data 5, with protein production requirements set to those for growth on
minimal glucose medium). In addition, the model has been submitted to Biomodels
(MODEL2006210001). GAMS (General Algebraic Modeling System, https://www.gams.
com/) is a modeling platform for mathematical optimization, it provides dozens of
solvers for a variety of optimization problems. The model is written in GAMS (version
25.1.2). BARON (Branch-And-Reduce Optimization Navigator) is a computational
system for solving nonconvex optimization problems to global optimality. NEOS Server
is a free online server that provides state-of-the-art solvers for numerical optimization.
We used the BARON solver (version 19.12.7) on NEOS Server (Version 5.0) for our
optimizations. sybilccFBA is a package in R that provides an improved implementation
of MOMENT (MetabOlic Modeling with ENzyme kineTics). We used version 3.0.1.
Lingo (https://www.lindo.com/index.php/products/lingo-and-optimization-modeling) is
a commercial optimization software. Lingo version 13 was used as the alternative solver
to double check the results from BARON.
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