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Abstract

Protein-protein interactions (PPIs) play an important role in the life activities of organisms.

With the availability of large amounts of protein sequence data, PPIs prediction methods

have attracted increasing attention. A variety of protein sequence coding methods have

emerged, but the training of these methods is particularly time consuming. To solve this

issue, we have proposed a novel matrix sequence coding method. Based on deep neural

network (DNN) and a novel matrix protein sequence descriptor, we constructed a protein

interaction prediction model for predicting PPIs. When performed on human PPIs data,

the method achieved an accuracy of 94.34%, a recall of 98.28%, an area under the curve

(AUC) of 97.79% and a loss of 23.25%. A non-redundant dataset was used to evaluate this

prediction model, and the prediction accuracy is 88.29%. These results indicate that the

matrix of sequence (MOS) descriptor can enhance the predictive power of PPIs and reduce

training time, which can be a useful complement for future proteomics research. The experi-

mental code and experimental results can be found at https://github.com/smalltalkman/

hppi-tensorflow.

Introduction

Protein-protein interactions (PPIs) are useful for elucidating the changing mechanisms of

organisms in physiological or pathological conditions and are important for disease preven-

tion and drug development. In the last decade, numerous methods for studying protein-pro-

tein interactions, such as yeast two-hybrid screens [1], hybrid approaches [2] and protein

chips [3], have emerged. However, all of these experimental methods have the disadvantage

of being time-consuming and costly. Therefore, using computational approaches to predict

unknown PPIs has become an important research topic in bioinformatics. In recent years,

many computer prediction methods have been proposed to predict PPIs based on a phyloge-

netic profile method [4], amino acid index distribution [5] and gene fusion events [6, 7].
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However, these methods are not universal because the reliability of these methods depends on

a priori information about the protein pairs.

In recent years, a large amount of protein sequence information has been accumulated,

and numerous computer calculation methods and sequence-based methods have become

more universal and acceptable [8–18], such as support vector machines (SVM) [8–10], Naïve

Bayes [11, 12], decision trees [13–14], random forests [15–16], and deep learning [17–18].

From the above methods, the accuracy of PPIs prediction is not only related to machine

learning methods but also to protein coding methods. Protein coding methods and classifica-

tion algorithms are the core steps of PPI prediction and have become primary tasks of cur-

rent life science research. Until now, many efficient protein coding methods have been

proposed for inferring PPIs based on protein sequence, such as the conjoint triad method

(CT) [19], the auto covariance method (AC) [20] and local descriptor (LD) [21]. Among

them, the conjoint triad method (CT) [19] considers considered the order relationship of

three amino acids. In such a protein coding method, the 20 amino acids are clustered into

seven classes according to the dipoles and volumes of the side chains. Auto covariance (AC)

[20] considers the order relationship of 30 amino acids. Local descriptor (LD) is an align-

ment-free approach, and its effectiveness depends largely on the underlying amino acid

groups, and only considers the neighbouring effect of two adjacent types of amino acids [21].

Though the various methods described above for protein coding methods are useful, one of

the drawbacks is that the order relationship of the entire amino acid sequence is not consid-

ered. To overcome this problem, we propose a sequence-based method based on a novel repre-

sentation of the matrix of sequence (MOS). The MOS descriptor is first classified into 7 classes

according to the successful use of classification in Shen et al. [20]. Then, we combine this clas-

sification with a novel representation of protein sequence descriptors. Next, we constructed a

(deep neural network- matrix of sequence) DNN-MOS model by combining the DNN and

MOS. Finally, we evaluated the performance of the DNN-MOS protein prediction model.

When performed on human data, our method had an accuracy of 94.34%, a recall of 98.28%,

an area under the curve (AUC) of 97.79% and a loss of 23.25%. To prove the effectiveness of

MOS, we compared MOS with existing protein coding methods. We found that the MOS can

greatly reduce the loss and training time, and the prediction performance is improved. Addi-

tionally, we found that MOS achieves better performance in other classifiers such as decision

tree, k-neighbors and random forest.

Materials and methods

Data set construction

(1) Benchmark dataset: The benchmark PPIs dataset was used in our experiment, which was

provided by Pan et al. [22]. Among this benchmark dataset, the positive samples were taken

from the Human Protein Reference Database (HPRD) 2007 version, and the negative samples

were taken from the Swiss Swiss-Prot database 57.3 version. These positive samples are usually

verified by reliable methods [23–24]. The negative samples (non-interacting pairs of proteins)

were generated by pairing proteins found in different subcellular locations, according to the

following requirements [19, 25]: (1) the non-interactive pairs cannot appear in interacting

data sets; (2) sequences annotated with ambiguous or uncertain subcellular location terms

were excluded to construct the negative samples; (3) sequences annotated by two or more loca-

tions were excluded due to lack of the uniqueness. After removing the self-interactions and

duplicate interactions of the positive dataset, we finally obtained 36,630 positive pairs and

36,480 negative pairs. Protein pairs with unusual amino acids and <50 amino acids were

excluded, such as B, J, O, U, X and Z to yield 36,591 positive samples and 36,324 negative
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samples to form the benchmark dataset. We mixed the positive and negative samples in the

benchmark dataset and randomly selected 60,000 pairs (30,000 positive samples, 30,000 nega-

tive samples as training datasets for models, with the remainder constituting the training set as

a hold-out test set to validate the model).

(2) Non-redundant dataset: This dataset was provided by Pan et al. [22]. The protein pairs

of this dataset exclude proteins with�25% sequence identity from the benchmark dataset.

This dataset contains 3,899 positive protein pairs and 4,262 negative protein pairs.

Matrix of sequence (MOS)

Classification of amino acids. According to Shen et al. [19], 20 amino acids can be

divided into seven different groups based on their dipole and side chain volumes. The seven

different amino acid classifications are shown in Table 1. Then, a protein sequence is repre-

sented by these seven groups according to Table 1. For example, the protein sequence

"AGCRQTSPLGVKSE" would be represented as “11754332211536”.

Related definitions. Vector of protein sequence (VOS): Hypothetical non-empty finite

set:O = {w1, . . ., w7}, where wi is amino acid classification. Given sequence: S = S1, S2, . . .,SL,

where L represents the length of sequence S, Si 2 O, 1�i�L. The sequence vector of a given

sequence S can be expressed as: VOS ¼ ðCW1
; . . . ;CWN

Þ, where CW1
is the number of occur-

rences of the wi in the sequence S. Based on the definition of the sequence vector, the sum of

all elements in the sequence matrix is equal to L.

Matrix of sequence (MOS): Hypothetical non-empty finite set: O = {w1, . . ., WN}, where N

is the number of categories of the sequence. Given sequence: S = S1, S2, . . ., SL, where L repre-

sents the length of sequence S, Si 2 O, 1�i�L. The sequence matrix of a given sequence S can

be expressed as: MOS = [mij]N×N.

mij ¼
. . .wi . . . or . . .wi . . .wi . . .The number of occurrences; i ¼ j

. . .wi . . .wj . . .The number of occurrences; i 6¼ j

(

ð1Þ

Based on the definition of the sequence matrix, the sum of all elements in the sequence

matrix is equal to
LðLþ1Þ

2
, mij ¼

Cwi ðCwiþ1Þ

2
1 � i � Nð Þ, mij þmji ¼ Cwi

Cwj
ði 6¼ jÞ. Thus, for any

two sequences, when the sequence lengths are different or the sequence lengths are the same

but at least one element contains different numbers of elements, the corresponding sequence

squares are different.

Algorithm of sequence matrix. Hypothetical non-empty finite set:O = {w1, . . ., WN},

where N is the number of categories of the sequence. Given sequence: S = S1, S2, . . ., SL, where

L represents the length of sequence S, Si 2 O, 1�i�L. The sequence matrix of a given sequence

S can be expressed as:

Table 1. Amino acid classification based on their dipole and side chain volumes.

Number Amino Acids

1 A, G, V

2 I, L, F, P

3 Y, M, T, S

4 H, N, Q, W

5 R, K

6 D, E

7 C

https://doi.org/10.1371/journal.pone.0217312.t001
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Input sequence: S = S1, S2, . . ., SL;
Output sequence matrix: MOS = [mij]N×N.
The sequence matrix algorithm is calculated as follows:
Step 1. Initial value is set up: i  L, VOS  VOS0 = 0, MOS  MOS0 = 0.
Step 2. VOS[si]  VOS[si] + 1.
Step 3. MOS[si]  MOS[si] + VOS.
Step 4. i  i − 1.
Step 5. If i�1, go to step 2.

Protein feature representation. In this article, we present a novel method of protein

feature representation by combining sequence matrix descriptors with the amino acid classifi-

cation method. To reduce the computational vector, we first classify 20 amino acids into 7 clas-

ses according to the amino acid classification method in Table 1. Thus, a protein sequence can

be represented by a matrix of 7×7, as shown in Eq 2.

½mij�7�7
¼

m11 m12 . . .m17

m21 m22 . . .m27

. . .

m71 m72 . . .m77

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð2Þ

The next step is to standardize mij of each matrix element ranging from 0 to 1. To solve this

problem, we defined a new parameter pij, by normalizing mij with Eq 3:

pij ¼
mij
P

mij
ð3Þ

X
mij ¼

LðLþ 1Þ

2
ð4Þ

where L is the length of the protein sequence. The numerical value of pij of each protein ranges

from 0 to 1. The elements in the diagonal of the matrix and the elements above the diagonal

are combined into a 28-dimensional vector. To distinguish the lengths of the sequences, a

sequence tag is added, and the sequence tags are represented by the reciprocal of the length

of the protein. Finally, a total 29-dimensional vector has been built to represent each protein

sequence.

Deep neural network (DNN)

A deep neural network is a popular type of deep learning algorithm with three or more hidden

layers. The basic structure of a deep neural network is similar to the basic structure of a shallow

neural network and consists of an input layer, middle hidden layers, and an output layer. How-

ever, the parameters, calculation units and algorithms of deep neural networks are more abun-

dant than traditional shallow neural networks. As shown in Fig 1, input data (x) are given to

the input layer, processed layer by layer through the hidden layer, and then transmitted to the

output layer. The weights w(i) between neurons are free parameters that capture the model’s

representation of the data and are learned from input/output samples. Each neuron computes

a weighted sum of its inputs and applies a nonlinear activation function to calculate its outputs.

The formulation of input data in forward propagation is calculated according to Eq 1:

aðlþ1Þ

i ¼ dðZiÞ ð5Þ

Zi ¼ wðlþ1Þ

i al þ bðlþ1Þ

i ð6Þ
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where a(l+1) is the input data of the (l+1)-th layer, δ denotes the activation of the (l+1)-th layer,

w(l+1) is the connection weight matrix between the (l)-th layer and the (l+1)-th layer, al is the

input data of the (l)-th layer, and b(l+1) is the bias term in the (l+1)-th layer.

Back propagation is the propagation of the output through the hidden layer to the input

layer, and the error is distributed to all of the cells of each layer, to obtain the error signal of

each layer. In general, ReLU (rectified linear unit) is used as the activation function for neu-

rons in DNN. The ReLU can change all negative values to zero while leaving the positive values

unchanged. Compared to other activation functions, ReLU has a few advantages [26, 27]. For

linear functions, ReLU is more expressive, especially in deep networks. For non-linear func-

tions, ReLU does not have the disadvantage of gradient disappearance and can thereby main-

tain the convergence speed of the model at a stable level.

Evaluation measure

The performance of the models was evaluated by a series of evaluation indicators, including

the accuracy, recall, AUC and loss in this study. Their criterion functions are defined, respec-

tively, by:

Accuracy ¼
TP þ TN

TP þ TN þ FPþ FN
ð7Þ

Recall ¼
TP

TP þ FN
ð8Þ

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and false

negative, respectively. AUC was calculated using an open source code [28]. Loss was calculated

according to the following cross-entropy function:

lossðy; y�Þ ¼ �
1

n

Xn

i¼1
ðy�i ln yi þ ð1 � y�i Þlnð1 � yiÞÞ ð9Þ

Fig 1. Neural network training procedure.

https://doi.org/10.1371/journal.pone.0217312.g001
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where y = (y1,y2,y3. . .. . .yn) represents the actual output and y� ¼ ðy�
1
; y�

2
; y�

3
; . . . . . . ; y�nÞ repre-

sents the desired output.

Results

Selecting optimal parameters

Selecting an optimal parameter is an important step in the model training process and one of

the key elements in training a robust model. In this experiment, ReLU was selected as the acti-

vation function, Adam as the optimizer, and cross entropy as the cost function. Compared

with the Sigmoid and the Tanh activation functions, ReLU has a simple operation, has the

sparse expression ability and learning ability of a neural network, and has a faster convergence

speed during the gradient descent. Due to the above advantages, ReLU was used as the activa-

tion function for this model [27]. Adam combines the advantages of the RMSprop and Ada-

grad algorithms for the improved handling of noise, which led us to choose it as the optimizer

[29, 30]. The cross-entropy cost function can measure the predicted and actual values in a

deep neural network, and it can compensate for the defects caused by the easy saturation of the

sigmoid function, thus causing the training set to converge faster. In this experiment, we chose

to use the cross-entropy cost function.

In our method, the three parameters of learning rate, network width and network depth

must be determined. To determine the learning rate, the number of hidden layer nodes is set

to 64, the activation function is ReLU, the optimization algorithm is Adam, the batch size is

128, the dropout is 0, and the number of iterations is 300,000. The results of adjusting the

learning rate are shown in Table 2. From Table 2, we found that when the learning rate is 0.01,

it has the best predictive performance in the context of PPIs prediction. Therefore, here, 0.01

was chosen as the learning rate for our experiment.

To determine the network width of the model, the learning rate is set to 0.01, the other

parameters are unchanged, and the network width results of our model are shown in Table 3.

According to Table 3, when the network width is 512, the performance of the model is better

than that of several other network widths. Therefore, the network width of this model is set to

512.

After the learning rate and network width are determined, the next step is to determine

the depth of the model. The depth adjustment results are shown in Table 4. From Table 4, the

Table 2. Adjusting the learning rate of our model.

Learning rate Accuracy (%) AUC (%) Recall (%) Loss (%) Train time(s/100 steps)

0.01 0.7926±0.0256 0.8807±0.023 0.8923±0.0239 0.4373±0.0377 0.1296±0.001

0.001 0.7553±0.0377 0.8495±0.0367 0.8603±0.0393 0.4900±0.0489 0.1263±0.0012

0.0001 0.6784±0.0273 0.7584±0.0307 0.7616±0.0337 0.5871±0.0271 0.1307±0.0011

0.00001 0.6363±0.0076 0.6921±0.0096 0.687±0.01 0.6443±0.0193 0.1303±0.001

https://doi.org/10.1371/journal.pone.0217312.t002

Table 3. Adjusting of the network width of our model.

Width Accuracy (%) AUC (%) Recall (%) Loss (%) Train time(s/100 steps)

128 0.7191±0.02 0.8139±0.0169 0.8232±0.0182 0.542±0.0236 0.1594±0.0034

256 0.7476±0.0199 0.8455±0.0161 0.8618±0.0182 0.4966±0.0276 0.1875±0.0014

512 0.8277±0.0352 0.9107±0.0296 0.9211±0.0288 0.3826±0.0527 0.2497±0.0026

1024 0.8234±0.0317 0.9081±0.0283 0.9192±0.0278 0.3882±0.0484 0.3483±0.0034

https://doi.org/10.1371/journal.pone.0217312.t003
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model performance is best when the depth is 512 × 512 × 512. Therefore, 512 x 512 x 512 was

chosen as our model depth.

Performance of MOS on PPIs

Results on benchmark dataset. The proposed DNN-MOS model (protein sequences

coded by MOS descriptors) was applied to the human dataset. To investigate the contribution

of the novel MOS descriptor, we separately trained DNN based on CT, AC, LD, and MOS.

Among them, the parameter settings of DNN-MOS are shown in 3.1. The parameters of

DNN-CT (deep neural network- conjoint triad), DNN-AC (deep neural network-auto covari-

ance) and DNN-LD (deep neural network-local descriptor) are set as follows: the activation

function was ReLU, the optimization algorithm was Adam, the batch size was 128, the dropout

was 0, the number of hidden layer nodes was set to 256, the network depth was [256-256-256],

the learning rate was 0.001, the number of times to repeat the hold-out-validation was 30 and

the number of times was 10,000 per iteration.

The results of each prediction model are shown in Table 5. From Table 5, we can observe

that the predictive performance using MOS is not superior to other descriptors for almost

all evaluation metrics. The accuracy and AUC of DNN-MOS are 94.34% and 98.28%, lower

than those of DNN-CT and DNN-AC. The AUC of DNN-MOS is slightly higher than that of

DNN-LD and significantly lower than those of DNN-CT and DNN-AC. However, the loss of

MOS is significantly better than the other three encoding methods.

The training time is related to the parameters, such as the width and depth of the model. To

compare the training time of each code, we set the parameters the same. The parameters of

DNN-MOS, DNN-CT, DNN-AC and DNN-LD are set as follows: the number of hidden layer

nodes was set to 64, the activation function was ReLU, the optimization algorithm was Adam,

the batch size was 128, the dropout was 0, the learning rate was 0.001, the number of times to

repeat the hold-out-validation was 30 and the number of times was 10,000 per iteration. The

results of the training time are shown in Table 6. As shown in Table 6, the DNN-MOS has the

lowest training time per 1000 steps, only 0.1261 seconds. The training time of DNN-MOS is

nearly 2 times faster than DNN-AC’s training time, more than 2 times faster than DNN-CT’s

and more than 3 times faster than DNN-LD’s. From Table 6, we found that the difference in

test time was small, but the test time trend was the same as the training time. Therefore, we

Table 4. Adjusting the network width of our model.

Depth Accuracy (%) AUC (%) Recall (%) Loss (%) Train time(s/100 steps)

512×512 0.8262±0.0376 0.913±0.0316 0.9241±0.0303 0.3904±0.0513 0.8478±0.0081

512×512×512 0.9159±0.0563 0.9621±0.0379 0.9689±0.035 0.2598±0.075 1.4374±0.0159

512×512×512×512 0.7988±0.0407 0.891±0.0335 0.9068±0.0333 0.428±0.0544 2.0333±0.0087

512×512×512×512×512 0.7104±0.0898 0.7976±0.1201 0.8447±0.0483 0.5276±0.0785 2.6208±0.0126

https://doi.org/10.1371/journal.pone.0217312.t004

Table 5. Results based on DNN with CT, AC, LD, and MOS on the benchmark dataset.

Method Accuracy Recall AUC Loss

DNN-CT 0.9711±0.0038 0.9891±0.0009 0.9835±0.0018 0.2747±0.0686

DNN-AC 0.9684±0.0013 0.9867±0.0013 0.9802±0.0022 0.6591±0.3178

DNN-LD 0.953±0.0087 0.9828±0.003 0.9757±0.0043 0.3623±0.0924

DNN-MOS 0.9434±0.0078 0.9828±0.0023 0.9779±0.0028 0.2325±0.0154

https://doi.org/10.1371/journal.pone.0217312.t005

A novel matrix of sequence descriptor

PLOS ONE | https://doi.org/10.1371/journal.pone.0217312 June 7, 2019 7 / 12

https://doi.org/10.1371/journal.pone.0217312.t004
https://doi.org/10.1371/journal.pone.0217312.t005
https://doi.org/10.1371/journal.pone.0217312


found that MOS can significantly save training time and test time. From Table 6, we can also

see that the larger the vector dimension, the more training time was required.

Results on non-redundant dataset. To further assess the practical prediction ability of

DNN-MOS, we trained the models of DNN-MOS, DNN-CT and DNN-AC on a non-redun-

dant dataset (removing the samples that has�25% sequence identity to any sample in the

pre-training set). The prediction results are shown in Table 7. From Table 7, we can observe

that the accuracy of DNN-MOS, DNN-CT and DNN-AC on the non-redundant dataset are

88.29%, 89.88% and 93.35%, respectively. Shen et al. [17] studied the PPIs of the dataset using

a deep learning algorithm, achieving an accuracy of 85.84%, which is lower than our results.

Comparison with different classifiers

In order to verify the effectiveness of the feature extraction method of MOS on PPIs, we com-

bined the MOS with Decision Tree (DT), K-Neighbors (KN) and Random Forest (RF) on

human data to construct three models of DT-MOS (decision tree—matrix of sequence),

KN-MOS (K-Neighbors—matrix of sequence) and RF-MOS (random forest—matrix of

sequence). The results are shown in Table 8. From Table 8, we can see that these methods pres-

ent an accuracy of 83.01–97.29%, and the accuracies of DT-MOS, KN-MOS and RF-MOS are

94.36%, 83.01%, and 97.29%, respectively. These results show that the novel MOS of our pro-

posed are also effective in other classifiers such as DT, KN and RF.

Discussion

We have presented a novel protein sequence coding approach for PPIs prediction. Of note, we

propose a strategy for projecting protein sequences into a vector space, which is used to repre-

sent the matrix space of PPI information. Specifically, we first classify 20 amino acids into 7

amino acids according to their physicochemical properties (Table 1). The dimensions of the

Table 6. Results based on DNN with CT, AC, LD, and MOS on the benchmark dataset.

Method Train time (s) Test time (s) The dimensions of vector space Data set

DNN-CT 0.2852±0.0039 1.39E-05 686 HPRD (36591) + Swiss-Port (36324)

DNN-AC 0.2186±0.0014 1.32E-05 420 HPRD (36591) + Swiss-Port (36324)

DNN-LD 0.4045±0.0141 1.48E-05 1260 HPRD (36591) + Swiss-Port (36324)

DNN-MOS 0.1261±0.0039 1.28E-05 58 HPRD (36591) + Swiss-Port (36324)

https://doi.org/10.1371/journal.pone.0217312.t006

Table 7. Results of DNN with different feature extraction method on a non-redundant dataset.

Methods Accuracy Recall AUC

DNN-MOS 88.29% 93.63% 92.23%

DNN-CT 89.88% 93.79% 91.78%

DNN-AC 93.35% 96.24% 94.99%

Shen’s work [17] 85.84% N/A N/A

https://doi.org/10.1371/journal.pone.0217312.t007

Table 8. Comparison of the performances of MOS based on different classifiers using the human dataset.

Methods Accuracy Recall AUC

DT-MOS 0.9436 0.9365 0.9436

KN-MOS 0.8301 0.6973 0.8298

RF-MOS 0.9729 0.9611 0.9729

https://doi.org/10.1371/journal.pone.0217312.t008
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matrix space can be significantly reduced, from 20×20 to 7×7. Next, we combine the elements

on the 7×7 matrix diagonal and the elements above the diagonal into a 28-dimensional vector.

To distinguish the length of a sequence, a sequence label is added. Finally, a 29-dimensional

vector can represent a protein sequence. We combined MOS with DT, KN and RF and

achieved good results. The experimental results show that the proposed MOS feature extrac-

tion method is effective. However, the disadvantage of the novel matrix sequence descriptor is

that the sequence matrix cannot be in one-to-one correspondence with the protein sequence.

For any given two sequences, the corresponding sequence matrices are different when the

sequence lengths are different, or the sequence lengths are the same but at least one element

contains different numbers of elements. Therefore, pre-processing data is required to remove

protein pairs with the same protein sequence length and the same number of elements.

Recently, new feature extraction approaches for PPIs have been developed [30–33]. Among

them, Li et al. [30] proposed a new method for predicting self-interacting proteins (SIPs)

based on amino acid sequences, achieving high precisions of 86.86 and 91.30% on the Saccha-
romyces cerevisiae and human SIPs datasets, respectively. Wang et al. [31] reported a novel

method of PPIs based on pseudo position specific scoring matrix (PSSM) feature descriptors

and an ensemble rotation forest (RF) learning system from protein amino acid sequences.

Their method achieved accuracies of 98.38%, 89.75%, and 96.25% on the yeast, H. pylori, and

independent datasets, respectively. Li et al. [32] developed a new hybrid method of physical

chemistry and evolution-based feature extraction methods, which can capture discriminant

features from evolution-based information and physicochemical features. An et al. [33]

explored a new feature representation method based on local binary pattern (LBP), which

not only considers the amino acid sequence information but also the evolutionary information

of multiple sequence alignments. The above studies show that effective feature extraction

methods can mine useful information on protein pairs and improve the performance of PPIs

prediction. In this study, although we found that the performance of DNN-MOS is not promi-

nent in Table 5, DNN-MOS can greatly reduce loss and training time (Table 6). In addition,

Table 8 show that the novel MOS of our proposed are also effective in other classifiers such as

DT, KN and RF. Overall, although the performance of DNN-MOS is not prominent, it can be

a useful supplement to PPIs predictions. The reason why the accuracy of DNN-MOS is lower

than that of DNN-CT, DNN-AC and DNN-LD may be due to the loss of part of the informa-

tion when converting the protein sequence into a matrix vector. In future research, we will try

our best to solve this problem and improve the predictive performance of DNN-MOS.

Conclusion

With the increasing number of PPI calculation methods, the coding methods of various amino

acid feature vectors are also emerging. Although the various protein encoding methods such

as AC, CT, and LD are useful, one of the disadvantages is that the order relationship of the

entire amino acid sequence is not considered. The CT [19] considers considered the order

relationship of three amino acids. AC [20] considers the order relationship of 30 amino acids.

LD only considers the neighbouring effect of two adjacent types of amino acids [21]. To over-

come this problem, we propose an efficient method for predicting PPIs from amino acid

sequences by a novel matrix sequence descriptor feature representation with deep neural

network. The novel protein feature extraction method we have proposed considers the

order relationship of the entire amino acid sequence. When performed on human PPIs data,

DNN-MOS, DT-MOS, KN-MOS and RF-MOS have achieved good results. Additionally, the

model was used to evaluate this prediction model on a non-redundant dataset and the predic-

tion accuracy is 88.29%. The experimental results show that the matrix sequence descriptor is
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promising for predicting PPIs and can be used as a complementary supplement to other

methods.
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