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Abstract. COPI and COPII  are vesicle coat complexes 
whose assembly is regulated by the ARF1 and Sarl  
GTPases, respectively. We show that COPI and COPII  
coat complexes are recruited separately and indepen- 
dently to E R  (COPII),  pre-Golgi (COPI, COPII),  and 
Golgi (COPI)  membranes of mammalian cells. To ad- 
dress their individual roles in E R  to Golgi transport, we 
used stage specific in vitro transport assays to synchro- 
nize movement  of cargo to and from pre-Golgi inter- 
mediates, and GDP- and GTP-restricted forms of Sarl 
and ARF1 proteins to control coat recruitment. We 
find that COPII  is solely responsible for export from 
the ER, is lost rapidly following vesicle budding and 

mediates a vesicular step required for the build-up of 
pre-Golgi intermediates composed of clusters of vesi- 
cles and small tubular elements. COPI is recruited onto 
pre-Golgi intermediates where it initiates segregation 
of the anterograde transported protein vesicular stoma- 
titis virus glycoprotein (VSV-G) from the retrograde 
transported protein p58, a protein which actively recy- 
cles between the ER  and pre-Golgi intermediates. We 
propose that sequential coupling between COPII  and 
COPI coats is essential to coordinate and direct bi-direc- 
tional vesicular traffic between the E R  and pre-Golgi 
intermediates involved in transport of protein to the 
Golgi complex. 

N 
'EWLY synthesized proteins are transported from 

the ER through the early secretory pathway via 
coated vesicular carriers. Two distinct protein 

complexes are now recognized to mediate vesicle budding 
from the ER and Golgi compartments. These include 
COPI or "coatomer" and COPII (for reviews see Nuoffer 
and Balch, 1994; Barlowe, 1995). Studies in vitro (Kuge et 
al., 1994; Peter et al., 1993, 1994) and in vivo (Guo et aL, 
1994; Hobbie et al., 1994; Pepperkok et al., 1993) in mam- 
malian cells, and biochemical and genetic analyses in yeast 
(for review see Pryer et al., 1992), have shown that both 
coats are essential for the anterograde transport of protein 
from the ER to the Golgi stack. However, their individual 
specific roles in mediating the movement of cargo through 
early steps of the secretory pathway remains to be deter- 
mined. 

COPI coats are composed of a, 13, [3', % 8, ~, and E-COP 
subunits which form a cytosolic 14-S complex (coatomer) 
(Waters et al., 1991). Coatomer is recruited from the cyto- 
sol after the activation of the small GTPase ARF1 (for re- 
views see Donaldson and Klausner, 1994; Duden et al., 
1994). In vitro studies first identified a role for coatomer in 
the formation of Golgi-derived vesicular carriers which 
were suggested to be involved in the transport of cargo 
through successive cisternae of the Golgi stack (Malhotra 
et al., 1989; Orci et al., 1993a, b,c; Ostermann et al., 1993). 
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Coatomer and ARF1 represent the minimal set of cytoso- 
lic proteins required for the generation of such Golgi- 
derived buds and vesicles (Orci et al., 1993a). A role for 
COPI coats in ER to Golgi transport in mammalian cells 
was demonstrated by the ability of antibodies against the 
13-COP subunit to inhibit export from the ER in vitro (Pe- 
ter et al., 1993), and the requirement for a 19 S 13-COP and 
Sec23 containing protein complex(es) in transport of pro- 
tein from the ER to pre-Golgi intermediates (Peter et al., 
1993). These results demonstrated that COPI plays a nec- 
essary, but not sufficient role in the appearance of pre- 
Golgi intermediates composed of clusters of vesicles and 
small tubules (referred to as vesicular-tubular clusters or 
VTCs 1) (Peter et al., 1993). A similar block in ER to Golgi 
transport was observed in vivo after microinjection of 
[3-COP antibodies (Pepperkok et al., 1993). However, in 
this case, cargo was found to principally accumulate in pre- 
Golgi intermediates which had tubular connections with 
the ER (Pepperkok et al., 1993). Genetic studies in mam- 
malian cells have also demonstrated that ER to Golgi 
transport requires the function of t-COP (Guo et al., 
1994). Consistent with these biochemical and genetic re- 
quirements for COPI in ER to Golgi transport, morpho- 
logical analyses have demonstrated that COPI coats are 
principally associated with pre-Golgi structures. They are 

1. Abbreviations used in this paper: CGN, cis-Golgi network; GAP, gua- 
nine nucleotide activating protein; GTP~S, guanosine 5'-O-(3-thiotriphos- 
phate); myr, myristoylated; VSV-G, vesicular stomatitis virus glycopro- 
tein; VTC, vesicular tubular cluster. 
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localized to VTCs and the more tubular/fenestrated ele- 
ments found at the cis face of the Golgi stack (the cis-Golgi 
network or CGN [Mellman and Simon, 1992]) (Oprins et 
al., 1993; Pepperkok et al., 1993; Pind et al., 1994). 

COPI function is evolutionarily conserved as the -/-, [3-, 
and [3'-subunits of COPI coats have homologues in yeast. 
Phenotypically, mutations in both Sec21p ('y-COP) and 
Sec 27p ([3'-COP) lead to moderate accumulation of ER to 
Golgi vesicular carriers (Hosobuchi et at., 1992; Duden et 
al., 1994). In contrast, deletion of Sec26p, the yeast [3-COP 
homologue, dramatically reduces the number of vesicles, 
and leads to exaggeration and tubularization of the ER 
(Duden et al., 1994). These proteins, along with ARFlp  
and ARF2p (Stearns et al., 1990), are required for ER to 
Golgi transport in vivo in yeast. The exact role for COPI in 
ER to Golgi in yeast in vitro has not been demonstrated 
yet. Interestingly, the mammalian et, 13, 13', and "/coatomer 
subunits were recently shown to interact with proteins 
containing the ER di-lysine retention/recycling motif, 
KKXX (Cosson and Letourner, 1994). In yeast, sec21-1, 
sec21-2 ,and sec27-1 as well as retl ,  a selected retrograde 
mutation in the a subunit of yeast coatomer, effectively 
abolished retrograde transport of a KKXX containing hy- 
brid protein from the cis-Golgi region to the ER without 
affecting anterograde transport (Letourneur et al., 1995). 
These results have led to the recent speculative proposal 
that COPI coats may be exclusively involved in" the re- 
trieval of recycling proteins to the ER (Letourneur et al., 
1995; Pelham, 1994). 

COPII coats in yeast consist of a 400-kD Sec23p/Sec24p 
complex (Hicke and Schekman, 1989; Hicke et al., 1992) 
and a 700-kD complex which contains Secl3p and a 150- 
kD protein (Sec31p)(Pryer et al., 1993; Salama et al., 1993). 
These proteins, when recruited by activation of the small 
GTPase Sarlp (Barlowe et al., 1993), represent the mini- 
mal set of cytosolic proteins required for vesicle budding 
from yeast ER (Salama et al., 1993; Barlowe et al., 1994). 
The GTPase cycle of Sarlp involves components of the 
COPII coat. Sec23p is the GTPase-activating protein (GAP) 
(Yoshihisa et al., 1993) whereas a membrane-associated 
protein, Sec12p is the guanine nucleotide exchange factor 
(GEF) (Barlowe and Schekman, 1993; d'Enfert et al., 
1991; Nakano et al., 1988). GEF function is required for 
vesicle budding (Barlowe and Schekman, 1993; Kuge et al., 
1994) and GTP hydrolysis is required to promote vesicle 
fusion after budding (Barlowe et al., 1994). These results 
suggest a cycle in which the GAP component of the assem- 
bled coat complex on budded vesicles triggers coat desta- 
bilization by accelerating the intrinsic rate of hydrolysis of 
Sarlp. While the specific GAP activity for ARF1 is cur- 
rently unknown, COPI-coated vesicles released from Golgi 
membranes contain bound ARF1 and can be isolated in 
the presence of GTP (Orci et al., 1993b; Ostermann et al., 
1993). Therefore, COPI uncoating has been suggested to 
be coupled to later steps in vesicle targeting or fusion (Elazar 
et al., 1994). 

COPII coats are also functional in export from the ER 
in mammalian cells. A mammalian homologue to Sec23p 
is present in the transitional zone between the ER and the 
Golgi, but does not colocalize with the distribution of COPI 
(Orci et al., 1991a). Moreover, a mutant form of Sarla 
which restricts the GTPase to the GDP-bound form has 

been recently demonstrated to be a potent inhibitor of 
protein export from the ER in vivo and in vitro (Kuge et 
al., 1994). Mammalian homologues to Sec23p (Wadhwa et 
al., 1992) and Secl3p (Shaywitz et al., 1994) have been 
cloned. In the case of human Secl3p, it has been shown to 
function in yeast, and is located on transport vesicles bud- 
ding from the ER (Shaywitz et al., 1994). 

The requirement for COPII and COPI coats is puzzling. 
Both coats have been demonstrated to be involved in vesi- 
cle budding (Barlowe et al., 1994; Ostermann et al., 1993) 
yet, as summarized above, both COPII and COPI appear 
to function in ER to Golgi transport. Such a strong similar- 
ity in coat complex function clearly raises the question of 
their individual roles. To address this question, we now 
demonstrate that COPI and COPII are recruited sepa- 
rately and independently. To establish the relationship be- 
tween this observation and their unique roles in transport, 
we used temperature blocks to synchronize the movement 
of cargo to and from pre-Golgi intermediates. In addition, 
we used mutants of ARF1 and Sarl proteins which are re- 
stricted to GDP- or GTP-bound forms to selectively con- 
trol COPI and COPII assembly and disassembly. We find 
that both coats are required to transport the same cargo 
molecule, in this case vesicular stomatitis virus glycopro- 
tein (VSV-G), from the ER to the Golgi stack. COPII, but 
not COPI is required for vesicle budding and export of 
VSV-G from the ER leading to the build-up of pre-Golgi 
VTCs. COPII coats are lost rapidly following vesicle bud- 
ding from the ER. In contrast, COPI is essential for the ac- 
cumulation of ER-derived cargo in pre-Golgi intermedi- 
ates (VTC). We find that efficient retrograde transport of 
p58, a marker for pre-Golgi elements (Plutner et al., 1992; 
Saraste and Svensson, 1991), and segregation from VSV-G 
occurs from VTCs. Segregation is mediated by COPI, but 
not COPII. p58 is efficiently returned to the ER by COPI 
where it accumulates in the absence of COPII function. 
These results demonstrate a key role for COPI in retro- 
grade transport in mammalian cells. Collectively, these re- 
suits suggest that COPII is responsible for mobilization of 
cargo from the ER in a reaction which is coupled to the 
segregation of anterograde and retrograde transported 
proteins from pre-Golgi elements via COPI. This segrega- 
tion event appears to be essential to assure the proper an- 
terograde transport of cargo to the Golgi stack. 

Materials and Methods 

Materials 
Normal rat kidney (NRK) cells were maintained as described (Davidson 
and Balch, 1993).Trans-35S-label was purchased from ICN Biomedicals, 
Inc. (Irvine, CA). Endoglycosidase H (endo H) was obtained from Boeh- 
ringer Mannheim Biochemicals (Indianapolis, IN). Texas red goat anti-  
mouse antibody was obtained from Molecular Probes Inc. (Eugene, OR) 
and FITC goat anti-rabbit immunoglobulin was purchased from Organon 
Teknika Corp. (West Chester, PA). Rat liver cytosol was prepared as de- 
scribed (Davidson et al., 1993). 

Antibodies 
An antisera specific for Sarla (Kuge et al., 1994) and an antisera specific 
for ARF1 (0503) were generated in rabbits immunized with recombinant 
Sarla (Kuge et al., 1994) and nonmyristoylated ARF1 (Weiss et al., 1989), 
respectively, as described (Harlow and Lane, 1988). A polyclonal anti- 
body to the cytoplasmic tail of VSV-G was generated in rabbits immu- 
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nized with the carboxyl-terminal 16 amino acids of VSV-G (Indiana sero- 
type) coupled to KLH (Plutner et al., 1992). All other antibodies used 
were generous gifts from the following laboratories: a monoclonal anti- 

body  against 13-COP (M3A5) (Allan and Kreis, 1986) and a monoclonal 
antibody recognizing the cytoplasmic tail of VSV-G (P5D4) (Kreis, 1986) 
from Dr. T. Kreis, University of Geneva (Geneva, Switzerland); a poly- 
clonal antibody against 13-COP (EAGE) from Dr. M. G. Farquhar, Uni- 
versity of California (San Diego, CA); a polyclonal antibody against p58 
from Dr. J. Saraste, University of Bergen (Oslo, Norway); and a poly- 
clonal antibody against yeast Sec23p which cross-reacts with a mammalian 
homologue (Orci et al., 1991a) from Dr. R. Schekman, University of Cali- 
fornia (Berkeley, CA). 

Preparation of  Recombinant Protein 
Mutant ARFl(Q71L) and ARF1(T31N) in a pET3a vector (Dascher et 
al., 1994) were either expressed or coexpressed with N-myristoyltrans- 
ferase in E. coli strain BL21 (DE3) (Novagen), and purified by DEAE- 
Sephacel (Pharmacia LKB Biotechnology, Piscataway, NJ) and UItrogel 
AcA54 (Sepracor, Marlborough, MA) chromatography as described 
(Weiss et al., 1989). The Sarla(H79G) mutation was introduced into the 
wild-type Sarla using 4-primer PCR site-directed mutagenesis. His6- 
tagged pETlld-Sarla(T39N) (Kuge et al., 1994) and pET11d-Sarla(H79G) 
were expressed in BL21 (DE3) E. coli and purified over nickel-nitrolotri- 
acetic acid (Ni-NTA)-agarose (Quiagen) column and $100 Sepharcyl col- 
umn (Pharmacia) as described (Rowe, 1995). All proteins were dialyzed 
against a buffer containing 25 mM Hepes-KOH (pH 7.2), 125 mM KOAc 
and 1 mM MgOAc before use in the in vitro assay. Protein concentration 
was determined by the Coomassie blue method (Bio-Rad Labs. Inc.) us- 
ing bovine serum albumin (BSA) as a standard. 

Preparation of Membranes for COPI- and 
COPII-binding Reactions 

150-raM dishes of NRK cells were washed three times with ice-cold phos- 
phate buffered saline (PBS) and scraped with a rubber policeman in a 
buffer containing 10 mM Hepes-KOH (pH 7.2) and 250 mM mannitol 
(buffer A). The cells were pelleted, resuspended in buffer A, and homoge- 
nized by passing the cell suspension six times through a ball-bearing ho- 
mogenizer (Balch and Rothman, 1985). A postnuclear supernatant (PNS) 
was prepared by centrifuging the homogenate at 1,000 g for 10 min at 4°C. 

COP-I and COPII-binding Reaction 

15 Ixl (20-40 t~g protein) of PNS was added to a binding reaction mixture 
containing 27.5 mM Hepes-KOH (pH 7.2), 2.75 mM MgOAc, 65 mM 
KOAc, 5 mM EGTA, 1.8 mM CaC12, 1 mM ATP, 5 mM creatine phos- 
phate, 0.2 U of rabbit muscle creatine kinase (final concentrations) and 
1.2-2 mg/ml of rat liver cytosol in a final volume of 200 I~l on ice. Mutant 
proteins, GTP"¢S, or AIF 4- were added as indicated in the Results. The 
samples were incubated at 32°C for 15 min and the reaction terminated by 
transfer to ice. 1 ml of an ice-cold buffer containing 25 mM Hepes-KOH 
(pH 7.2), 2.5 mM MgOAc, and KOAc to give a final concentration of 250 
mM KOAc was added. The samples were vortexed and centrifuged at 
16,000 g for 10 min at 4°C. The supernatant was aspirated and the tubes 
were centrifuged for an additional 3 min at 16,000 g at 4°C. The residual 
supernatant was removed and 25 ixl of a gel sample buffer (Laemmli, 
1970) added. Samples were heated for 5 rain at 95°C, resolved using SDS- 
PAGE on 12.5% or 10% gels (Laemmli, 1970), and analyzed by quantita- 
tive immunoblotting using 13-COP (M3A5), Sec23, ARF1, and Sarl 
specific antibodies. Binding was quantitated by densitometry using a Mo- 
lecular Dynamics densitometer (Sunnyvale, CA). 

Transport in Semi-intact Cells 
NRK cells were infected with the tsO45 strain of VSV-G and pulse la- 
beled with 100 txCi Trans-3SS-label at the restrictive temperature (39.5°C) 
as described (Plutner et al., 1992).The cells were then perforated by the 
swelling and scraping procedure as described (Beckers et al., 1987; David- 
son and Balch, 1993). Transport from 16°C-VTCs was analyzed by pulse- 
labeling cells as described above. Subsequently, cells were chased for 2 h 
at 16°C with methionine containing a-MEM supplemented with 4% FCS 
in 25 mM Hepes-KOH (pH 7.2) (chase buffer) before perforation. After 
perforation, transport from the ER or 16°C-VTCs to the cis/medial-Golgi 
compartments was measured biochemically by following the appearance 

of endo H-resistant forms of VSV-G during incubation at 32°C in the 
presence of cytosol and ATP as described previously (Davidson and 
Balch, 1993; Plutner et al., 1992). 

For morphological analysis of transport, cells infected as described 
above were permeabilized with digitonin and indirect immunofluores- 
cence was performed as described (Plutner et al., 1992). To study trans- 
port from 16°C-VTCs, the cells were infected at 39.5°C as described 
above, transferred to ice, and washed twice with chase buffer. The cells 
were then incubated for 2 h at 16°C in chase buffer supplemented with 50 
~g/ml cycloheximide to prevent VSV-G synthesis and to promote quanti- 
tative transfer of VSV-G from the ER to 16°C-VTCs. After the chase pe- 
riod, cells were permeabilized and transport measured using indirect 
immunofluorescence as described (Davidson and Balch, 1993; Plutner et 
al., 1992). Electron microscopy was performed as described (Bannykh and 
Balch, 1995). 

For both biochemical and morphological transport assays, as well as for 
membrane-binding assays, representative experiments carried out in du- 
plicate are presented. All experiments were repeated independently at 
least twice. 

Results 

Recruitment of  COPI and COPII Coats to Microsome 
Membranes by Activated Sarl and ARF1 Proteins Are 
Independent Events 

To study the role of COPI and COPII  coats in ER to Golgi 
transport, we first analyzed the ability of crude microso- 
real membranes to bind coat complexes after incubation in 
vitro and centrifugation to separate membrane-bound and 
cytosolic forms of coat complex components. COPI re- 
cruitment was measured using quantitative immunoblot- 
ting with a monoclonal antibody (M3A5) specific for 
13-COP (Allan and Kreis, 1986; Pepperkok et al., 1993). 
COPII recruitment was measured using an antibody spe- 
cific for yeast Sec23p (Hicke and Schekman, 1989; Hicke 
et al., 1992), which cross-reacts with a mammalian homo- 
logue localized to the transitional region of the cell (Orci 
et al., 1991a; Peter et al., 1993). As shown in Fig. 1 A (com- 
pare a to e), both COPI and COPII  coat complexes were 
efficiently recruited to membranes in the presence of 
GTP',/S, a nonhydrolyzable analog of GTP. This reagent 
prolongs the activation of both ARF1 and Sarlp GTPases, 
which regulate the binding of COPI and COPII,  respec- 
tively. Whereas COPI recruitment was detected in the 
presence of nanomolar concentrations of GTP~/S (Fig. 1 B, 
open circles), no enhancement of COPII  binding was ob- 
served. COPII  binding required the addition of at least 1 
~M GTP'yS as evidence by the first detectable increase in 
the level of Sec23 bound to membranes at this concentra- 
tion (Fig. 1 B, closed circles). For both coat complexes, 
binding was saturable (Fig. 1 B) and was membrane de- 
pendent (not shown). In contrast to GTP-yS, additi6n of 
A1F 4 , a reagent which stabilizes ARF1 in its GTP-bound 
form and promotes COPI recruitment to Golgi mem- 
branes (Finazzi et al., 1994), specifically enhanced the re- 
cruitment of COPI, but not COP/I,  coats to total microso- 
real membranes (Fig. 1 B, inset). 

The above results suggest that COPI and COPII  coat 
complexes are recruited separately and independently to 
membranes through activation of their respective GTPases. 
However, GTP~,S is a general activator of many GTPases 
and therefore only provides an indirect probe for specific 
recruitment of coat complexes. Therefore, we examined 
the recruitment of COPI and COPII  coats by directly us- 
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Figure 1. Recruitment of COPI and COPII coats to microsomal 
membranes in the presence of GTP~/S, AIF4-, and activated 
forms of ARF1 and Sarla. (A) Microsomes were incubated (200 
~1 final volume) in the absence (a) or presence of myr- 
ARFI(Q71L-GTP) (13.5 Ixg) (b), Sar1(H79G-GTP)(3.5 txg) (c), 
both myr-ARFI(Q71L) and Sarl(H79G)(d), or 100 IxM GTP'tS 
(e), and the amount of Sec23, Sarl, 13-COP, and ARF1 recruited 
to membranes determined by SDS-PAGE and immunoblotting 
with specific antibody as described in Materials and Methods. 
The asterisk indicates a band which behaves identically to 13-COP 
and is cross-reacting with the antibody used to quantitate the re- 
cruitment of [3-COP. (B) Microsomes were incubated in presence 
of the indicated levels of GTP~/S. (Inset) A1F4- (10 mM KF, 30 
~M A1CI3 [b and d] in the presence of 1 mM GTP [a-d]). The 
amount of COPI (open circles; based on [3-COP) or COPII 
(closed circles; based on Sec23) recruited was determined by quan- 
titative immunoblotting as described in Materials and Methods. 

ing Sarl and ARF1 mutants which remain constitutively 
activated and stabilize coat assembly (Dascher and Balch, 
1994; Kuge et al., 1994; Oka and Nakano, 1994; Tanigawa 
et al., 1993; Teal et al., 1994). Incubation in the presence of 
the Sarla(H79G) or myristoylated (myr) ARFI(Q71L) 
GTP-restricted mutants promoted the membrane-depen- 
dent recruitment of their respective coat complexes to lev- 
els equivalent to that of GTP~S (Fig. 1 A, compare b and c 
to e). Mutant GTPases led to specific recruitment of 
COPII and COPI coats to the ER and pre-Golgi interme- 

diates composed of 60-nm vesicles and small tubular ele- 
ments (referred to as VTCs), respectively, as determined 
morphologically (see below). These results attest to their 
specific roles in promoting the binding of coat complexes 
to only a subset of membranes present in crude microsomes. 

In contrast to the specific effects of the mutant GTPases 
on recruitment of their respective coats, no effect on 
COPII binding was observed in the presence of the ARF1 
GTP-restricted form, nor was there any effect on COPI 
binding by the addition of the activated Sarl-GTP mutant 
(Fig. 1 A, b and c). When both mutant GTPases were 
added to the same cocktail, the levels of recruitment ob- 
served were similar to those observed when incubated sep- 
arately (Fig. 1 A, compare d to b and c). Such results dem- 
onstrate that the Sarl- and ARFl-activated mutants do 
not, in a dominant fashion, negatively influence the re- 
cruitment of the reciprocal coat. These results suggest that 
the recruitment of COPI and COPII coats are largely sep- 
arate and independent events, even in a crude microsome 
population containing a mixture of ER, pre-Golgi VTCs, 
and Golgi elements. Importantly, it is evident that while 
Sarl or ARF1 mutants will allow us to investigate the role 
of their respective coats in transport, this will be done in 
the context of the normal recruitment of the reciprocal 
coat complex. 

Activated Forms of  Sarl and ARF1 Inhibit the 
Transport of  VSV-G 

We have previously used selected ARF1 and Sarl mutants 
to inhibit the transport of vesicular stomatitis virus glyco- 
protein (VSV-G) from the ER to the Golgi stack in vivo 
(Dascher and Balch, 1994; Kuge et al., 1994). To address 
the inhibitory properties of the activated mutants of ARF1 
and Sarl on ER to Golgi transport in vitro, we examined 
their effects using vesicular stomatitis virus (VSV)-infected 
semi-intact normal rat kidney (NRK) cells, a cell popula- 
tion in which the plasma membrane has been perforated 
to expose functional ER and Golgi compartments (Beck- 
ers et al., 1987; Davidson and Balch, 1993; Plutner et al., 
1992). We use the temperature-sensitive form of VSV 
(strain tsO45) to synchronize the export of the surface gly- 
coprotein, VSV-G, from the ER (Balch et al., 1994; Lafay, 
1974; Plutner et al., 1992). Incubation of tsO45 infected 
cells at the restrictive temperature (39.5°C) results in the 
complete retention of VSV-G in the ER (Plutner et al., 
1992) (Fig. 4 a). Transfer of cells to the permissive temper- 
ature (32°C) results in the synchronous export of tsO45 
VSV-G to the Golgi (Balch et al., 1994; Plutner et al., 
1992). Cytosol and ATP-dependent transport of VSV-G 
from the ER to the Golgi was quantitated by following the 
processing of VSV-G to cis/medial-Golgi associated, en- 
doglycosidase H (endo H)-resistant forms (Schwaninger 
et al., 1991; Davidson and Balch, 1993). As shown in Fig. 2 
A, addition of increasing concentrations of the activated 
(GTP-restricted) myr-ARFl(Q71L) and Sarla(H79G) mu- 
tants strongly inhibited the transport of VSV-G to the Golgi 
stack. No inhibition was observed in the case of the non- 
myristoylated ARFl(Q71L) mutant attesting to the speci- 
ficity of the observed inhibition, nor was inhibition ob- 
served by incubation in the presence of a 10-fold excess of 
wild-type Sarla (Kuge et al., 1994; not shown). Thus, while 
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and Sar1(H79G),  the two act ivated prote ins  inhibi ted 
t ranspor t  in an addit ive manner  (Fig. 2 B, a-c) .  In contrast ,  
higher concentrat ions  of  ei ther  mutant  led to reproduc-  
ible, s tat is t ical ly significant synergistic effects (Fig. 2 B, 
d-i). For  example,  in Fig. 2 B (g-i), t ranspor t  was inhibited 
by 44% with A R F 1 ( Q 7 1 L )  and 36% with S a r l ( H 7 9 G )  
when added  separately.  Transpor t  was inhibi ted near ly  
100% by incubat ion in the presence of both  mutants  (Fig. 
2 B, i). Thus, at low concentrat ions  of the A R F 1 -  and 
Sar l -ac t iva ted  mutants,  each pro te in  separa te ly  interferes 
with different  steps in the overall  pathway,  a result  consis- 
tent  with their  independent  effects on COPI  or  COPI I  re- 
cruitment,  respectively.  However ,  when ei ther  wild-type 
Sar l  or wild-type A R F 1  function becomes limiting due to 
d isplacement  by the actions of their  respect ive mutant ,  re- 
tent ion of  coat  components  interferes in a dominant ,  syn- 
ergistic fashion with the overall  functionali ty of the E R  to 
Golgi  t ranspor t  machinery.  The  combined  da ta  provide  
evidence that  COPI I  and COPI  may be involved in se- 
quential  events along the same pathway.  

Use of Stage Specific Assays: COPII and COPI 
Function Precedes a Late Ca 2+-dependent Fusion Step 

Given the abili ty of act ivated A R F 1  to recruit  COPI  to the 

Figure 2. Activated forms of ARF1 and Sarla inhibit ER to Golgi 
transport. (A) The transport of VSV-G in vitro in semi-intact 
NRK cells from the ER to the Golgi was measured in the pres- 
ence of the indicated concentration of the myr-ARFI(Q71L- 
GTP) (closed circles) or the Sarla(H79G-GTP) mutant (open cir- 
cles) in a final volume of 40 ~1 as described in the Materials and 
Methods. The fraction of VSV-G processed to endo H-resistant 
forms was determined as described in Materials and Methods. 
(B) Semi-intact cells were incubated in the presence of the indi- 
cated concentrations of activated Sarla and ARF1 mutants for 90 
min at 32°C. The fraction of VSV-G processed to the endo H-resis- 
tant forms was determined and the % inhibition relative to the 
control (no inhibitor) reported. 

it is apparen t  that  Sar l  and A R F 1  only dictate the recruit-  
ment  of their  cognate coat  components  (Fig. 1), they both 
inhibi ted the t ranspor t  of VSV-G when added  to the assay. 

To address whether potential  interactions occurred which 
were not  de tec table  in the binding assay, we examined 
whether  incubat ion in the presence of both  mutants  led to 
addit ive or  synergistic effects on VSV-G transport .  As  
shown in Fig. 2 B, at low concentrations of A R F I ( Q 7 1 L )  

Figure 3. Inhibition by activated ARF1 and Sarl mutants pre- 
cedes a late Cae+-dependent fusion step. Semi-intact NRK cells 
were incubated (40 ixl final volume) in a first stage (Stage 1) for 
60 min at 32°C in the presence EGTA and in the absence (a, e-h) 
or presence (b-d) of the indicated inhibitor myr-ARFl(Q71L- 
GTP) (4 p,g); Sarl(H79G-GTP) (1 p~g); GTP~S (100 p~M)]). After 
a brief pelleting (4 min, 500 g), semi-intact cells were resuspended 
in complete transport cocktail lacking further additions (a-e), or 
supplemented with the indicated inhibitor (f-h) and incubated 
for an additional 90 min at 32°C. The fraction of VSV-G pro- 
cessed to endo H-resistant forms was determined as described in 
Materials and Methods. 
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Figure 4. Accumulation of VSV-G and p58 in pre-Golgi VTCs requires COPII. (a-j) Digitonin-permeabilized NRK cells were incu- 
bated (200 ~1 final volume) in the absence (e and f) or presence of cytosol (a-d, g-j) for 4 h at reduced temperature (16°C) (c-j) in vitro 
with the indicated supplements ([g and h] Sarl(H79G-GTP) [7.3 ~xg]; [i and j] Sarl(T39N-GDP) [4.7 Ixg]). The distribution of VSV-G 
and p58, a marker for pre-Golgi intermediates (Saraste et al., 1987), was determined by indirect immunofluorescence using P5D4 (VSV- 
G) and a polyclonal antibody specific for p58 as described in Materials and Methods. 

Golgi region (Tanigawa et al., 1993; Teal et al., 1994), we 
were concerned that the transport block observed above 
by the GTP-restricted A R F I ( Q 7 1 L )  mutant  was possibly 
a consequence of inhibition of the acceptor function of 
Golgi compartments.  To examine this possibility, we con- 

ducted a two stage in vitro transport reaction taking ad- 
vantage of the fact that Ca z÷ is required at a late step pre- 
ceding fusion of VTCs to the Golgi stack, but not for 
vesicle budding from the E R  (Balch et al., 1994; Beckers 
and Balch, 1989; Pind et al., 1994). In these experiments, 
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semi-intact NRK cells, cytosol, and ATP were incubated 
in the absence of Ca 2+ (by addition of EGTA)  for 60 min 
to accumulate VSV-G in clusters of 60-70 nm vesicular 
carriers and small tubular elements (referred to as EGTA- 
VTCs) which are largely indistinguishable from normal 
VTCs (Balch et al., 1994; Pind et al., 1994) (Fig. 3, stage 1). 
Subsequently, cells were pelleted and resuspended in a 
cocktail which was supplemented with Ca 2+, and incu- 
bated for an additional 90 min to promote transport of 
VSV-G to the Golgi stack (Fig. 3, stage 2). Addition of 
GTP~/S, or activated ARF1 and Sarl mutants in the first 
stage of the two-stage incubation, significantly blocked 
transport during subsequent incubation in stage 2 in their 
absence (Fig. 3, a-d). In contrast, addition of either GTP-yS 
or the activated mutants to stage 2 after accumulation in 
EGTA-VTCs had little or no effect on transport in the 
presence of Ca 2+ (Fig. 3, e-h). Since E G T A  per se does 
not interfere with COPI recruitment (see below), these re- 
sults provide strong evidence that the activated forms of 
Sarl or ARF1 do not inhibit transport by blocking accep- 
tor (Golgi) function, rather their sites of action are on ear- 
lier steps in the transport of VSV-G from the ER through 
pre-Golgi intermediates. 

COPII  but No t  COPI  Is Required fo r  E R  Export  

The independent recruitment of COPII  and COPI coats, 

combined with the complete inhibitory effects of activated 
Sarl and ARF1 mutants on transport to EGTA-VTCs,  
suggested that a multi-step transport process is responsible 
for the delivery of VSV-G from the ER through pre-Golgi 
intermediates to the Golgi stack (Pind et al., 1994). Since 
these sequential steps are not evident in our biochemical 
assay, we followed VSV-G transport from the ER to the 
Golgi stack morphologically using indirect immunofluo- 
rescence. We took advantage of the fact that incubation of 
cells at reduced temperature (16°C) results in the accumu- 
lation of anterograde transported proteins such as VSV-G 
and recycling proteins such as p58 (a frequently used 
marker for pre-Golgi intermediates [Saraste et al., 1987; 
Saraste and Svensson, 1991]) in numerous pre-Golgi VTCs 
which reside adjacent to budding sites of the ER scattered 
throughout the peripheral cytoplasm and adjacent to the 
cis face of the peri-nuclear Golgi stack (Balch et al., 1994; 
Lotti et al., 1992; Oprins et al., 1993; Plutner et al., 1992). 
These structures show no continuity with the ER and lack 
ER marker proteins such as calnexin (Saraste and Svens- 
son, 1991; not shown). While incubation at 32°C results in 
movement of protein to and from pre-Golgi intermediates 
and the Golgi stack in a rapid and highly dynamic fashion, 
incubation in vitro at 16°C allows us to isolate the first step 
in delivery of cargo to VTCs from other steps of the early 
secretory pathway. 

Accumulation of VSV-G in pre-Golgi intermediates in 

Figure 5. VSV-G accumulates in coated VTCs during incubation at reduced temperature.(a-d) Permeabilized cells were incubated (200 
~1 final volume) for 4 h at 16°C before preparation for electron microscopy as described in Materials and Methods in the presence of 
Sarl(H79G-GTP) (7.3 Ixg) (a and b) and ARFI(Q71-GTP) (25 p~g) (c and d). Arrowheads indicate the distribution of coats on typical 
16°C-VTCs consisting of clusters of 60-nm vesicles and small tubular elements. (e-h) VSV-G was accumulated in 16°C-VTCs for 2 h in 
vivo, cells were permeabilized and further incubated for 30 min at 32°C in the presence of Sar(H79G-GTP) (e and f) or ARFI(Q71L- 
GTP) (g and h) as described in Results. The distribution of VSV-G was determined using immunoelectron microscopy as described in 
Materials and Methods. The dotted lines indicate the ER membrane not evident in the cropped image. 
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Figure 6. Effects of ARF1 mutants on export of VSV-G from the E R  at reduced temperature. (A and B) Semi-intact cells were incu- 
bated (200 Ixl final volume) at reduced temperature (16°C) for 4 h in the presence of myr-ARFI(Q71L-GTP) (25 Ixg) (a and b) or the 
nonmyristoylated (c) and myristoylated (d) forms ARFI(T31N) (25 Ixg). The distribution of VSV-G (a, c, and d) and p58 (b) was deter- 
mined using indirect immunofluorescence as described in Materials and Methods. (C) Intact NRK cells were incubated at 16°C in the 
absence (e) or presence 09 of BFA (15 ~xg/ml). The distribution of VSV-G (e and f) was determined using indirect immunofluorescence 
as described in Materials and Methods. 
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vivo normally requires incubation for 90-180 min at re- 
duced temperature (Beckers and Balch, 1989; Beckers et 
al., 1989, 1990; Plutner et al., 1992; Saraste and Svensson, 
1991). In vitro, we found that VSV-G and p58 first ap- 
peared in VTCs at 30-60 min and continued to accumulate 
in pre-Golgi VTCs for up to 4 h (not shown), reflecting the 
reduced kinetics of transport in permeabilized cells (~2-3- 
fold) (Davidson and Balch, 1993; Plutner et al., 1992). In 
the presence of cytosol, VSV-G accumulated in 16°C-VTCs 
as indicated by the strong overlap in the distribution of 
VSV-G and p58 (Fig. 4, c and d, arrowheads). Transport of 
VSV-G to VTCs was ATP (not shown) and cytosol depen- 
dent (Fig. 4, compare e to c). In the absence of cytosol, the 
distribution of p58, which at the beginning of the transport 
reaction can be readily detected in the perinuclear cis- 
Golgi region (Fig. 4 b, arrowhead) (Plutner et al., 1992; 
Schwaninger et al., 1992), redistributed to a more diffuse 
ER-like pattern (Fig. 4, compare f to d). In this particular 
case, the absence of cytosolic COPI may lead to some ret- 
rograde fusion of Golgi compartments to the ER similar to 
the effects of brefeldin A (BFA) in vivo (for a review see 
Lippincott-Schwartz, 1993). 

To define the role of COPII  and COPI in the transport 
of VSV-G to VTCs, we incubated permeabilized cells at 
16°C in the presence of the activated ARF1 and Sarl mu- 
tants. When cells were incubated with the activated form 
of Sarl (Sarl[H79G]) to stabilize newly recruited COPII  
coats, VSV-G was exported from the ER and concen- 
trated in structures containing p58 (Fig. 4, g [VSV-G] and 
h [p58], arrowheads). However, these VSV-G--containing 
sites were more numerous and had a weak punctate ap- 
pearance distinct from the control incubation in the same 
experiment (compare Fig. 4 g to c) suggesting a structur~ 
different from that of normal VTCs. When examined, us- 
ing transmission electron microscopy (TEM) (Fig. 5, a and 
b), punctate structures accumulated in the presence of 
Sarl(H79G) were typically a collection of 60-nm vesicles 
which were organized as "clusters of grapes", were fre- 
quently found to be associated with budding structures on 
the ER and lacked the small tubular, pleomorphic ele- 
ments characteristic of normal VTCs. These structures had 
a distinctive coat (Fig. 5, a and b, arrowheads), presumably 
COPII,  and contained VSV-G when examined, using im- 
munoelectron microscopy (Balch et al., 1994; not shown). 

In contrast to the effects of the GTP-restricted Sarl mu- 
tant, addition of the Sarl mutant restricted to the GDP- 
bound form (Sarl[T39N]) which blocks recruitment of 
wild-type Sarl by interfering with GEF function (Kuge et 
al., 1994) during incubation at 16°C completely abolished 
the accumulation of VSV-G in 16°C-VTCs (Fig. 4 i) as re- 
ported previously for 32°C (Kuge et al., 1994). This was as- 
sociated with a striking redistribution of p58 to the ER 
(Fig. 4 j) compared to normal incubation conditions (Fig. 4 
d), and a near complete absence of pre-Golgi VTCs in 
semi-intact cells when examined using TEM (not shown). 
The retention of p58 in the ER suggests that the export of 
both p58 and VSV-G from the ER is COPII  dependent 
whereas p58 recycling may be COPII  independent. 

COPI Is Required to Stabilize Pre-Golgi Intermediates 

While the Sarl-GTP-restricted mutant prevented the ac- 

cumulation of larger more pleomorphic VTCs, incubation 
in the presence of the activated ARFI(Q71L)  mutant did 
not inhibit the accumulation of either VSV-G or p58 in 
VTCs. Indeed, their level of overlap was striking (>80%) 
(Fig. 6, a and b, arrowheads). The stabilization of these 
structures by COPI is in agreement with previous results 
which have demonstrated that pre-Golgi intermediates are 
one of the principle sites of COPI binding in vivo and in 
vitro (Duden et al., 1991; Oprins et al., 1993; Pepperkok et 
al., 1993; Peter et al., 1993; Pind et al., 1994). Examination 
using TEM revealed that typical VSV-G-containing VTCs 
accumulated in the presence of ARF1 (Q71L) have regions 
of dense cytoplasmic coats and tubular elements diagnos- 
tic of normal VTCs (Fig. 5, c and d, arrowheads). 

The ARFI(T31N) mutant, which is restricted to the 
GDP-bound form and inhibits ARF1 activation and COPI 
recruitment (Dascher and Balch, 1994), also blocked trans- 
port in vitro by ~90% as measured by inhibition of pro- 
cessing of VSV-G to the Golgi associated endo H-resistant 
forms (Fig. 7). ARFI(T31N) did not, however, block ER 
export when examined using indirect immunofluorescence, 
although accumulation of VSV-G in 16°C-VTCs was ineffi- 
cient (Fig. 6 d, arrowheads) compared to the nonmyristoy- 
lated ARFI(T31N) control (Fig. 6, compare d to c). This re- 
sult was similar to the effects of BFA on the accumulation 
of VSV-G in punctate VTCs in vivo at 16°C (Fig. 6, e [minus 
BFA] and f [plus BFA]). A number of lines of evidence 
suggest that both BFA and the ARF1 GDP-restricted mu- 
tant function by preventing COPI coat assembly (Dascher 
and Balch, 1994; Elazar et al., 1994; Lippincott-Schwartz, 
1993). Thus, it is apparent that at least one function of 
COPI is to stabilize the formation of VTCs from ER- 
derived COPII  vesicles. 

o ~ lo0_ ARF1 (T31N-GDP) 
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Figure 7. Effects of GDP-restricted ARFl(T31N-GDP) on trans- 
port of VSV-G to the Golgi. Semi-intact cells were incubated (40 
~1 final volume) at 32°C for 90 min in the presence of the indi- 
cated concentration of the nonmyristoylated (open circles) or 
myristoylated (closed circles) ARF1(T31N-GDP). The fraction of 
VSV-G processed to endo H-resistant forms was determined as 
described in Materials and Methods. 
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Figure 8. Transport from 16°C-VTCs to the Golgi stack is sensi- 
tive to GTPyS, AIF4-, and Sarla and ARF1 trans dominant mu- 
tants. (A) (Open circles) After infection at the restrictive temper- 
ature (4.5 h), semi-intact cells were pulse-labeled at 39.5°C, 
transferred to ice, perforated, and incubated in vitro at 32°C for 
the indicated time. The fraction of VSV-G processed to endo 
H-resistant forms was determined as described in Materials and 
Methods. (closed circles) After infection at the restrictive temper- 
ature (4.5 h), cells were pulse-labeled at 39.5°C, and then rapidly 
equilibrated to 16°C and incubated for a total time of 2 h to mobi- 
lize VSV-G to 16°C-VTCs before preparation of semi-intact cells 
as described in Materials and Methods. Semi-intact cells were 
subsequently incubated in vitro for the indicated time at 32°C 
(closed circles). The fraction of VSV-G processed to endo H-resis- 
tant forms was determined as described in Materials and Meth- 
ods. (B) Semi-intact cells prepared from cells preincubated in 
vivo for 2 h at 16°C were subsequently incubated (40 ixl final vol- 
ume) at 32°C for 30 min in vitro in a cocktail supplemented with 
the indicated inhibitors: (a) none, (b) 10 mM KF, 30 IxM A1C13, 
(c) 100 txM GTPyS, (d) 2.7 /~g ARFl(Q71L-GTP), (e) 1 Ixg 
Sarl(H79G-GTP), and (f) 1 Ixg Sarl(T39N-GDP). The results are 
reported as fraction of total VSV-G processed to endo H-resis- 
tant forms as described in Materials and Methods. 

The Effect of ARF1 and Sarl Mutants on Transport of 
VSV-G from 16 °C- VTCs to the Golgi Stack 

To address more directly the role of COPI  in transport 
from pre-Golgi intermediates, cells were incubated for 2 h 
in vivo at reduced temperature to accumulate VSV-G and 
p58 in 16°C-VTCs before perforation. VSV-G accumu- 
lated in VTCs at 16°C was present in the endo H-sensitive 
form before incubation in vitro (Fig. 8 A, 0 min, closed cir- 
cles) attesting to the efficiency of the low temperature 
block. However,  when transport was initiated by incuba- 
tion at 32°C in the presence of  cytosol and ATP,  VSV-G 
was rapidly transported to the Golgi stack as indicated by 
the short lag period (~5 min) (Fig. 8 A,~ closed circles) 
compared to the much longer lag (15-20 min) required for 
export from the E R  (Fig. 8 A, open circles) in the same ex- 
periment (Davidson et al., 1992; Plutner et al., 1992). More- 
over, transport to the Golgi stack from 16°C-VTCs was 
complete within 30 min (Fig. 8 A, closed circles) as op- 
posed to the 90-min incubation period required for trans- 
port  from the E R  (Fig. 8 A, open circles). We therefore 
used 30-min incubations at 32°C in subsequent experiments 
to focus on transport from 16°C-VTCs to the Golgi stack. 

Transport  from 16°C-VTCs was cytosol and ATP  de- 
pendent (Beckers and Balch, 1989; Beckers et al., 1990) 
and was insensitive to incubation at the restrictive temper- 
ature (39.5°C), a temperature which inhibits export from 
the E R  in vitro (not shown). Transport was also sensitive 
to AIF4- (Fig. 8, B b) and GTPTS (Fig. 8, B c) (Beckers 
and Balch, 1989; Beckers et al., 1990). As expected, addition 
of the activated ARF1 mutant  potently inhibited transport 
(Fig. 8, B d). Surprisingly, the addition of the activated 
Sarl(H79G) mutant, as well as the GDP-bound Sarl(T39N) 
mutant also inhibited transport to the Golgi (Fig. 8, B, e-f). 
Thus, unlike EGTA-VTCs,  which are independent of 
COPII  and COPI  function, 16°C-VTCs are a novel inter- 
mediate in the pathway in transition from a COPII  to a 
COPI-dependent  state. The effects of  both the Sat1 and 
ARF1 mutants on this step suggest that 16°C-VTCs are 
immature intermediates which may still retain receptors 
for components  of both coat complexes. 

Morphological Analysis of Sarl and ARFl-dependent 
Transport of VSV-G and p58 from 16°C-VTCs. Role for 
COPI in p58 Recycling 

To explore morphologically the potential roles of Sat1 and 
ARF1 on transport from pre-Golgi intermediates, cells were 
incubated for 2 h at 16°C before permeabilization. Accu- 
mulation of VSV-G and p58 in 16°C-VTCs before prepa- 
ration of semi-intact cells allows us to focus not only on 
the anterograde transport of VSV-G from this step to the 
Golgi stack, but, in addition, the retrograde transport of 
p58 to the ER as noted previously (Fig. 4 j). Before incu- 
bation in vitro, the distribution of  VSV-G and p58 nearly 
completely overlapped in VTCs which appeared as scat- 
tered punctate elements distributed throughout the cyto- 
plasm (Fig. 9, a [VSV-G] and b [p58]). Incubation in vitro 
for 30 min at 32°C led to the delivery of VSV-G to perinu- 
clear Golgi elements (Fig. 9 c) which overlapped with the 
distribution of a-l ,2-mannosidase II (Man II) (not shown). 
During incubation, overlap between p58 and VSV-G in 
the peripheral cytoplasm was markedly decreased (Fig. 9, 
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Figure 9. p58 is segregated from VSV-G in VTCs via a COPI dependent/COPII-independent pathway. (a-j)  NRK cells were preincu- 
bated for 2 h at reduced temperature (16°C) to accumulate VSV-G in VTCs before permeabilization as described in Materials and 
Methods. Cells were incubated (200 Ixl) in vitro in the presence of cytosol at 32°C (c- j )  with the indicated supplements (ARFl(Q71L- 
GTP) (25 I~g) [e and)C]; Sarl(H79G-GTP) (7.3 p~g) [g and h]; Sarl(T39N-GDP) (4.7 ~g) [i and j]) and the distribution of VSV-G and p58 
determined by indirect immunofluorescence as described in Materials and Methods. Arrowheads indicated the distribution of punctate 
elements which contain both VSV-G and p58 (a and b) or lack of colocalization of VSV-G with p58 (g and h). 

Aridor et al. Cop Coats in ER to Golgi Transport 885 



c and d) suggesting that segregation of p58 and VSV-G 
was in progress. Addition of the activated ARF1(Q71L) 
mutant resulted in complete stabilization of the overlap of 
VSV-G and p58 during the 30-min incubation at 32°C in 
the presence of cytosol and ATP (Fig. 9, e [VSV-G] and f 
[p58]). This observation was confirmed using immunoelec- 
tron microscopy where VSV-G could be readily detected 
in VTCs (Fig. 5, g and h), but not the Golgi stack (not 
shown), 

While the activated ARF1 mutant prevented the export 
of both p58 and VSV-G from 16°C-VTCs, the Sarl GDP- 
restricted mutant did not interfere with the exit of p58 
from these pre-Golgi intermediates and led to its redistri- 
bution to the ER (Fig. 9, compare j to b). These results re- 
inforce the observation that retrograde transport is COPII  
independent. In contrast, VSV-G was principally retained 
in numerous punctate sites in the presence of the Sarl- 
GDP restricted mutant (Fig. 9 i), consistent with the ef- 
fects of this mutant on inhibiting processing to the endo 
H-resistant form (Fig. 8 B, J0, but suggesting that COPII  
function in regards to anterograde transport was incomplete. 
Incubation in the presence of the activated Sar1(H79G) 
also resulted in the retention of VSV-G in VTCs (Fig. 9 g) 
as indicated by their vesicular-tubular structure using im- 
munoelectron microscopy (Fig. 5, e and f). Although seg- 
regation of p58 from VSV-G was readily detected (Fig. 9, 
g [VSV-G] and h [p58]), distribution of p58 in VTCs was 
not inhibited to the same extent observed during incuba- 
tion in the presence of the Sar l -GDP mutant (Fig. 9, com- 
pare h [Sarl-GTP] to i [Sarl-GDP]). This would be ex- 
pected if p58 was recycled to the ER, but re-exported to 
VTCs through the recruitment and stabilization of COPII  
coats by the GTP-restricted mutant. 

Thus, it is apparent that we have identified conditions 
which dissect retrograde recycling to the ER from antero- 
grade transport to the Golgi. Since the general recruitment 
of COPI coats is unaffected by the Sar l -GDP mutant (see 
below), these results suggest that pre-Golgi intermediates 
are the first site of retrograde transport and suggest that 
recycling of p58 is mediated by a sorting event involving 
COPI. 

Localization of  COPI and COPII on ER to Golgi 
Transport Intermediates 

To gain further insight into the role of COPI and COPII  
coats in transport, we analyzed the intracellular localiza- 
tion of B-COP (COPI) and Sec23 (COPII)  in semi-intact 
NRK cells using indirect immunofluorescence. At steady- 
state, Sec23 is localized to the ER and B-COP to pre-Golgi 
intermediates in the perinuclear and peripheral cytoplasm 
(not shown) (Orci et al., 1991a; Peter et al., 1993; Kuge et 
al. 1994). When VSV-G was accumulated in 16°C-VTCs in 
vitro, its distribution was found to overlap with the dis- 
tribution of B-COP in punctate intermediates scattered 
throughout the peripheral cytoplasm (Fig. 10, a and b). In 
contrast, Sec23 was largely absent from punctate VSV-G 
containing VTCs and distributed principally in a weak ER/ 
nuclear envelope reticular-staining pattern (Fig. 10, c and 
d). When cells containing VSV-G in 16°C-VTCs were in- 
cubated in vitro at 32°C in the presence of activated 
Sar1(H79G) mutant, we noted a striking recruitment of 

Sec23 to punctate elements which overlapped with the dis- 
tribution with VSV-G (Fig. 10, g and h). Under these con- 
ditions, colocalization with p58 was completely lost (Fig. 9, 
g and h). These findings support our previous observations 
that the addition of Sarl(H79G) strongly promoted the 
binding of Sec23 to microsomes (Fig. 1) and inhibited 
transport from 16°C-VTCs to the Golgi stack (Fig. 8 B and 
Fig. 9 g). Thus, VTCs accumulated at reduced temperature 
still contain functional receptors for Sarl and/or COPII  
components. 

In contrast to the effects of GTP-restricted Sarl mutant 
on [3-COP and Sec23 recruitment, incubation of 16°C - 
VTCs with the activated ARF1(Q71L) mutant resulted in 
a marked overlap of both p58 (Fig. 9, e and f) and B-COP 
(Fig. 10, e and f). No accumulation of Sec23 was detected 
under these circumstances (not shown). The recruitment 
of [3-COP to VTCs and to the pre-Golgi region in the pres- 
ence of ARF1-GTP confirms our previous observation 
that addition of activated ARF1 strongly promotes the 
binding of [3-COP to microsomes (Fig. 1 A). Since the ac- 
cumulation of Sec23 on 16°C-VTCs cannot be observed 
unless the Sarlp GTPase activity is blocked (either by acti- 
vated Sat1 or GTPyS [not shown]), these results suggest 
that under normal transport conditions, COPII  coats are 
rapidly lost following vesicle budding, but that VTCs still 
retain Sarl /COPII  receptors. This result is consistent with 
the fact that incubation of semi-intact cells at 32°C in the 
presence of GTPyS without preincubation at reduced tem- 
perature also leads to a strong overlap in the distribution 
of [3-COP and Sec23 (not shown). 

To directly examine the sequential order of action of 
COPII and COPI coats in transport, both the Sa r l -GDP-  
restricted form and the ARF1-GTP-restricted form were 
added to the same assay cocktail in the presence of semi- 
intact cells which contained VSV-G in the ER. Incubation 
at 32°C in the presence of both mutants resulted in the 
complete retention of VSV-G in ER (Fig. 11 c), similar to 
the effects of Sarl-GDP-restricted form alone (Fig. 11 a). 
While the ARF1-GTP led to striking recruitment of COPI 
to the Golgi region (Fig. 11 d), as observed in the presence 
of ARF1-GTP alone to 16°C-VTCs (Fig. 10 f), this result 
was not observed in the presence of Sar l -GDP alone (Fig. 
11 b). Thus, the GTP-restricted form of ARF1 stabilizes 
pre-existing VTCs while Sar l -GDP prevented COPII  vesi- 
cle formation and export of VSV-G from the ER. These 
results establish that COPII  temporally precedes COPI 
function in ER to Golgi transport. 

EGTA-VTCs Are Mature VTCs which Have Already 
Segregated p58 

While transport of VSV-G from 16°C-VTCs is sensitive to 
both activated ARF1 and Sarl mutants (Fig. 8 B), migra- 
tion to the Golgi stack from EGTA-VTCs was insensitive 
to these mutants (Fig. 3). Therefore, we examined whether 
COPI binding could still be detected during the generation 
of EGTA-VTCs and whether p58 segregation can occur in 
the absence of Ca 2+. We noted using indirect immunofluo- 
rescence that VTCs which have accumulated VSV-G in 
the presence of E G T A  were largely deficient in p58 stain- 
ing (not shown), suggesting that recycling had occurred. 
To visualize this segregation event, VSV-G and p58 were 
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Figure 10. The effect of ARFI(Q71L- 
GTP) and Sarl(H79G-GTP) on the re- 
cruitment of COP coats to 16°C-VTCs. 
NRK cells were preincubated for 2 h at 
reduced temperature (16°C) to accumu- 
late VSV-G in VTCs in vivo before per- 
meabilization. Semi-intact cells were 
subsequently either held on ice (a-d) or 
incubated at 32°C (e-h) for an additional 
30 min in the presence of ARFI(Q71L- 
GTP) (25 ~g) (e and f) or Sarl (H79G- 
GTP) (7.3 ~g) (g and h) as described in 
Materials and Methods. The distributions 
of B-COP (COPI), Sec23 (COPII), and 
VSV-G were determined by indirect im- 
munofluorescence using M3A5 (13- 
COP), or polyclonal antibodies specific 
for Sec23 and the VSV-tail as described 
in Materials and Methods. 

first accumulated in 16°C-VTCs in vivo as described 
above. After  permeabilization, semi-intact cells were incu- 
bated at 32°C in the presence of E G T A .  Before incuba- 
tion, the distribution of VSV-G strongly overlapped with 
the distribution of both I3-COP and p58 in VTCs in the pe- 
ripheral cytoplasm and the Golgi region (Fig. 12, a [VSV- 
G], b [13-COP], e [VSV-G], and f[p58]).  After  30 min incu- 
bation in the presence of E G T A ,  VSV-G remained in 
punctate elements (Fig. 12 c) which retained reduced yet 
significant overlap with [3-COP (Fig. 12 d). In contrast, the 
strong overlap between VSV-G and p58 observed before 

incubation (Fig. 12, e and f) was nearly completely lost 
(Fig. 12, g and h). These results suggest that COPI  medi- 
ated retrograde retrieval occurs in the absence of Ca 2+ and 
before the Ca2+-sensitive step preceding delivery of cargo 
from VTCs to the Golgi stack. 

Discussion 

We have demonstrated for the first time the sequential 
roles of COPII  and COPI  coats, and their sites of action in 
E R  to Golgi traffic in mammalian cells. A model summa- 
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Figure 11. ARF1 (Q71L- 
GTP) does not promote ex- 
port from the ER in the pres- 
ence of Sarl(T39N-GDP). 
Semi-intact cells were incu- 
bated (200 I~1 final volume) 
at 32°C for 45 min in the 
presence of either Sarl- 
(T39N-GDP) (4.7 p~g) (A), or 
both Sarl(T39N-GDP) and 
ARFI(Q71L-GTP) (25 Ixg) 
(B). The distribution of 
VSV-G (a and c) and 
[3-COP (COPI) was deter- 
mined by indirect immuno- 
fluorescence using the P5D4 
antibody (VSV-G) and a 
polyclonal antibody directed 
against I3-COP (EAGE) as 
described in Materials and 
Methods. 

rizing our results is shown in Fig. 13. First, we find that 
both coats are required to promote ER to Golgi transport 
suggesting a close coupling between their respective func- 
tions. Second, while COPII  appears to be the fundamental 
basis for vesicular export from the ER, COPI coats are 
critical for stabilization of pre-Golgi intermediates and re- 
cycling of p58. Third, it is evident that VTCs generated 
from ER-derived vesicles are very dynamic structures 
which undergo continuous maturation during the trans- 
port of cargo to the Golgi complex. They play a critical 
function in the secretory pathway as they are the first site 
of segregation of retrograde transported protein, an event 
which appears to be coupled to the anterograde transport 
of cargo (Fig. 13). 

Role of COPII in Export from the ER 

Previous pioneering work by Schekman and colleagues 
(Barlowe et al., 1993, 1994; Barlowe and Schekman, 1993; 
Hicke and Schekman, 1989; Hicke et al., 1992; Pryer et al., 
1993; Rexach et al., 1994; Salama et al., 1993) established 
in yeast a role for the COPII  machinery in the formation 
of ER-derived vesicles and in the export of cargo from the 
ER. We have now demonstrated that the principle mecha- 
nism of export of VSV-G is also via a GTP-dependent re- 
cruitment of COPII  vesicle coats (Fig. 13). A similar 

mechanism promotes the export of the recycling protein 
p58 from the ER and is the basis for the formation of pre- 
Golgi intermediates (Fig. 13). These conclusions are de- 
rived from previous studies (Kuge et al., 1994) and current 
studies which demonstrate that the Sarl(T39N) GDP- 
restricted mutant prevents COPII  recruitment, blocks ves- 
icle budding and cargo mobilization from the ER, and pre- 
vents VTC build-up. The requirement for COPII  in bud- 
ding is also consistent with the effect of the activated 
Sar1(H79G) mutant which led to the accumulation of p58 
and VSV-G in pre-Golgi clusters containing numerous 60- 
nm vesicles. Since VSV-G is concentrated in the presence 
of GTP~/S (Pind et al., 1994), presumably reflecting COPII- 
coated vesicles, and in vesicles or VTCs which accumulate 
in the presence of activated ARF1 and Sarl mutants (Ban- 
nykh, S., and W. E. Balch, manuscript in preparation), it is 
now apparent that COPII coats participate either directly 
or indirectly in the sorting and concentration of cargo 
(Balch et al., 1994). Interestingly, the EMP24 protein, a 
component of ER-derived COPII-coated vesicles, was re- 
cently demonstrated to cause a defect in transport of se- 
lected proteins from the ER to the Golgi (Schimmoller et 
al., 1995). Hence, at least one component of COPII vesicles 
appears to be required for sorting. It remains to be deter- 
mined if such molecular sorting events regulate the actual 
recruitment of COPII components during ER budding. 
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Figure 12. EGTA-VTCs retain the ca- 
pacity to bind COPI. (a-h) NRK cells 
were preincubated for 2 h at reduced 
temperature (16°C) to accumulate 
VSV-G in VTCs before permeabiliza- 
tion as described in Materials and 
Methods. Cells were either held on ice 
(a, b, e, and f) or incubated for 30 rain 
at 32°C (c, d, g, and h) and the distribu- 
tion of VSV-G (a, c, e, and g), [3-COP 
(b and d) and p58 Q'and h) determined 
by indirect immunofluorescence using 
P4D5 antibody (VSV-G) and EAGE 
antibody (I3-COP) as described (Plut- 
ner et al., 1992). 

In contrast to the requirement for COPII  in vesicle bud- 
ding, COPI  recruitment was not found to be essential. 
VSV-G mobilization from the ER,  while reduced, was not 
blocked in vivo by the drug B F A  or in vitro by the GDP-  
bound form of ARF1.  Both of these reagents would be ex- 
pected to prevent COPI  coat recruitment (Dascher and 
Balch, 1994; Elazar et al., 1994; Helms and Rothman,  1992; 
Lippincott-Schwartz, 1993; Orci et al., 1991b). These re- 

suits are in agreement with our previous observation that 
purified coatomer (COPI) will not support export of VSV-G 
from the E R  (Peter et al., 1993). 

A striking feature of E R  export is the rapid loss of the 
COPI I  coat after vesicle budding. Under  normal incuba- 
tion conditions, the distribution of VSV-G and [3-COP 
(COPI) strongly overlap in pre-Golgi intermediates, whereas 
Sec23 (COPII)  is absent. Incubation of semi-intact cells at 
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ER VTCs Golgi 
Figure 13. Model summarizing the role of COPI and COPII in 
the anterograde and retrograde transport of protein between the 
ER and the Golgi stack. The cartoon summarizes the putative 
roles of COPII (gray) and COPI (black) coats in anterograde and 
retrograde transport pathways of VSV-G and p58 in ER to Golgi 
transport. COPII coats are required for export from the ER and 
are lost rapidly after budding. This is followed by the recruitment 
(dotted marks) of COPI components which leads to the assembly 
of COPI coats involved in retrograde transport of p58 back to the 
ER from VTCs. See text of Discussion. 

16 ° also leads to the rapid loss of the COPII  as only COPI 
coats can be detected on 16°C-VTCs. A similar result has 
been observed in yeast as COPII  coats present on purified 
ER-derived vesicles are very unstable (Rexach et al., 
1994). However, it is now clear that the receptor(s) for 
Sarl /COPII  components remain to be segregated from 
VSV-G in 16°C-VTCs which accumulate at reduced tem- 
perature. This conclusion is based on the observation that 
the addition of the activated Sarl(H79G) mutant led to 
extensive recruitment of Sec23 to these intermediates af- 
ter a shift to 32°C. In yeast, COPII-coated vesicles formed 
in the presence of GTP',/S do contain Sarlp (Barlowe et 
al., 1994; Oka and Nakano, 1994). Therefore, it is likely 
that a receptor or docking protein for Sarlp is exported 
from the ER in yeast as well. The lack of COPII  colocal- 
ization with the exported cargo in VTCs highlights the role 
of the coat component Sec23 as a Sarl GAP (Yoshihisa et 
al., 1993) which must rapidly promote Sarl hydrolysis and 
loss of COPII  coats after vesicle budding. 

Sequential Coupling between COPII and COPI Coats Is 
Required for Efficient ER to Golgi Transport 

While COPII  appears to be the principle coat responsible 
for export of cargo from the ER, the inability to recruit 
COPI coats had a significant effect on the appearance of 
VSV-G in pre-Golgi intermediates. What, then, is the role 
of COPI in this step? Previous biochemical studies explor- 
ing the role of COPI in ER to Golgi transport in vitro led 
to the suggestion that it is involved in ER budding (Peter 
et al., 1993). In these experiments, an antibody specific to 
13-COP largely prevented mobilization of VSV-G from the 
ER to punctate p58 containing VTCs (Peter et al., 1993). 
When the antibody was microinjected into living cells, 
VSV-G accumulated in VTCs which had extended tubular 

linkages to the ER (Pepperkok et al., 1993). In the latter 
case, it was concluded that membrane synthesis continued, 
but that budding was blocked (Pepperkok et al., 1993). 

The current studies have allowed us to focus on the 
above events and to now clarify these observations. We 
found that by blocking the recruitment of COPI in vivo by 
BFA, or in vitro by the ARF1-GDP restricted mutant, we 
markedly suppressed the appearance of VTCs. Since vesi- 
cle formation via COPII  would be expected to be normal 
under these conditions, it is now apparent that these vesi- 
cles were not detected previously using indirect immuno- 
fluorescence due to their failure to efficiently accumulate 
into compact VTCs (Peter et al., 1993). In addition, we 
cannot presently rule out the possibility that in the ab- 
sence of COPI, ER-derived vesicles may be unstable and 
fuse back to the ER via an uncoupled mechanism, similar 
to the effects of BFA on the Golgi stack in vivo (Lippin- 
cott-Schwartz, 1993) and in vitro (Elazar et al., 1994). A 
partial reduction in COPI function induced by microinjec- 
tion of 13-COP specific antibody may also contribute to the 
instability of VTCs and account for the BFA-like tubular 
connections connecting VTCs to the ER in vivo (Pep- 
perkok et al., 1993). Thus, while COPI is not critical for 
export from the ER, it plays an essential role in post-ER 
events. Insight from the current studies now clarifies our 
previous observation that while purified coatomer com- 
plex failed to support ER export, a 19 S cytosolic fraction 
which contained both COPI and COPII  (as judged by the 
presence of Sec23 and [3-COP) (Peter et al., 1993), effi- 
ciently supported ER export in vitro. In this case, the com- 
bined action of COPII  and COPI components functioned 
in concert to promote vesicle budding and intermediate 
stability. 

The rapid, sequential recruitment of COPI components 
after disassembly of COPII  coats is similar to biochemical 
events associated with budding of vesicles from yeast ER 
membranes. While COPI is absent from yeast vesicles gen- 
erated using purified Sarl and COPII  components (Bar- 
lowe et al., 1994), yeast ER-derived vesicular carriers gen- 
erated in vitro in the presence of cytosol are significantly 
enriched in COPI after ffactionation through a number of 
density gradients (Rexach et at., 1994) and therefore 
COPI is apparently a component of these vesicles. One in- 
terpretation of these results is that COPI recruitment fol- 
lows budding from the ER in both yeast and mammalian 
ceils (Fig. 13). Genetic studies reinforce this concept. A 
null mutant lacking [3-COP (Sec26) displays an ER to 
Golgi transport block leading to the accumulation of ER 
membranes (Duden et al., 1994). In this case, recruitment 
of COPI after budding may also be required to stabilize 
yeast intermediates in vivo. Since we observed a modest 
synergism in the effects of the Sarl and ARF1 mutants on 
transport, we suggest there is a close temporal coupling in 
the exchange of coats after budding (Fig. 13). The purpose 
of this sequential recruitment may be to set the stage for 
subsequent recycling of components from pre-Golgi inter- 
mediates to the ER (see below). 

The rapid recruitment of COPI after budding from the 
ER is reflected in the steady state localization of these 
coat proteins. In mammalian cells, both Sec23 (Orci et al., 
1991a) and Secl3 (Shaywitz et al., 1994) are localized to 
ER transitional elements. 13-COP is also localized to VTCs 

The Journal of Cell Biology, Volume 131, 1995 890 



adjacent to budding sites in vivo and in vitro (Balch et al., 
1994; Oprins et al., 1993; Pepperkok et al., 1993; Pind et 
al., 1994). Such a close overlap is particularly exaggerated 
in the presence of GTP~/S where both COPI and COPII 
can be found in the same punctate VTCs. An important is- 
sue which still remains to be resolved is whether both 
COPII and COPI coats can occupy the same vesicle or tu- 
bule within VTCs. Related to this issue was the surprising 
observation that anterograde transport from 16°C-VTCs is 
sensitive to Sarl mutants despite the fact that these struc- 
tures are not in continuity with the ER (Balch et al., 1994; 
Saraste and Svensson, 1991). Although we cannot rule out 
the possibility that COPII mediates a second round of ves- 
icle budding from VTCs, we feel that inhibition by Sarl 
mutants is likely to reflect their interference with a re- 
quirement for sorting of retrograde transported proteins 
such as COPII receptors from pre-Golgi intermediates. 
This sorting step is incomplete at reduced temperature, 
but is required for normal maturation of VTCs. We sug- 
gest that 16°C-VTCs are intermediates in transition be- 
tween a COPII- and COPI-dependent state, reflecting the 
possible need for segregation of recycling components by 
COPI (see below) to insure further anterograde transport 
of specific cargo through the secretory pathway. 

Role of COPI in Recycling 

Our results indicate that when COPI is retained on mem- 
branes by activated ARF1, retrograde transport of p58 
from VTCs to the ER is blocked. In contrast, inhibiting 
COPII function by the Sarl-GDP-restricted mutant, a 
condition which maintains normal COPI function, did not 
affect retrograde transport of p58. The combined results 
provide evidence for the first time that COPI is involved in 
the retrograde recycling of p58 from pre-Golgi intermedi- 
ates to the ER (Fig. 13). This conclusion is in agreement 
with the proposed role of COPI in retrograde transport in 
yeast (Cosson and Letourneur, 1994; Letourneur et al., 
1995). Both p58 and its human homologue p53 (Schindler 
et al., 1993) carry di-lysine ER retrieval motifs at their cy- 
toplasmic carboxyl-termini which bind COPI in vitro 
(Cosson and Letourner, 1994). p58 and other di-lysine mo- 
tif containing proteins present in ER-derived vesicles and 
newly formed VTCs may be responsible for the recruit- 
ment of COPI to membranes after vesicle release from the 
ER. Thus, a key event in the functional maturation of 
VTCs may be the segregation of p58 and in particular, 
Sarl/COPII receptors, which need to be recycled for reuse 
in subsequent rounds of vesicle budding from the ER. 
Such a sequential, coupled requirement for coat assembly 
mediated by the Sarl and ARF1 GTPases would confer 
vectorial progression linking recycling to anterograde trans- 
port. Sequential coupling mechanisms are also found for 
different classes of GTP-binding proteins, those involved 
in protein synthesis. Both Ef-Tu and Ef-G are required to 
assure the proper selection and incorporation of amino ac- 
ids into newly synthesized proteins. Sequential coupling 
mechanisms may therefore serve as a general paradigm for 
the interaction of multiple GTPases to confer vectorial 
progression in a variety of complex cellular processes. 

Is COPI also involved in the anterograde transport of 
VSV-G from VTCs to the Golgi stack? Isolated COPI- 

coated vesicles have been suggested to be anterograde car- 
riers of VSV-G between cis- and medial-Golgi compart- 
ments (Ostermann et al., 1993). We found that the GTP- 
restricted form of ARF1 prevented both p58 recycling and 
the anterograde transport of VSV-G from 16°C-VTCs. 
However, mutations in subunits of coatomer blocked ret- 
rograde but not anterograde transport in yeast (Letour- 
neur et al., 1995), a result which led to the suggestion that 
COPI is exclusively involved in recycling (Pelham, 1994). 
Whether different adaptors are required to direct COPI 
function, or whether anterograde transport is coupled to 
COPI-mediated retrograde transport remains to be clarified. 

Role of Pre-Golgi Intermediates in ER 
to Golgi Transport 

The sequential coupling between COPII and COPI coats 
after budding from the ER is consistent with the dynamic 
character of pre-Golgi intermediates. Indeed, the function 
and composition of these intermediates have been the 
topic of considerable controversy due to their highly vari- 
able vesicular-tubular morphology found in different cell 
types and under different incubation conditions. Pre-Golgi 
intermediates have been referred to as the salvage com- 
partment (Warren, 1987), the ER to Golgi intermediate 
compartment (ERGIC) (Schweizer et al., 1990), the Ru- 
bella virus accumulating compartment (Hobman et al., 
1993), the budding compartment for coronavirus (Krijnse- 
Locker et al., 1994; Tooze et al., 1988), the CGN (Mellman 
and Simon, 1992), and VTCs (Balch et al., 1994). With one 
exception (Krijnse-Locker et al., 1994), most studies rec- 
ognize that pre-Golgi elements are distinct from the ER 
and compartments comprising the Golgi stack. The appar- 
ent continuity of VTCs with the ER as suggested (Krijnse- 
Locker et al., 1994) may be due to the fact that perme- 
abilized cells were incubated in the absence of cytosol, a 
condition which mimics a COPI deficiency and BFA-like 
phenotype. 

Given the dynamic character of the pre-Golgi interme- 
diates, we would like to suggest that previous morphologi- 
cal/biochemical descriptions represent different steps in 
their formation and maturation. Each of these steps is 
likely to involve specific membrane-associated and cytoso- 
lic factors. These may be differentially rate-limiting in cells 
of diverse origin and under different incubation condi- 
tions. However, one fact evident from the present studies 
is the apparent similarity of pre-Golgi elements to endo- 
somes involved in the segregation and recycling of pro- 
teins derived from the cell surface. Endosomes are dy- 
namic structures, of variable morphology and function to 
segregate proteins to different cellular destinations follow- 
ing input from the plasma membrane. Given this analogy, 
we propose that the term "exosome" may provide a more 
useful designation for pre-Golgi intermediates (Beckers et 
al., 1990; Lippincott-Schwartz et al., 1989). It demarks 
their biochemical role in recycling and emphasizes the im- 
portance of segregation for anterograde transport of cargo 
through the secretory pathway. 
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