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Patients’ no-shows, scheduled but unattended medical appointments, have a direct negative impact on patients’ health, due to
discontinuity of treatment and late presentation to care. They also lead to inefficient use of medical resources in hospitals and
clinics. The ability to predict a likely no-show in advance could enable the design and implementation of interventions to reduce
the risk of it happening, thus improving patients’ care and clinical resource allocation. In this study, we develop a new interpretable
deep learning-based approach for predicting the risk of no-shows at the time when a medical appointment is first scheduled. The
retrospective study was conducted in an academic pediatric teaching hospital with a 20% no-show rate. Our approach tackles
several challenges in the design of a predictive model by (1) adopting a data imputation method for patients with missing
information in their records (77% of the population), (2) exploiting local weather information to improve predictive accuracy, and
(3) developing an interpretable approach that explains how a prediction is made for each individual patient. Our proposed neural
network-based and logistic regression-based methods outperformed persistence baselines. In an unobserved set of patients, our
method correctly identified 83% of no-shows at the time of scheduling and led to a false alert rate less than 17%. Our method is
capable of producing meaningful predictions even when some information in a patient’s records is missing. We find that patients’
past no-show record is the strongest predictor. Finally, we discuss several potential interventions to reduce no-shows, such as
scheduling appointments of high-risk patients at off-peak times, which can serve as starting point for further studies on no-show

interventions.
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INTRODUCTION

Scheduled but unattended medical appointments, often referred
to as “no-shows,” have direct negative impacts on patients’ health
and hospital and clinics’ resource utilization'2. Different health-
care systems experience no-show rates that range between 3%
and 80%. As continuity of treatment, preventive services, and
medical check-ups cannot be delivered when a patient misses an
appointment, no-shows at appointments have been associated
with poor control of chronic diseases and delayed presentation to
care®4,

There are different reasons for no-shows that include schedul-
ing problems, time conflicts (e.g., with patient’s work schedule),
and traffic and environmental factors®=. Previous studies have
shown that patients with lower socioeconomic status, prior history
of no-shows, and public insurance are more likely to miss their
medical appointments®'2,

Although there have been multiple attempts to predict medical
appointment no-shows based on statistical and machine learning
strategies, the recent availability of large amounts of recorded
data in electronic health records and advances in deep learning
have enabled us to conduct more personalized prediction of no-
show risks'>7'7, Underexplored challenges in the prediction
process still remain despite these efforts. In this study, we tackle
several challenges in no-show predictions that have not been
studied in the literature. Our main contributions are four-fold: we
propose an explicit methodology for how to handle missing data,
we leverage local weather information, and we propose ways to
improve interpretability as an essential part of the modeling
exercise. We discuss potential interventions that can be

implemented by hospitals and clinics with limited resources to
prevent no-shows based on actionable items identified in our
analyses. We address each of these as follows.

Missing data are very common in healthcare systems due to
diverse factors such as patient privacy, patient willingness to share
their information, and hospital operational reasons, where the
missing pattern can be either random or non-random'®-2°, In our
approach, we develop two different machine learning strategies
that allow us to include records of patients with multiple missing
fields of information in the training process. Our methods thus
allow us to estimate the likelihood of a no-show for unseen
patients even in the presence of missing information. This is done
by using two complementary strategies, one via supervised
learning data imputation techniques and a second one using
missingness-type indicators. Our proposed methodology is
flexible and adaptable to the likely different patterns of missing
data in other hospitals and clinics.

The rates and reasons for no-shows may differ by hospitals,
departments, and even healthcare providers. For example, some
hospitals have patient populations that rely heavily on public
transportation to get to their medical appointments and, that in
turn, are often more vulnerable to abrupt changes in weather. In
our research, we explore the impact that local weather informa-
tion may have on patterns of “no-show”.

Thirdly, in healthcare, deep learning-aided black box solutions
are not easily adopted by medical staff even if they have high
predictive performance?’. In this study, we interpret the trained
machine learning model in such a way that the importance of
each predictor in predicting no-show risks of each patient can be
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precisely estimated. This will help medical staff understand how
each model works.

Finally, various interventions such as phone calls and reminder
messages have been attempted in medical systems to mitigate
no-shows®>%22, However, these intervention approaches are not
always available to community clinics or in developing countries.
As an alternative, we estimate the effects of some potential
interventions that may be easy to implement such as scheduling
appointments for patients showing a higher risk of no-shows on a
day with likely better weather conditions for example. Other
strategies that can be employed include providing patients with
transportation means on a day with bad weather or providing
home visits, or telemedicine consults, for patients with high risks
of no show.

RESULTS

We retrospectively collected records from 161,822 hospital
appointments made by 19,450 patients between January 10th,
2015 and September 9th, 2016 at Boston Children’s Hospital's
primary care pediatric clinic. Patient-related information, including
age, gender, previous no-show rate, insurance type, etc., was used
as input to train a machine learning model aimed at predicting the
risk of a patient’s no-show at the time when the appointment was
scheduled. Given how common patients’ records contained
missing information (about 77% of the records) in our data, we
designed methods that are capable of handling this via data
missingness indicators strategies (refer to the Method subsection
for details). As a reference, to motivate the need for a more
sophisticated modeling technique to tackle this problem, we also
include the predictive performance results of a simple logistic

regression approach in the Supplementary materials. In order for
our methods to capture the potential non-linear relationships
among different features and our desired outcome, we used a
neural network approach. Predictive performance of our model
was evaluated in a collection of observations not used to train our
models, that is, in a strictly out-of-sample fashion.

To evaluate performance of different approaches, we con-
ducted a series of experiments and analyses:

1. We trained a machine learning model on only appointment
records without missing information and tested the
performance on out-of-sample records without missing
information.

2. Using supervised missing data imputation techniques or
missingness-type indicators, we trained predictive models
on all records -including those with missing information and
records without missing information. Performance of
models obtained were tested on (a) only out-of-sample
records without missing information, (b) only out-of-sample
records with missing information and c) out-of-sample
records with missing information and out-of-sample records
without missing information.

3. We explored if including local weather information as input
features will improve accuracy of the predictive models

4. We analyzed factors associated with no shows and
suggested potential actionable items to avoid no shows.

In the cohort, patients’ ages ranged between 0 and 18 years in
our dataset (Mean = 6.4 and SD =5.6) were included into the
analyses. The studied dataset includes the medical record number
(MRN) of each patient, appointment date and time, appointment
status (including completed, canceled, and no-show cases),
demographic and health insurance coverage information for each

Table 1. Study cohort (appointment status). patient, information on information about historical appoint-
- — - ments, information about the healthcare provider, and health
Appointment status Visit count Patient count insurance plans (refer to List 1 and Supplementary List 1).
Canceled 6633 4840 Accorqing to.the record.in .Tab.le 1, patients did not keep 20.3%
Completed 122,277 18,264 of their a.ppomtments. Distributions of no—shoyvs counts, no show
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Fig. 1 Summary statistics of no-show rates and counts. a Distribution of medical appointment no-show rates and counts over ages at a
pediatric primary care clinic in a major academic Children’s Hospital in the U.S. (patients above age 18 were excluded from our analysis).
b Distribution of no-show rates and counts over days of the week. ¢ Distribution of no-show rates and counts over hours of day. d Distribution
of no-show rates and counts over visit types. e Distribution of no-show rates and counts over spoken languages (languages were excluded
from the predictive model training). f Distribution of no-show rates and counts over health insurance types.
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Table 2.
confidence interval over 10-fold cross-validation are shown).

Confusion matrix of neural network model trained and tested on only appointment records without missing information (mean and 90%

Real shows

Real no-shows

Predicted shows
Predicted no-shows

Predicted shows
Predicted no-shows

21441.0 [21405.5,21469.1]
1172.8 [1148.7,1204.2]
Confusion matrix (row sum ratio/confidence interval over 10-fold cross-validation).
0.96 [0.95,0.96]

0.19 [0.19,0.20]

1001.0 [969.9,1033.1]
4905.7 [4871.8,4937.4]

0.04 [0.04,0.05]
0.81 [0.81,0.81]

of appointment, spoken languages by the patient’s family, and
types of health insurances are shown in Fig. 1

Fairness. The goal of this project is to develop a methodology
that benefits all patients regardless of social vulnerabilities such as
racial and ethnic backgrounds. It is clear that the inclusion of race
and race proxies (language, for example) as inputs in no-show
prediction models may lead to unexpected and undesirable racial
disparities. For example, if a likely no-show (as predicted by a
model) is used to overbook physicians’ schedules, the socially
vulnerable groups associated with the highest no-show risk may
be scheduled in undesirable time slots that may consequentially
lead to longer waiting times or inconvenient transportation
schedules?>?*, Therefore, in order to minimize the emergence of
potentially unfair outcomes, we explored excluding all race and
race proxy features from our proposed no-show prediction
models. These race and race proxy features include: race,
language, and ethnicity of the patient, whether the patient is
Hispanic or not and whether the patient needs an Interpreter. Our
empirical results show that exclusion of the race-related features
does not cause a statistically significant decrease in the predictive
model performance (p-value > 0.1, refer to Supplementary Fig. 1).
Therefore, unless otherwise mentioned, race and race proxy
features are excluded from predictive model training in all
subsequent sections but are kept in associated factor analyses.

Performance of predictions of no-shows with complete
information of patents (i.e.,, no missing data)

As an initial step and as a way to potentially measure the “best-
case scenario” in our predictive study, we built a predictive
modeling approach in a population of patients for whom all fields
of information were available. As mentioned above, only 23% of
medical appointments were scheduled with full information
available. Thus, all the features available in the dataset (shown
in List 1) were utilized to build our predictive model. A multi-layer
artificial neural network model was employed to solve the binary
classification problem of determining whether a patient would or
would not show up in a scheduled appointment time slot. Details
of the architecture and training process of the machine learning
model can be found in the “Materials and Methods” section. In the
first stage of the study, records with missing information were
excluded.

A ten-fold cross-validation was conducted to evaluate the
performance of our predictive model, where a subset of 10%
observations were randomly excluded from the training set and
were instead used as an evaluation (test) set. We assessed the
accuracy of the model predictions using three different perfor-
mance metrics, namely, the area under receiver operating
characteristic curve (AUROCQ), the area under precision recall curve
(AUPRC), and the model's confusion matrix. Our deep neural
network-based predictive model achieves an AUROC score of
0.970 (+0.001) and an AUPRC score of 0.859 (+0.007). In order to
obtain a confusion matrix, we used a threshold that corresponds
to the 79.7 percentile of all predicted values to obtain
dichotomous predictive results, as patients did not show up
20.3% of appointments in the original set. For context, our logistic
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Fig. 2 Feature importance in predicting no-shows. a Importance
of each feature in predicting no-shows, where the top 10 features
are shown. The red circle is the mean value of each group. In all
boxplots in this study, centreline represents median, bounds of box
represent first and third quantiles, and whiskers represent minimum
and maximum values excluding outliers. b Examples of the
importance of each feature in predicting no-shows in different
visits of patients. Examples of six visits are shown.

regression models achieved an AUROC score of 0.936 (+0.002) and
an AUPRC score of 0.855 (+0.006).

“No-shows” at medical appointments cost a significant amount
of resources, while handling false alerts (i.e., the case of predicted
no-shows but real shows) requires relatively less effort. The
confusion matrix using this threshold is generated as shown in
Table 2. This method gives precision of 80.7%, recall of 83.0%, and
F1 score of 0.82, and our logistic regression method gives
precision of 78.4%, recall of 80.2%, and F1 score of 0.79. Both
methods outperformed the persistence baseline (precision of
78.9%, recall of 77.2%, and F1 score of 0.78) that consists of taking
the previous appointment status as prediction of future behavior.
It is worth pointing out that though performance of the neural
network-based model is statistically higher than the logistic
regression based model, the margin is very small.

One important factor to consider when designing a predictive
model in healthcare is its interpretability. Clinicians, administra-
tors, and patients should be able to understand how and why the
predictions are made. To facilitate model interpretability, we
calculate the average importance of each feature in the prediction
achieved by the neural network model (refer to Fig. 2a).
Additionally, it is possible to calculate the importance of each
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Fig. 3 Performance of deep learning models predicting no-shows. a AUROC of our deep learning model predicting no-shows for (a) the
model trained only on records with complete information and tested on records with complete information, labeled C_C, corresponding to
the case of list-wise deletion (b) the model trained on both records with complete and missing information, and tested on records with
complete information, labeled MI_C, (c) the model trained on both records with complete and missing information, and tested on records
with missing information, labeled MI_M, and (d) the model trained both records with complete and missing information, and tested on
records with complete and missing information, labeled MI_AIl. b AUPRC our deep learning model predicting no-shows for the above four
experiment settings. ¢ Feature importance of each missing information indicator variable, where the top 10 features are shown. d Examples of
importance of each missing indicator feature in predicting no-shows in different visits of patients. Examples of six visits are shown.

feature in prediction risk of no-show of each appointment. An
example is illustrated in Fig. 2b.

Performance of no-show predictions with missing information
of patients

Data missingness is common in various medical datasets and
environments. As mentioned in the previous section, 77% of the
patients’ records in the study cohort have at least one missing
item. Seven features, including “Status of previous visits”,
“Mother’s education level”,"Public or private insurance”, “Insurance

npj Digital Medicine (2022) 50

plan”, “Payor”, “Language”, “Race”, and”Clinical primary care
provider's name”, are missing in at least one record. To address
this, first, we focus on adjusting our machine learning-based no-
show prediction algorithm so that patients’ records with missing
items are accommodated for both training and prediction stages
using missingness indicators. Second, we explore how to improve
the prediction accuracy by identifying patterns of data missing-
ness in the dataset, while including types of missingness into the
indicators. Third, we characterize how the missing patterns of
different features contribute to the prediction process.

Published in partnership with Seoul National University Bundang Hospital
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Fig. 4 Performance of deep learning models predicting no-shows with different approaches to handle missing information. AUROC and
AUPRC of our prediction model trained on the imputed data (IP) and both the imputed data and the missing data indicator (IP + Ml). Here, “C"
indicates data without missing information; “All” indicates data including all patients with or without missing information; “C_All" represents
the model trained only on complete data without missing information and tested on data including all patients; and other models such as

“MI_AIly “IP_All} and “IP + MI_AII" are defined in a similar fashion.

Missingness indicators and types of missingness. To track the
records with missing items in the prediction algorithm, we
introduce a series of indicators -binary digits- representing whether
each feature is originally missing for the corresponding patient,
where 1 and 0 indicate “missing” and “not missing”, respectively.
After this adjustment, all the records of 161,822 medical
appointments were used either to train or test our resulting
machine learning modeling approach. Under this “missingness-
type indicator” modeling strategy, the trained machine learning
model achieves an average of AUROC score of 0.972 (+0.001) and
the average AUPRC score of 0.878 (+0.007) over a ten-fold cross-
validation when both records with and without missing informa-
tion are included in the test sets. For the testing case based on the
records with no missing information, the prediction model trained
based on both records with and without missing information
achieves the AUROC score of 0.973 (+0.002) and the AUPRC score
of 0.869 (+£0.009), which exhibit statistically superior performance
to the model trained based only on data with no missing
information (refer to Fig. 3). This improvement is presumably due
to the much larger training set used in this modeling strategy. The
importance of each missing feature and each type of missingness
is shown in Fig. 3¢, d, where the race and mother’s educational
level appear to be the most important predictors among the
features with missing information. Note, in contrast, that naive list-
wise deletion approaches that only consider patients with no
missing information for training, are not even able to lead to
predictions for unseen patients for whom information is missing.

Data imputation does not further improve prediction. Another
widely used strategy in machine learning to overcome the sparsity
caused by missing data is called data imputation (Efron 1994) Fig. 4. In
order to understand whether imputation of missing values in the
records will further improve performance of the no-show predicting
algorithm, we adopted a Multiple Imputation by Chained Equations
(MICE) aided supervised learning-based data imputation technique.
Moreover, our empirical findings reveal that although the MICE-aided
data imputation technique exhibits potential gains over the case
simply using list-wise deletion, it does not show statistically significant
improvement compared with the case using the mentioned data
missingness indicator (P-value > 0.1). Therefore, in all the subsequent
sections of this work, only the missingness indicator method is used
to handle missing information in patients’ records.

Local weather information improves performance on no-show
prediction

Beside information recorded in the medical appointment system,
many factors influence whether a patient will miss his/her medical

Published in partnership with Seoul National University Bundang Hospital

Table 3. Confusion matrix of neural network method with missing
information imputation/indicator and local weather information
(mean/confidence interval over 10-fold cross-validation).

Real shows Real no-shows
Predicted shows 35789.9 [36738.6, 18323

36842.7] [1800.1,1874.2]
Predicted no-shows 1831.5 [1815.2,1875.6] 8999.9

[7967.7,9029.1]

Confusion matrix (row sum ratio/confidence interval over 10-fold cross-
validation)

Predicted shows 0.95 [0.94,0.95]
Predicted no-shows 0.18 [0.18,0.19]

0.05 [0.05,0.05]
0.83 [0.81,0.83]

appointment. Among those, we hypothesized that local weather
information would be one of the most crucial since bad weather
may affect a patient’s transportation means, may affect his/her
mental health, may affect his/her health condition. Our results
suggest that the inclusion of local weather information can lead to
statistically significant improvements on the prediction accuracy
of no-shows, even with a small effect.

In our experiments, ambient temperature, wind speed, humid-
ity, and atmospheric pressure in the city where the primary care
clinic is located on a day of appointment are included as
predictive features. After inclusion of these variables as input
features in addition to using missing data imputation/indicator,
our model achieved AUROC of 0.975 (+£0.001), AUPRC of 0.881
(£0.003), precision of 0.83, recall of 0.83 and F1 score of 0.83 when
making prediction on out-of-sample test data that contained both
records with and without missing information (Table 3 and
Supplementary table 1) Inclusion of such local weather informa-
tion turns out to show statistically significant improvement on the
predictive (refer to Fig. 5). Among the weather-related features,
the pressure shows the strongest contribution score, as depicted
in Fig. 5c.

Potential ways to mitigate no-shows at appointments: associated
factors. After identifying which patients have high risks of no-
shows, hospitals may want to design strategies to minimize no-
shows, which can be generalized into one of two approaches. The
first approach is to help the patients with high risks of no-show to
show up to their appointments in the clinic. The second approach
is to proactively assist patients likely to not show up to reschedule
their appointments ahead of time. In general, cancellations/
reschedule of appointments result in much less risks to patients’

npj Digital Medicine (2022) 50
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Fig. 7 Illlustration of the estimated causal relation among
weather-related features and no-show at medical appointments
along with the graphical model. Further experiments and analysis
will be needed to obtain the real causal graph.

health compared with plain no-shows because clinicians are able
to not only reschedule but also adapt treatment and check-up
plans. In this analysis, we do not have enough medical data and
information to conduct an analysis on the medical records to
search for causal relationship between different actionable items
with appointment status. Instead, we aim to identify potential
actionable items that are associated with no-shows, which can
potentially serve as a starting point for further experiments such
as randomized control trials, to identify exact actions that can be
taken to reduce no-shows. Our analysis suggests that appoint-
ment time, appointment date of week, language of needed
services, and choosing a day with desirable weather are
potentially actionable items for further study to reduce no-
shows. It is worth emphasizing that association analysis presented
in this section is derived from the predictive models in previous
sections. Languages of the patients are included into the analysis
in this section due to potential values in designing interventions,
such as providing an interpreter.

The first question that we explored is which factors are
associated with no-shows. By using a logistic regression model
on all available features as input to classify show versus no-show,
we are able to estimate effect sizes (i.e., relative odds ratios (ORs))
of each factor. In this analysis, the factor with the highest effective
size is “visit type:newborn”, with an odd ratio of 9.8 + 0.3 (see Fig.
6a, b). However, many of the factors such as “visit type”,
“healthcare plan”, and “race” are not actionable or changeable.
We thus adopt “appointment day of the week”, “appointment
time of the day”, and “language” to be potential actionable items
as appointment time often has some flexibility and an interpreter/
interpreting system can be provided to people speaking different
languages. Among these potentially actionable items, “appoint-
ment hours 20:00” (1.67+0.13) and “language: Japanese” (2.34
+0.19) have a high OR, towards show-up at appointments. No
potential actionable factors show low ORs.

We conduct the same analysis for cancellation versus no-show.
“Language_Chinese Cantonese” (1.21£0.06) has a high OR,
towards cancellation of appointments; and “appointment day of
week 7 (Sunday)” (10.61+0.03) and “Appointment hours: 8:00”
(0.83£0.07) show low ORs (see Fig. 6¢, d).

Next, we explored the potential causal effects of different local
weather conditions on no-show risks so that the appointment can
be rescheduled to another day with better weather conditions to
minimize the risks of no-show due to the fact that weather
conditions can be obtained beforehand from weather forecasts. In
general, the causal effects indicate that if a certain action, such as
scheduling a medical appointment on a sunny day, is taken, then
the outcome (i.e., risks of no-show) will change accordingly, which
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is not necessarily in the correlation relationship, as in the
predictive model. In other words, correlation is not the same as
causality.

Using the graphical model in Fig. 7 and the backdoor linear
regression method, we estimate causal effects of the four local
weather variables on no-shows. Both temperature and humidity
exhibit statistically significant estimated causal effects of —0.0134
with P value =0.001 and P value = 0.002, respectively. The causal
effect of pressure is not statistically significant even with a strong
correlation. Wind speed has the largest estimated causal effect of
0.045 with P value =0.003 (refer to Supplementary Fig. 5).
Generally, these results imply that in the city where the hospital of
interest is located in, scheduling the appointment on a day with a
relative higher temperature, higher humidity, and lower wind
speed level will enable us to reduce the risks of no-show at the
pediatric primary care clinics. This is intuitively understandable as
the city of Boston is in a cold region of the country. It should be
noted that it is impractical to infer causal relationships from
retrospective data. The estimated causal relationships in this
section suggest potentials of taking weather into consideration
when designing intervention methods for no shows and serve as a
starting point for further exploration. More experiments and
studies will be needed to discover the real causal graph.

DISCUSSION

We developed a personalized and interpretable methodology to
predict a patients’ risk of no-show in a major pediatric primary
care clinic. We used a data imputation strategy, based on a
collection of missingness-type indicators, to address the frequent
missing information in patients’ records and showed that inclusion
of patients’ records with missing information significantly
improves the predictive accuracy, when compared to a baseline
approach that can only be trained and assessed on patients for
whom complete information is available (only 23% in the dataset).
In addition, our analysis suggested that inclusion of local weather
information into predicting features improves model accuracy.
Finally, we identified potentially actionable ways for further
studies to explore how to reduce patients’ no-shows.

Both our neural network-based and logistic regression based
binary classification models outperformed a persistence baseline
approach (that only uses the most recent information on no-show
behavior of a patient) (See Supplementary Materials for details).
Analysis on feature importance of our models suggest that the
history of patients’ no-show records is the most important
predictor, which is consistent with prior studies?®>. Among the
local weather-related variables found to be associated with no-
shows, atmospheric pressure was shown to be the most important
predictor.

Our no-show prediction method may potentially be informative
when identifying appropriate interventions to reduce no-shows.
Specifically, the output of our models can be used to identify
patients for whom a text, email, or call (reminding them of their
scheduled appointment) may reduce their likelihood of no-show.
It may also be useful to calculate the optimal frequency at which
reminders should be sent for each patient and may help better
allocate free transportation resources when needed. In addition,
our no-show prediction model could also be used to optimize
scheduling systems and minimize patients’ waiting time. We
acknowledge that clinics with limited resources, the interventions
mentioned above may not always be available. With this limitation
in mind, we explored potential actionable items that could be
implemented in the majority of clinics. Our results suggest that
choosing the day of the week and time of day that would be
easier for patients and their parents to come to their medical
appointments, and moreover using a language service and
choosing a day with likely nicer weather would help reduce no-
shows. These effects were shown to be the most related to
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working hours of parents, traffic in the city, and potentially school
schedules of the patients. Atmospheric pressure, frequently an
indicator of potential changes in precipitation, was shown to be
the most important weather-related predictor of no-shows. The
fact that other variables such as wind speed, temperature, and
humidity have statistically significant causal effects on no-show
risks can be leveraged as a key reference when a way of
interventions for high-risk patients is suggested. It is worth re-
emphasizing that due to the lack of data and information,
potentially actionable items identified in this study would need to
be subject to further validation by experiments such as
randomized control trials in clinical settings.

In terms of fairness, the model trained with no race or race
proxy features, as input, shows minimal predictive performance
differences across race groups when tested on unseen patients
(<1% by AUCROC, Supplementary Fig. 4). Therefore, we decided
that there was no need to pursue additional methodologies to
address fairness issues in this study. These minimal performance
differences may emerge due to differences in sample sizes, both in
the training and testing sets.

Research conducted in this article has limitations. First of all, due
to limited data access, we only have patients’ records from a single
primary care clinic. This limits generalizability of both the trained
algorithm and the scientific conclusion. Secondly, we only have
access to a small portion of records of the patients for no-show
prediction. Access to more records of a patient will lead to further
improvement of the prediction accuracy. Thirdly, in this study, we
identified several potential interventions to reduce no-shows. In
certain institutions, data on medical appointments such as
whether reminder messages and/or emails were sent could be
used to evaluate more effective interventions, which were not
available in this study. In addition, although our neural network
model shows statistically significant improvement compared with
the logistic regression model, the effect size is small; our
speculation is that this small effect size is caused by a small
feature space due to limited data access. If other patient
information such as diagnosis and prescription could be
incorporated into features, we suspect the performance of our
neural network model may be further enhanced. The importance
of features showed strong correlation between the neural network
and logistic regression models, where one of the top predictive
features in both models is the history of appointments
(Supplementary Fig. 1, Table 2, and Table 3). These suggest that
a neural network model approach may not be justified in practice
due to its significant higher computational cost when compared
to a logistic model.

A potential avenue of future research could be the develop-
ment of no-show predictive models for an array of patients visiting
different healthcare providers. We suspect that adding informa-
tion on the different medical problems affecting patients may
improve predictive performance. The no-show prediction method
developed in this article is easily generalizable and could possibly
be implemented in hospitals making use of the SMART-on-FHIR
systems that retrieves individual’s historical information when
making an appointment?®. In addition, CDS Hooks can be used to
further integrate the predictive algorithm into clinical workshops,
where the predictive algorithm can be continuously trained as
new data become available and are shared among multiple
healthcare providers?’.

METHODS

Data processing

The data of medical appointments were collected from the outpatient
clinic of a major academic pediatric hospital for a quality improvement
purpose. The data contain appointments of all departments and visit types
of the clinic and include the names of the healthcare providers. All
categorical data types are converted to multiple binary variables, where 1
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and 0 indicate the presence and absence, respectively, of each feature. For
example, the feature “day of the week of the appointment” originally has
values from 1 to 7, representing Sunday to Monday of the week. In our
analysis, we converted the feature to seven separate binary indicators with
1 indicating that the appointment is made on that day of the week. All
numerical features were normalized so that they lie between 0 and 1. The
labels are binary digits, where 1 and 0 denote no-shows and shows,
respectively, at the corresponding appointment. A single patient may have
more than one records due to multiple appointments. The vast majority of
the patients are children and often come to the appointments with their
parents or caregivers. A patient's appointment status is one of the
following: “completed”, “canceled” or “no show”. All patients have an
appointment status recorded. We conducted a binary classification to
predict if a patient will have a “no show”. The hospital providing data used
in this study is a pediatric academic medical centre. Therefore, most of the
patients are children (<age 18). Only in some rare cases (583 patients or
3% in our cohort), older patients with certain medical conditions for which
this hospital has unique expertise on continue to seek healthcare in the
same institution. Due to this special situation and to avoid any confusion,
we excluded all patients above age 18 from our cohort in this study.

Deep neural network model and its training

Artificial neural networks are used as a primary machine learning model for
predicting no-shows. The model is constructed in the Keras 2.0
environment using TensorFlow 1.7 as backend. The cross-entropy is used
as a loss function, and Adam is used as a gradient descent method with
default settings. The model consists of 3 hidden layers with 32,256, 12
neural units. The output layer has 1 neuron. The activation function used
for the hidden layers and the output layer is “ReLu” and “Sigmoid”,
respectively. In each cycle of cross-validation, the data are randomly split
into the training set (75%) and the testing set (25%). The model is first
trained for 20 epochs using all the training data. Hyperparameters were
determined by using validation set not including in testing. After
hyperparameters are determined, validation and training sets are
combined to train the model. When training the three-class classification
algorithm in Supplementary materials, “softmax” was used as an activation
function of the last layer and the categorical cross-entropy was used as a
loss function.

Data missingness and missingness indicator

A common practice to deal with such missing data is to adopt the list-wise
deletion (or equivalently, complete-case analysis) method in which the
records with missing items are naively deleted?®. However, this list-wise
deletion approach not only introduces a bias into the dataset, as medical
data are rarely missing completely at random (MCAR) but rather missing at
random (MAR) and/or missing not at random (MNAR). Note that MAR
occurs when the missingness depends on information that we have
already observed while MNAR occurs when the probability that data are
missing depends on the unobserved data'®. This naive approach to
dealing with missing data also has some limitations due to the fact that it
typically prevents the resulting model to prospectively predict an outcome
for a new (unseen) patient with a record that contains missing information.
In addition, data missingness may cause severe data sparsity problems that
may lead to poor prediction.

We used binary missingness indicators to handle features with missing
values where 1 and 0 indicate “missing” and “not missing”, respectively. We
also note that there exist multiple types of “missingness” for a given
feature; If available, then different types of data missingness are recorded
by a distinct collection of “missingness indicators” for the same feature. For
example, for Mother’s educational level, there are three different missing
indicators. If the patient or the parents declined to answer the question,
the” Mother’s educational level_DECLINED TO ANSWER” is marked as 1 and
other two are marked as 0. If due to some operational reasons the answer
cannot be collected,” Mother's educational level_UNABLE TO COLLECT” is
marked as 1. If the information is missing due to any other reasons,”
Mother's educational level_UNAVAILABLE” is marked as 1.

Supervised learning-based data imputation

We attempted to conduct data imputation. Imputation methods that have
been commonly adopted in the literature are generally categorized into: i)
single imputation, which generates a single imputed value for each
missing data point, and ii) multiple imputation, which draws imputed
values multiple times according to a probability distribution. In this study,
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we adopt Multiple Imputation by Chained Equations (MICE), which
accounts for the uncertainty in imputation to impute the missing items
in the medical appointment dataset?®. In this study, we used an artificial
neural network model consisting of 3 hidden layers to impute each
missing variable as binary classification tasks using available variables as
input. Our results show that an inclusion of records with imputed missing
information in training leads to the performance improvement compared
with the case only using complete records (i.e., the case using list-wise
deletion) but no statistically significant improvement compared with the
missing indicator method is observed. Therefore, data imputation was not
conducted in analyses in this study.

Baseline methods

Our persistence baseline method uses the appointment status of the latest
visit as prediction for the next visit. If information on the previous visit of a
patient was not available, a random status among show, cancel, or no-
show is assigned to the patient using P(show) = 1 — (no-show rate of the
patient) — (average population rate of cancellation), P(no-show) = no-
show rate of the patient and P(cancel) = average population rate of
cancellation as the probability. Logistic regression models were trained
without regularization and optimized using gradient descent for efficiency.
Multinomial Naive Bayes was used for a Nalve Bayes model.

Performance metrics

The ROC curve is produced by plotting the true positive rate (TPR) (or
sensitivity) and the false positive rate (FPR) (or 1-specificity) at different
thresholds ranging from 0 to 1. The prediction scores (i.e., the predicted
probabilities of no-shows) are compared at each threshold. The AUROC is
calculated along with values closer to 1 indicating good quality prediction
and values closer to 0.5 indicating bad quality prediction. This principle is
also applied for the AUPRC in a similar manner.

Interpretation of our prediction model

In order to interpret how our deep neural network makes the predictions,
DeepLIFT was applied to the model as DeepLIFT explains the difference
(i.e, the error) between the predicted output and some”reference”
output®®3', The method estimates the importance of each feature in
prediction for each input by calculating the difference by comparing with
the reference point.

Local weather data

Local weather data were obtained from the OpenWeather website (url:
https://openweathermap.org/). Temperature (in Kelvin), pressure (in
hectopascal pressure units), humidity (in %), and wind speed (in m/s)
were aggregated as each day.

Causal inference

The first step of conducting the causal inference is to build a causal graph
(refer to Fig. 7). We assume that all the four local weather variables (i.e.,
weather-related features) could potentially have causal effects on medical
appointment no-shows and moreover there exist potentially unobserved
confounding factors. Temperature affects air pressure due to the velocity
of air molecules as warm air can hold more water vapor than cold air. On
the other hand, since humidity affects heat conductivity of air, humidity
and temperature are assumed to have a causal relation with each other in
the graph. Wind speed affects the rate of cooling and is caused by different
air pressures.

The causal graph is generated manually. Causal effects were calculated
using the backdoor linear regression method by assuming conditioning on
confounding factors®2. “DoWhy”, a causal inference library in the Python
3.6 environment, was used in this study. It is worth pointing out that the
value of causal effects from observed data is only seen as estimates of the
real causal effects, which can usually be obtained from experiments.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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