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Abstract

TGF-β is an important regulator of breast cancer progression. However, how the breast cancer 

microenvironment regulates TGF-β signaling during breast cancer progression remains largely 

unknown. Here, we identified fibulin-3 as a secreted protein in the breast cancer 

microenvironment, which efficiently inhibits TGF-β signaling in both breast cancer cells and 

endothelial cells. Mechanistically, fibulin-3 interacts with the type I TGF-β receptor (TβRI) to 

block TGF-β induced complex formation of TβRI with the type II TGF-β receptor (TβRII) and 

subsequent downstream TGF-β signaling. Fibulin-3 expression decreases during breast cancer 

progression, with low fibulin-3 levels correlating with a poorer prognosis. Functionally, high 

fibulin-3 levels inhibited TGF-β-induced EMT, migration, invasion and endothelial permeability, 

while loss of fibulin-3 expression/function promoted these TGF-β-mediated effects. Further, 

restoring fibulin-3 expression in breast cancer cells inhibited TGF-β signaling, breast cancer cell 

EMT, invasion and metastasis in vivo. These studies provide a novel mechanism for how TGF-β 

signaling is regulated by the tumor microenvironment, and provide insight into targeting the TGF-

β signaling pathway in human breast cancer patients.

Introduction

Breast cancer is the most common cancer among American women, with 12% of American 

women developing invasive breast cancer during their lifetime. Worldwide, breast cancer 
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accounts for 22.9% of invasive cancers in women, with 425,000 women dying of breast 

cancer each year, underscoring the need to define mechanisms of breast cancer initiation and 

progression.

Cytokines and growth factors, including the transforming growth factor-β (TGF-β) 

superfamily, have important roles in breast cancer initiation and progression1–4. TGF-β is a 

prototypic family member of 33 secreted structurally related cytokines, including TGF-β, 

activin, nodal, and bone morphogenetic proteins (BMPs). TGF-β signaling has dual roles 

during breast cancer progression5–7. In normal breast tissue and during the early stages of 

breast cancer initiation, the TGF-β signaling pathway functions as a tumor suppressor via 

suppressing proliferation, while promoting differentiation and apoptosis. However, in the 

later stages of breast cancer progression, the TGF-β signaling pathway acts as a tumor 

promoter, driving cell migration, invasion and metastasis, at least in part, via inducing 

epithelial-mesenchymal transition (EMT). The dual roles of the TGF-β signaling pathway 

during breast cancer progression suggest tight control and regulation of this pathway during 

breast cancer progression.

The canonical TGF-β superfamily signaling pathway is triggered when TGF-β superfamily 

ligands bind to cell surface receptors, including co-receptors, type II, and type I receptors. 

Upon ligand binding, these receptors form complexes, which facilitate the 

transphosphorylation and activation of TβRI by TβRII; the TβRI then phosphorylates 

receptor-regulated Smads (R-Smads), which bind the co-Smad, Smad4, and accumulate in 

the nucleus where they act in concert with co-activators and co-repressors to regulate target 

gene expression8–14. Although mechanisms by which TGF-β signaling is regulated by the 

cellular machinery is widely and extensively studied5, 6, 15–18, how the breast cancer 

microenvironment, which has important roles in mediating breast cancer progression19–21, 

regulates TGF-β signaling during breast cancer progression remains largely unknown.

The breast and breast cancer microenvironment consists of extracellular matrix (ECM), 

stromal cells (e.g. endothelial cells, fibroblasts, myofibroblasts and leukocytes), and 

cytokines, chemokine and proteins secreted by breast epithelial, breast cancer or stromal 

cells22. Both cell-cell and cell-microenvironment interactions modify the proliferation, 

survival, polarity, differentiation and invasive capacity of mammary epithelial cells. Most of 

these effects are mediated by these secreted proteins, including TGF-β superfamily 

cytokines23–25. In addition to cytokines, secreted proteins21, 26,27 and exosomes28–30 can 

cooperate or regulate these cytokines to control breast cancer progression. Indeed, we have 

previously established that decreases in shed soluble type III TGF-β receptor (sTβRIII) 

increases TGF-β signaling in the tumor microenvironment to generate an immunotolerant 

tumor microenvironment in breast cancer26, and promote breast cancer metastasis27. In 

addition, the secreted protein Coco was recently demonstrated to inhibit BMP signaling to 

reactivate dormant breast cancer lung micrometastasis31. However, how secreted proteins in 

the breast cancer microenvironment regulate breast cancer progression still remains poorly 

understood.

The fibulins are a family of secreted proteins that associate with the extracellular matrix 

(ECM) scaffold, forming anchoring structures that can regulate cell proliferation and 
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migration32–34. Seven fibulin family members have been identified, with family members 

defined by the presence of two structural modules, a tandem repeat of epidermal growth 

factor-like modules and a unique C-terminal fibulin-type module. The FBLN-3 gene (also 

called EFEMP1) encodes fibulin-3, and is a relatively recent addition to the family. 

Fibulin-3 has been reported to be downregulated in several solid tumors35, including breast 

cancer, via aberrant promoter methylation36–38, with loss of fibulin-3 expression associated 

with tumor progression, metastasis and a poor patient prognosis. Although fibulin-3 has 

been reported to regulate some signaling pathways including the MAPK7, Akt7, 39 Notch40 

and Wnt41 signaling pathways, the role of fibulin-3 in the TGF-β signaling pathway has not 

been investigated. Here we utilize a proteomic approach to investigate the role of secreted 

proteins in regulating TGF-β signaling in the breast cancer tumor microenvironment.

Results

Conditioned media from breast cancer cells inhibits TGF-β signaling

To investigate whether there were components in the breast cancer microenvironment which 

regulate TGF-β signaling, we examined the effects of conditioned media from the estrogen 

receptor negative human breast cancer cell line, MDA-MD-231 cells, on TGF-β and BMP2 

signaling. Pretreating MDA-MB-231 cells with conditioned media dramatically inhibited 

TGF-β induced Smad2 phosphorylation and AKT phosphorylation (Fig. 1A), while only 

slightly inhibiting BMP-2 induced Smad1/5/8 phosphorylation (Fig. 1B). As stromal cells, 

including endothelial and immune cells, interact and regulate breast cancer cells, we next 

asked whether the breast cancer conditioned media also regulates TGF-β signaling in 

endothelial cells. Pretreating human microvascular endothelial cells (HMEC-1) with MDA-

MB-231 conditioned media inhibited TGF-β induced Smad1/5/8 phosphorylation, increased 

basal Smad2 phosphorylation, inhibited TGF-β induced Smad2 phosphorylation (Fig. 1C) 

and TGF-β induced transcription of its downstream genes, including Smad7 and 

plasminogen activator inhibitor-1 (PAI-1) (Fig. 1D). However, MDA-MB-231 conditioned 

media had no effect on BMP-9 signaling in endothelial cells (Fig. 1C, 1D). In addition, the 

conditioned media from the estrogen receptor positive human breast cancer line, MCF-7, 

also inhibited TGF-β induced Smad1/5/8 phosphorylation in a dose dependent manner in 

HMEC-1 cells (Supplementary Fig. 1A). However, only high doses of conditioned media 

increased basal Smad2 phosphorylation, while inhibiting TGF-β induced Smad2 

phosphorylation in HMEC-1 cells (Supplementary Fig. 1A), and having no effect on BMP-9 

signaling (Supplementary Fig. 1B). These results suggest that there are active components in 

the conditioned media from breast cancer cells that inhibit TGF-β signaling, without 

effecting BMP-9 signaling.

As the overall effect of conditioned media from breast cancer cells integrates the effects of 

secreted TGF-β ligands, TGF-β activators and repressors, to identify the active components 

responsible for inhibiting TGF-β signaling, the conditioned media from MDA-MB-231 cells 

was fractionated using FPLC gel filtration (Supplementary Fig. 1C) and the fractions 

screened for inhibitory activity. The eluted fractions were combined into groups based on 

their elution peaks (Supplementary Fig. 1C) and used to pretreat HMEC-1 cells. Compared 

to the other combined fractions, fractions 17–26 inhibited TGF-β induced Smad1/5/8 and 
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Smad2 phosphorylation (Supplementary Fig. 1D). Further, individual fractions 17, 18, 19 

and 20 inhibited TGF-β induced Smad2 phosphorylation (Fig. 1E), suggesting these 

fractions contained the active components responsible for mediating inhibition of TGF-β 

signaling. The proteins in fractions, and their adjacent fractions, were resolved by SDS-

PAGE and detected by silver nitrate staining (Supplementary Fig. 1E). The two bands that 

were enriched in fractions 17–20 relative to adjacent fractions were cut out and subjected to 

mass spectrometry analysis, resulting in the identification of 15 candidate proteins 

(Supplementary Table 1).

Fibulin-3 is the active component that inhibits TGF-β signaling

Three of the identified candidates proteins were secreted proteins (Supplementary Table 1), 

including EGF-containing fibulin-like extracellular matrix protein 1 (fibulin-3, FBLN3), 

serum albumin, and transforming growth factor-beta-induced protein ig-h3 (βIGH3). As 

exogenous serum albumin did not regulate TGF-β induced Smad2 phosphorylation in MDA-

MB-231 cells (Supplementary Fig. 2A), and decreasing βIGH3 levels in MDA-MB-231 

conditioned media by either immunodepletion (Supplementary Fig. 2B) or stable 

knockdown (Supplementary Fig. 2C, 2D) further decreased TGF-β induced Smad1/2/5/8 

phosphorylation in HMEC-1 cells (Supplementary Fig. 2B and 2E), we turned our attention 

to fibulin-3, which has been demonstrated to regulate other signaling pathways7, 39, 40. As 

MDA-MB-231 cells express and secrete high levels of fibulin-3 (Fig. 4H, Supplementary 

Fig. 2H), we used shRNA to stably silence fibulin-3 expression and secretion 

(Supplementary Fig. 2F-H) in MDA-MB-231 cells (shFBLN3-MDA-MB-231), with a non-

targeted shRNA control (shNTC-MDA-MB-231). In the presence of blank medium, TGF-β 

induced Smad2 phosphorylation in both shNTC-MDA-MB-231 and shFBLN3-MDA-

MB-231 cells (Fig. 2A). However, consistent with our prior results, conditioned media from 

shNTC-MDA-MB-231 cells inhibited TGF-β induced Smad2 phosphorylation (Fig. 2A, 

Supplementary Fig. 2L) and TGF-β-induced transcription of its downstream genes, Smad7 

(Fig. 2B) and PAI-1 (Fig. 2C), while conditioned media from shFBLN3-MDA-MD-231 

cells failed to inhibit TGF-β induced Smad2 phosphorylation (Fig. 2A) or TGF-β induced 

Smad7 (Fig. 2B) or PAI-1 (Fig. 2C) transcription. Similarly, conditioned media from 

shFBLN3-MDA-MD-231 cells did not inhibit TGF-β induced Smad1/5/8 and Smad2 

phosphorylation in HMEC-1 cells (Fig. 2D) or in colon fibroblast 18Co cells 

(Supplementary Fig. 2I). Further, MDA-MB-231 conditioned media immunodepleted with 

two different anti-fibulin-3 antibodies did not inhibit TGF-β induced Smad1/2/5/8 

phosphorylation (Fig. 2E, Supplementary Fig. 2J). In a reciprocal manner, the highly 

metastatic MDA-MB-231-4175 subline expressed and secreted low levels of fibulin-3 (Fig. 

4H, Supplementary Fig. 2H), and as expected, its conditioned media did not inhibit TGF-β 

induced Smad phosphorylation or Smad7 and PAI-1 transcription in MDA-MA-

MB-231-4175 (Fig. 2F, 2G, 2H, Supplementary Fig. 2L) or HMEC-1 cells (Fig. 2I). 

However, the conditioned media from MDA-MB-231-4175 cells stably overexpressing 

fibulin-3 (Supplementary Fig. 2H, 2K) inhibited TGF-β signaling (Fig. 2F, 2I) and TGF-β 

induced genes transcription (Fig. 2G, 2H). Moreover, exogenous fibulin-3 inhibited TGF-β 

induced Smad1/2/5/8 phosphorylation and Smad7 and PAI-1 transcription in HMEC-1 cells 

(Fig. 2J) and in MDA-MB-231 cells (Figs. 3A, 2K, 2L). In addition, pretreating MDA-

MB-231 cells with recombinant fibulin-3 also inhibited TGF-β induced p38 phosphorylation 
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(Supplementary Fig. 2M). Consistent with the previous report7, fibulin-3 increased basal 

AKT and ERK1/2 phosphorylation, while inhibiting TGF-β induced AKT and ERK1/2 

phosphorylation (Supplementary Fig. 2M). As fibulin-3 inhibits lung cancer metastasis via 

suppressing the ERK-Wnt/β-catenin signaling axis41, we test whether fibulin-3 inhibits this 

pathway in breast cancer cells. Knockdown of fibulin-3 had no effect on β-catenin nuclear 

translocation (Supplementary Fig. 2N) and ERK phosphorylation (Supplementary Fig. 2O). 

Taken together, these data indicate that fibulin-3 is the active component in the breast cancer 

secretome that inhibits both canonical and non-canonical TGF-β signaling in breast cancer 

epithelial cells, endothelial cells and fibroblasts.

Fibulin-3 inhibits TGF-β signaling via interaction with TβRI to decrease TβRI/TβRII complex 
formation

Having defined fibulin-3 as an inhibitor of TGF-β signaling, we turned our attention to 

defining the mechanism by which fibulin-3 inhibits TGF-β signaling. Fibulin-3-mediated 

inhibition of TGF-β signaling did not require protein synthesis or degradation, as pretreating 

cells with the protein synthesis inhibitor, cycloheximide, the proteasome inhibitor, MG132, 

or the lysosomal cysteine protease inhibitor, leupeptin, did not diminish the effect of 

conditioned media in inhibiting TGF-β signaling (Supplementary Fig. 3A, 3B). We next 

assessed whether fibulin-3 inhibits TGF-β signaling by binding and sequestering TGF-β 

ligand. Compared with soluble TβRIII, which, as expected, efficiently bound TGF-β27, 

fibulin-3 did not directly bind TGF-β1 (Supplementary Fig. 3C).

To investigate whether fibulin-3 inhibited TGF-β induced Smad2 phosphorylation upstream 

or downstream of TβRI, we investigated the effects of exogeneous fibulin-3 on ligand versus 

constitutively activated TβRI induced Smad2 phosphorylation. While exogeneous fibulin-3 

inhibited TGF-β ligand induced Smad2 phosphorylation, it did not inhibit constitutively 

activated TβRI mediated phosphorylation of Smad2 (Fig. 3A), suggesting that fibulin-3 

inhibits TGF-β signaling upstream of TβRI activation. As fibulin-3 binds with receptors 

from other families, including the EGF receptor7, we tested whether fibulin-3 could form 

complexes with TGF-β receptors, including TβRI and TβRII, to potentially inhibit TβRI 

activation. TβRI, and to a lesser extent for TβRII, co-immunoprecipitated with fibulin-3 in 

COS7 cells co-expressing fibulin-3 and TβRI or TβRII (Fig. 3B). In a reciprocal manner, 

fibulin-3 also co-immunoprecipitated with TβRI but not TβRII (Fig. 3C). Further, purified 

recombinant fibulin-3 co-immunoprecipitated with TβRI but not TβRII (Fig. 3D). As 

fibulin-3 is a secreted protein, we expressed and purified cellular HA-TβRI and HA-TβRII 

from COS7 cells using anti-HA beads, and tested whether TβRI or TβRII formed a complex 

with fibulin-3 in the conditioned media. HA-TβRI, but not TβRII formed a higher molecular 

weight complex with fibulin-3 (Supplementary Fig. 3D), suggesting that fibulin-3 may 

inhibit TGF-β signaling through interaction with TβRI.

We then investigated whether the interaction between fibulin-3 and TβRI blocked TGF-β 

induced TβRI/TβRII complex formation, which is an essential step for downstream TGF-β 

signaling11, 42, 43. While conditioned media from control MDA-MB-231 cells (Fig. 3E) or 

recombinant fibulin-3 (Supplementary Fig. 3E) inhibited TGF-β-induced TβRI/TβRII 

complex formation, conditioned media from shFBLN3-MDA-MB-231 cells failed to inhibit 
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TGF-β induced TβRI/TβRII complex formation (Fig. 3E). Finally, as the TGF-β signaling 

pathway is subject to multiple levels of regulation, we assessed the effects of TGF-β on 

fibulin-3 levels. TGF-β induced fibulin-3 expression in a time dependent manner in both 

MDA-MB-231 cells and MDA-MB-231-4175 cells (Fig. 3F). Collectively, these data 

indicate that fibulin-3 inhibits TGF-β signaling in a negative feedback loop through 

interaction with TβRI to inhibit TβRI/TβRII complex formation (Fig. 8A).

Fibulin-3 expression is decreased during breast cancer progression

Having identified fibulin-3 as a novel and key suppressor of TGF-β signaling in the breast 

cancer microenvironment, we next investigated whether fibulin-3 expression changes during 

breast cancer progression. In a meta-analysis of 32 publically available datasets on 

Oncomine, fibulin-3 expression was decreased in breast cancer compared to normal breast 

(Fig. 4A). Further, while normal mammary epithelial tissue expressed high levels of 

fibulin-3, human breast cancer orthotopic xenograft expressed very low levels of fibulin-3 

(Fig. 4B). In addition, compared to normal breast, fibulin-3 levels were decreased in basal, 

Her2, luminal A and luminal B subtypes of breast cancers (Supplementary Fig. 4A), 

suggesting that decreased fibulin-3 expression is general feature of breast cancer 

progression. Moreover, relative to normal breast, fibulin-3 expression decreased beginning 

in Stage I breast cancer, with more pronounced decreases in stage IV breast cancer (Fig. 

4C), and relative to pre-invasive ductal carcinoma in situ (DCIS), fibulin-3 expression 

decreased in both invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC, 

Fig. 4D). Further, low expression level of fibulin-3 correlated with worse survival in breast 

cancer patients (http://kmplot.com/analysis/) (Fig. 4E). These data support an important role 

for fibulin-3 in breast cancer progression. Consistent with this hypothesis, in the MCF10A 

breast cancer progression series44, with MCF10A cells being non-tumorigenic, MCF10A-

T1k cells forming hyperplastic lesions, MCF10A-CA1h cells forming low-grade, well-

differentiated carcinomas and MCF10A-CA1a cells forming poorly differentiated, 

metastatic carcinomas, fibulin-3 mRNA levels progressively decreased with cancer 

progression (Fig. 4F). In addition, compared to the non-metastatic cell line, MCF10A-CA1h, 

fibulin-3 protein levels in the conditioned media were dramatically decreased in metastatic 

MCF10A-CA1a cells (Fig. 4G). Consistent with a prior report45, fibulin-3 mRNA levels 

were also decreased in the metastatic MDA-MB-231-4175 subline compared with the 

poorly-metastatic parental MDA-MB-231 cells (Fig. 4H). In addition, in the isogenic murine 

mammary carcinoma progression series, composed of four murine mammary carcinoma cell 

lines (67NR, 168FARN, 4TO7 and 4T1), each with progressive metastatic potential but all 

derived from same parental breast tumor46, fibulin-3 mRNA levels were decreased in 

metastatic 4T1 cells relative to the other nonmetastatic cells (Supplementary Fig. 4B). Thus, 

in all series, fibulin-3 expression was lost as cells acquired metastatic capability.

As the fibulin-3 promoter has CpG islands (Supplementary Fig. 4C) and has been reported 

to be regulated by promoter methylation36–38, we investigated the potential for epigenetic 

regulation in our model systems. Treating 4T1 cells (Supplementary Fig. 4D) or MDA-

MB-231-4175 cells (Supplementary Fig. 4E) with the promoter methylation inhibitor, 5-

azacytidine, increased fibulin-3mRNA levels in both cell lines. These data suggest that 
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fibulin-3 expression is decreased via either direct or indirect epigenetic silencing during 

breast cancer progression.

Decreased fibulin-3 promotes TGF-β induced epithelial-mesenchymal transition (EMT), 
migration and invasion in vitro

As fibulin-3 inhibits TGF-β signaling in breast cancer cells and fibulin-3 expression 

decreases during breast cancer progression, especially in invasive breast cancer and at the 

later stages of breast cancer progression, we next investigated the effects of fibulin-3 on 

TGF-β-induced migration and invasion. While conditioned media from poorly-metastatic 

parental MDA-MB-231 cells with high fibulin-3 expression45 (Fig. 4H, Supplementary Fig. 

2H) inhibited TGF-β induced migration (Fig. 5A, Supplementary Fig. 5A) and invasion (Fig. 

5B), conditioned media from shFBLN3-MDA-MB-231 failed to inhibit TGF-β’s effects 

(Fig. 5A, B). Although TGF-β was not able to induce migration in MDA-MB-231-4175 cells 

(Supplementary Fig. 5B), TGF-β induced their invasion (Fig. 5C), and conditioned media 

from MDA-MB-231-4175 cells with low fibulin-3 expression45 (Fig. 4H, Supplementary 

Fig. 2H) was not able to inhibit TGF-β induced invasion (Fig. 5C). However, the 

conditioned media from MDA-MB-231-4175 stably overexpressing fibulin-3 inhibited 

TGF-β’s effects (Fig. 5C), supporting that fibulin-3 mediated inhibition of TGF-β signaling 

is sufficient to block TGF-β functions during breast cancer progression. In addition, 

consistent with fibulin-3 having no effect on the ERK-Wnt signaling axis in breast cancer 

cells (Supplementary Fig. 2N, 2O), silencing fibulin-3 expression had no significant effects 

on MDA-MB-231 cell migration in the presence or absence of the Wnt pathway inhibitor, 

IWP-2, (Supplementary Fig. 5C).

As EMT is important for breast cancer metastasis and TGF-β is a strong EMT inducer, we 

next investigated whether decreased fibulin-3 promotes EMT by enhancing TGF-β signaling 

in normal mouse mammary epithelial cells (NMuMG), which have been widely used as an 

EMT model. TGF-β induced Smad2 phosphorylation (Fig. 5D) and EMT in blank medium 

as detected by changes in cell morphology (Fig. 5E) and EMT marker expression, including 

upregulation of fibronectin and downregulation of E-cadherin (Fig. 5F). While conditioned 

media from NMuMG cells decreased TGF-β induced Smad2 phosphorylation (Fig. 5D) and 

EMT (Fig. 5E, F), the conditioned media from shFBLN3-NMUMG cells was not able to 

inhibit TGF-β’s effects (Fig. 5D, E, F). Consistent with an effect on EMT, fibulin-3 (Fig. 

5G) and ZO-1 (Fig. 5H) mRNA levels decreased, with their expression positively 

correlating (TCGA data base: Q-value=2.6e-11; METABRIC database: Q-value=2.5e-02), 

while PAI-1, a TGF-β downstream gene (Fig. 5I), and fibronectin (Fig. 5J) mRNA levels 

increased in breast tumor tissue compared with their paired normal breast tissue in 92 

normal-tumor pairs from the TCGA dataset. Collectively, these data indicate that decreased 

fibulin-3 expression during breast cancer progression may promote TGF-β induced breast 

cancer cell EMT, migration and invasion.

Decreased fibulin-3 enhances TGF-β’s effects on endothelial sprouting and 
transendothelial cell migration

As fibulin-3 inhibits TGF-β signaling in endothelial cells, we investigated fibulin-3’s roles 

in endothelial biology. While conditioned media from metastatic MDA-MB-231-4175 
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cells45 with very low fibulin-3 expression (Fig. 4H, Supplementary Fig. 2H) did not inhibit 

TGF-β-mediated decreases in sprouting as detected by spheroid-based sprout assay, the 

conditioned media from MDA-MB-231-4175 stably overexpressing fibulin-3 inhibited 

TGF-β-mediated decreases in sprouting (Fig. 6A and 6B). In addition, while TGF-β did not 

decrease sprouting in the conditioned media from poorly-metastatic parental MDA-MB-231 

cells45 with high fibulin-3 expression (Fig. 4H, Supplementary Fig. 2H), TGF-β decreased 

sprouting in the presence of conditioned media from shFBLN3-MDA-MB-231 cells (Fig. 

6C).

As breast cancer cell intravasation into or extravasation out of blood vessels are pivotal steps 

for cancer metastasis, and both processes require transendothelial cell migration, we studied 

the effect of fibulin-3 on transendothelial cell migration. While TGF-β increased 

transendothelial cell migration in blank medium and in the conditioned media from 

metastatic MDA-MB-231-4175 cells (Fig. 6D, E) with very low fibulin-3 expression45 (Fig. 

4H, Supplementary Fig. 2H), conditioned media from MDA-MB-231-4175 cells stably 

expressing fibulin-3 (Fig. 6D, E) or from poorly-metastatic parental MDA-MB-231 cells 

(Fig. 6F) with high fibulin-3 expression45 (Fig. 4H, Supplementary Fig. 2H) inhibited TGF-

β-increased transendothelial cell migration (Fig. 6D, E and F), while conditioned media 

from MDA-MB-231-shFBLN3 cells restored TGF-β-increased transendothelial cell 

migration (Fig. 6F). These data indicate that decreased fibulin-3 promotes TGF-β regulation 

of endothelial sprouting and transendothelial cell migration to facilitate breast cancer 

metastasis.

Overexpression of fibulin-3 inhibits breast cancer metastasis in vivo

To investigate whether the ability of fibulin-3 to inhibit TGF-β signaling in both breast 

cancer and endothelial cell function in vitro had effects on breast cancer progression in vivo, 

we injected MDA-MB-231-4175 stably expressing fibulin-3 into the inguinal mammary fat 

pads of nude mice. While there were no effects on primary tumor growth (Fig. 7A), 

fibulin-3 expression inhibited and delayed breast cancer metastasis (Fig. 7B, C). Further, 

fibulin-3 expression also inhibited micrometastasis to the liver as detecting by staining with 

anti-human vimentin (Fig. 2D). Expression of fibulin-3 also appeared to decrease cancer cell 

invasiveness in vivo, decreasing the extent to which MDA-MB-231-4175 cancer cells 

penetrated through smooth muscle layers (Black arrows, Fig. 7E). In addition, while the 

control MDA-MB-231-4175 cells displayed an elongated, mesenchymal-phenotype, 

fibulin-3 expression promoted a more cobble-stone epithelial morphology (Fig. 7F, G), and 

increased pan-cytokeratin and decreased fibronectin expression relative to control MDA-

MB-231-4175 cells (Fig. 7G). Finally, fibulin-3 expressing MDA-MB-231-4175 tumors had 

reduced nuclear p-Smad2 staining relative to control MDA-MB-231-4175 tumors (Fig. 7H). 

Taken together, these data indicate that expression of fibulin-3 decreased TGF-β/Smad2 

signaling and inhibited breast cancer EMT and metastasis in vivo.

Discussion

Here, we used an unbiased approach to identify fibulin-3 as a novel and key regulator of the 

TGF-β signaling pathway in the breast cancer microenvironment (Fig. 8A). Fibulin-3 
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expression decreases during breast cancer progression, with decreased fibulin-3 promoting 

TGF-β signaling and in turn promoting EMT, migration, invasion and transendothelial cell 

migration of breast cancer cells (Fig. 8B). Mechanistically, fibulin-3 inhibits the TGF-β 

pathway through interaction with TβRI and inhibition of TGF-β induced TβRI/TβRII 

complex formation (Fig. 8A).

The TGF-β pathway is tightly regulated to have dual tumor suppressor and tumor promoter 

roles during breast cancer progression5–7. Although mechanisms regulating the TGF-β 

pathway within the cancer cell have been extensively studied, mechanisms by which the 

tumor microenvironment might regulate TGF-β signaling are less defined. Importantly, 

secreted proteins have the potential to coordinately regulate TGF-β signaling in the multiple 

different cell types represented in the tumor microenvironment, including cancer cells, 

endothelial cells, fibroblasts and immune cells. Here we identify fibulin-3 as one of those 

secreted proteins, which can inhibit TGF-β signaling in cancer cells, endothelial cells and 

fibroblast cells. Whether fibulin-3 also inhibits TGF-β signaling in other components of the 

tumor microenvironment, including immune system cells, to mediate its effects on inhibiting 

cancer progression remains to be explored. In addition, while the current studies focused on 

breast cancer, fibulin-3 expression is also decreased in other cancers36, 47–49, suggesting that 

loss of fibulin-3 expression may be a common mechanism by which TGF-β signaling is 

increased to promote cancer progression.

In the context of breast cancer progression, the source, timing and mechanisms for loss of 

fibulin-3 expression is critical and of potential translational relevance. Fibulin-3 is 

ubiquitously expressed and secreted from all types of cells, including epithelial cells, 

endothelial cells and fibroblast cells. However, in the context of the breast cancer 

microenvironment, as breast cancer cells constitute the majority of cells, breast cancer cells 

are likely the major source of fibulin-3. Here we demonstrate that fibulin-3 expression 

decreases during breast cancer progression, particularly from breast cancer cells and in 

human breast cancer specimens, with this loss occurring primarily as the breast cancer cell 

acquires invasive capabilities (Fig. 4). In this context, high levels of fibulin-3 expressed and 

secreted by normal breast epithelial and pre-invasive ductal carcinoma in situ cells may 

function to inhibit the effects of TGF-β on the stroma in the early tumor microenvironment, 

with losses in expression during cancer progression promoting TGF-β signaling at the same 

time as the cancer cells become unresponsive via mutation or loss of receptor or Smad 

expression, increasing the tumor promoting effects of TGF-β signaling. This scenario is 

consistent with the role of enhanced TGF-β signaling in promoting tumor metastasis in the 

late stages of breast cancer. We provide preliminary evidence for epigenetic regulation 

mediating loss of fibulin-3, as has been reported in other tumor types37, 47–49. These results 

raise the exciting possibility that DNA methyltransferase inhibitors in clinical use could 

increase fibulin-3 levels and provide therapeutic benefit in this manner.

Our studies with conditioned media from breast cancer cells demonstrated a predominant 

effect on inhibiting TGF-β signaling, with more subtle effects on BMP-2 signaling (Fig. 1B), 

and no effects on BMP-9 signaling (Fig. 1C, Supplementary Figure 1B). However, in many 

cases we also observed an effect of conditioned media on increasing basal p-Smad2 levels 

(Fig. 1C, E, Supplementary Figure 1A). As the conditioned media contains secreted TGF-β 
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superfamily ligands, shed TGF-β superfamily receptors and other TGF-β superfamily 

activators and repressors, the observed effects of conditioned media may be due to the 

integrated effects of these components, in particular, TGF-β superfamily ligands that can 

stimulate Smad2 phosphorylation (i.e. activin and BMP). In addition to fibulin-3, we also 

identified another TGF-β regulator in the breast cancer conditioned media, βIGH3. Although 

its effects on TGF-β signaling were subtle, knockdown of βIGH3 suppressed TGF-β 

signaling, suggesting that it may function to promote TGF-β signaling. How the effects of 

the complex cancer microenvironment secretome are integrated to regulate cancer 

progression is currently being explored.

In summary, these studies provide a novel mechanism for how TGF-β signaling is regulated 

by the tumor microenvironment, and provide insight into targeting the TGF-β signaling 

pathway for the benefit of human cancer patients.

Materials and Methods

Cell Culture

MDA-MB-231 cells were from American Type Culture Collection (ATCC) and MDA-

MB-231-4175 cells were acquired from Dr. Joan Massage at Memorial Sloan Kettering 

Cancer Institute and grown in MEM medium, supplemented with 10% fetal bovine serum 

(FBS), 5ml sodium pyruvate, and 5ml non-essential amino-acid. NMuMG cells were 

purchased from ATCC and grown in DMEM supplemented with 10% FBS and 10 μg/ml 

insulin. MCF-10A human breast cancer progression series of cell lines were acquired from 

Dr. William P. Schiemann at Case Western Reserve University and grown in DMEM/F12 

medium, supplemented with 5% horse serum, 10 μg/ml insulin, 20 ng/ml EGF, 100 ng/ml 

hydrocortisone,100 ng/ml cholera toxin and 100 U/mL penicillin and 100 mg/mL 

streptomycin. 4T1 mouse breast cancer series of cell lines were acquired from Dr. William 

P. Schiemann at Case Western Reserve University and grown in DMEM, supplemented with 

10% FBS. HMEC-1s were acquired from Dr. Edwin Edes at CDC and grown in MCDB-131 

medium (Invitrogen), supplemented with 10% FBS, 1 μg/ml hydrocortisone (Sigma), 10 

ng/ml EGF (Sigma) and 2 mM L-glutamine (Invitrogen). COS7 cells were purchased from 

ATCC and were grown in DMEM medium, supplemented with 10% fetal bovine serum. 

18Co cells were from ATCC via Cell Culture Facility at Duke and grown in EMEM medium 

(Sigma), supplemented with 2mM glutamine, 1% NEAA and 10% FBS. EFEMP1 (Human) 

Recombinant Protein was purchased from Abnova.

Spheroid-based sprout assay

Endothelial spheroids were prepared as previously reported50. Briefly, 1X103 HMEC-1 cells 

were cultured in hanging drops of 25 μl medium containing 20% methocel and 80% culture 

medium, and allowed to aggregate as spheroids. After 24h, the spheroids were collected 

using conditioned media from breast cancer cells and plated on 24-well plates coated with 

growth factor reduced Matrigel and treated as indicated. Sprouts were digitally imaged after 

the indicated times and the number and length of sprouts per spheroid quantitated.
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Transendothelial migration

1x105 HMEC-1 cells were cultured on top of 24-well membrane of transwells until they 

formed a monolayer, and treated with conditioned media from breast cancer cells with or 

without 50 pM TGF-β1 for 12h. 1X105 GFP-labelled breast cancer cells were plated with 

serum free medium on the top of endothelial layers in a transwell. Media containing 0.5% 

BSA was placed in the lower chamber as a chemoattractant. Twenty-four hours later, the 

cells on the upper surface of the filter were removed by gently scrubbing with a cotton swab. 

Transendothelial migration of breast cancer cells was then assessed by fluorescent 

microscopy.

Duolink assay

The Duolink assay (Olink Bioscience) was performed according to the manufacturer’s 

protocol. Briefly, MDA-MB-231 cells were pretreated with breast cancer conditioned media 

or 200 ng/ml recombinant fibulin-3, and treated with 50 pM TGF-β1 for 10min. Cells were 

then washed with PBS, fixed with 4% paraformaldehyde, permeabilized in 0.1% Triton 

X-100/PBS for 5 min and then blocked with 5% bovine serum albumin in PBS for 1 h. 

Slides were incubated with anti-TβRI, and anti-TβRII (Santa Cruz Biotechnology, Inc) 

primary antibodies for 1hrs in room temperature and then incubated with PLA probe 

MINUS and PLUS mixture for 1h at 37°C. After ligation for 30min, and amplification for 

100min at 37°C, the slides were labeled with DAPI, mounted with Prolong Anti-Fade 

(Sigma), digitally imaged and counted for number of the red dots per cells manually using 

ImageJ software.

In vivo tumorigenicity and metastasis

MDA-MB-231-4175-Luc cells stably expressing firefly luciferase gene were infected with 

either an empty vector (EV) as control or fibulin-3 overexpression pBABE retrovirus, and 

stably infected cells were selected using 1 μg/ml puromycin for 72 hrs. EV and fibulin-3 

overexpressing cells were implanted (50,000 cells/mouse) into the right-side inguinal 

mammary fat pads of female BALB/c mice. Starting from day 7, tumor growth and tumor 

metastasis were recorded by bioluminescence.

Statistical analysis

Quantitative data are expressed as mean ± SEM. Statistical significance was determined by 

the two-tailed Student’s t-test or one-way ANOVA, followed by the LSD-t test for multiple 

comparisons. A P value of less than 0.05 was considered statistically significant. To 

examine the statistical interaction between fibulin-3 expression and ligand treatment, 2-way 

ANOVA was performed with specific interest in the interaction term.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Conditioned media from breast cancer cells inhibits TGF-β signaling
(A, B) MDA-MB-231 cells were pretreated with conditioned media from MDA-MB-231 

cells for 6 hrs, and then treated with 50 pM TGF-β1 (A) or 10 nM BMP2 (B) for 30min, and 

the cell lysates analyzed with the indicated antibodies. (C) HMEC-1 cells were pretreated 

with the conditioned media from MDA-MB-231 cells for 6 hrs, and then treated with 50 pM 

TGF-β1 or 2 ng/ml BMP9 for 30min, and the cell lysates analyzed with the indicated 

antibodies. (D) HMEC-1 cells were cultured in blank medium or in conditioned media from 

MDA-MB-231 cells for 3 hrs, treated with 50 pM TGF-β1 or 2 ng/ml BMP9 for 4 hrs, 

Smad7 and PAI-1 mRNA were measured using qRT-PCR. Quantitated data from 3 

experiments +/− SEM were indicated. (E) HMEC-1 cells were pretreated with the indicated 

individual FPLC fractions for 6 hrs, and then treated with 50 pM TGF-β1 for 30 min, and 

the cell lysates analyzed with the indicated antibodies. Results are representative of 3 

independent experiments.
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Fig. 2. Fibulin-3 in conditioned media inhibits TGF-β signaling
(A) MDA-MB-231 cells were cultured in blank medium or in conditioned media from 

shNTC- or shFBLN3-MDA-MB-231 cells for 6 hrs, treated with 50 pM TGF-β1 for 30 min, 

and the cell lysates analyzed with the indicated antibodies. (B)(C) MDA-MB-231 cells were 

cultured in blank medium or in conditioned media from shNTC- or shFBLN3-MDA-

MB-231 cells for 3 hrs, treated with 20 pM TGF-β1 for 4h, Smad7 (B) and PAI-1 (C) 

mRNA were measured using qRT-PCR. (D) HMEC-1 cells were cultured in blank medium 

or in conditioned media from shNTC- or shFBLN3-MDA-MB-231 cells for 6 hrs, and then 

treated with 50 pM TGF-β1 for 30 min, and the cell lysates analyzed with the indicated 

antibodies. (E) HMEC-1 cells were pretreated with the MDA-MB-231 conditioned media 

which were immunodepleted with empty Protein A Sepharose (PAS) beads or fibulin-3 

antibody (from Abcam) for 6 hrs, and then treated with 50 pM TGF-β1 for 30 min, and the 

cell lysates analyzed with the indicated antibodies. (F) MDA-MB-231-4175 cells or (I) 

HMEC-1 cells were pretreated with the conditioned media from empty vector or fibulin-3 

overexpressing MDA-MB-231-4175 cells for 6 hrs, and then treated with 50 pM TGF-β1 for 

30 min, and the cell lysates analyzed with the indicated antibodies. (G)(H) MDA-

MB-231-4175 cells were pretreated with the conditioned media from empty vector or 

fibulin-3 overexpressing MDA-MB-231-4175 cells for 3 hrs, and then treated with 20 pM 

TGF-β1 for 4 hrs, Smad7 (G) and PAI-1 (H) mRNA were measured using qRT-PCR. (J) 

HMEC-1 cells were pretreated with indicated doses of purified fibulin-3 for 6 hrs, and then 

treated with 50 pM TGF-β1 for 30min, and the cell lysates analyzed with the indicated 

antibodies. Results are representative of 3 independent experiments. (K)(L) MDA-MB-231 

cells were pretreated with 200 ng/ml purified fibulin-3 for 3 hrs, and then treated with 20 

pM TGF-β1 for 2h, Smad7 (K) and PAI-1 (L) mRNA were measured using qRT-PCR.

Tian et al. Page 16

Oncogene. Author manuscript; available in PMC 2016 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Fibulin-3 inhibits TGF-β signaling through interaction with TβRI
(A) MDA-MB-231 cells were either infected with ca-ALK5 adenovirus for 24 hrs, serum 

starved and treated with 200 ng/ml exogeneous fibulin-3 for 6 hrs, or serum starved, pre-

treated with 200 ng/ml exogeneous fibulin-3 for 6 hrs, then treated with 50 pM TGF-β1 for 

30 min, and the cell lysates analyzed with the indicated antibodies. (B) (C) Anti-Flag (B) or 

anti-HA (C) immunoprecipitate (IP) was prepared from COS7 cells expressing Flag-

fibulin-3 and HA-TβRI or HATβRII. Flag-fibulin-3, HA-TβRI and HA-TβRII were detected 

in IP and total cell lysates by western blot analysis. (D) HA-TβRI or HA-TβRII were 
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immunoprecipitated in HA-TβRI or HA-TβRII overexpressing COS7 cells with anti-HA 

crosslinked beads, washed, incubate with 100 ng recombinant fibulin-3. Fibulin-3, HA-TβRI 

or HA-TβRII were detected by western blot analysis. (E) shNTC- or shFBLN3-MDA-

MB-231 cells were pretreated with their conditioned media for 6 hrs respectively, and 

treated with 50 pM TGF-β1 for 10 min. Interaction between TβRI and TβRII was assessed 

by Duolink assay. Nuclei were stained using DAPI. Quantitated data were from 3 

experiments +/− SEM. (F) MDA-MB-231 cells (left panel) or MDA-MB-231-4175 cells 

(right panel) were treated with 50 pM TGF-β1 for 12 hrs or 24 hrs. mRNA were extracted 

and converted to cDNA, and quantified using qRT-PCR. Quantitated data were from 3 or 4 

experiments +/− SEM.
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Fig. 4. Fibulin-3 expression is decreased during breast cancer progression
(A), (C) and (D) Analysis of publicly available microarray expression data for fibulin-3 

mRNA expression in normal breast and breast cancer (A), in different types of breast cancer 

(C), and by breast cancer stage (D). (B) Representative sections of murine mammary 

epithelium and MDA-MB-231-4175 orthotopic tumor xenograft immunostained for 

fibulin-3. (E) Kaplan-Meier plot of survival based on low (below mean) or high (above 

mean) fibulin-3 expression. (F) Quantitative PCR analysis of fibulin-3 mRNA expression 

level in MCF10A breast cancer progression series. Results from three independent 

experiments were averaged and normalized relative to expression in MCF10A cells. (G) 

Conditioned media from MCF10A-CA1h and MCF10A-CA1a cells analyzed for fibulin-3 

expression. (H) Quantitative PCR analysis of fibulin-3 mRNA expression level in MDA-

MB-231 and MDA-MB-231-4175. Results from six independent experiments were averaged 

and normalized relative to expression in MDA-MB-231 cells.
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Fig. 5. Fibulin-3 inhibits TGF-β induced EMT, migration and invasion
(A, B) MDA-MB-231 cells incubated with blank medium or with conditioned media from 

shNTC- and shFBLN3-MDA-MB-231 cells, were plated on non-coated (A) or Matrigel-

coated (B) transwells, treated with or without 50 pM TGF-β1 and assessed for migration/

invasion after 12 hrs. Quantitated data were from 3 experiments +/− SEM. (C) MDA-

MB-231-4175 cells were incubated with blank medium or with conditioned media from 

empty vector or fibulin-3 stable overexpressing MDA-MB-231-4175 cells, plated on 

Matrigel-coated transwells, treated with or without 50 pM TGF-β1 and assessed for 

migration/invasion after 12 hrs. Quantitated data were from 3 experiments +/− SEM. (D) 

NMuMG cells were cultured in blank medium or in conditioned media from shNTC- or 

shFBLN3-NMuMG cells for 6 hrs, treated with 50 pM TGF-β for 30 min, and the cell 

lysates analyzed with the indicated antibodies. Quantitated data below were from 3 

experiments +/− SEM. (E, F) NMuMG cells were cultured in regular medium or conditioned 

media from empty vector or fibulin-3 stable overexpressing NMUMG cells, treated with or 

without 50 pM TGF-β for 24 hrs, the cell morphology assessed by phase contrast 
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microscopy (E), and the cell lysates analyzed with the indicated antibodies (F). Fibulin-3 

(G), ZO-1 (H), PAI-1 (I), and fibronectin (J) mRNA expression in 94 normal-tumor pairs 

from the TCGA dataset.
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Fig. 6. Loss of fibulin-3 enhances TGF-β induced transendothelial cell migration
(A, B, C) HMEC-1 cells were cultured in hanging drops to make spheroids. Endothelial 

spheroids were seeded on Matrigel with conditioned media from empty vector or fibulin-3 

stably overexpressing MDA-MB-231-4175 cells (A and B), or from shNTC-or shFBLN3-

MDA-MB-231 cells (C), treated without or with 50 pM TGF-β1, and cultured overnight. 

The number of sprouts were counted and the length of every vessels were measured using 

Image J. Quantitated data were from 3 experiments +/− SEM. (D, E, F) A confluent 

endothelial monolayer growing in transwells was cultured in conditioned media from empty 

vector or fibulin-3 stably overexpressing MDA-MB-231-4175 cells (D and E), or from 

shNTC- and shFBLN3-MDA-MB-231 cells (F), treated without or with 50 pM TGF-β1 for 

12 hrs. GFP labelled breast cancer cells were then plated on the top of transwell and allowed 

to migrate for 24 hrs, with the number of cells undergoing transendothelial cell migration 

(TEM) quantitated. Quantitated data were from 3 experiments +/− SEM.
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Fig. 7. Fibulin-3 inhibits breast cancer EMT, invasiveness and metastasis in vivo
(A) MDA-MB-231-4175-vector (EV) or MDA-MB-231-4175-fibulin-3 cells (FBLN3) 

(50,000 cells/mouse) were implanted into the inguinal mammary fat pads of female nude 

mice. Primary tumor growth was recorded by measuring tumor size at 6 weeks after 

injection presented as mean ± SEM (A). Metastasis was followed by bioluminescence 

imaging every 7 postoperative days (POD) (B, C). (D) Tissue sections of liver from mice 

implanted with MDA-MB-231-4175-vector (EV) or MDA-MB-231-4175-fibulin-3 cells 

(FBLN3) were immunostained with anti-human vimentin antibody. (E, F) Primary tumors 
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from mice implanted with MDA-MB-231-4175-vector cells exhibiting local invasion (black 

arrows) of tumor cells into the adjacent smooth muscle layers (E) and mesenchymal 

morphology (F). (G, H) Tissue sections of primary tumors from mice implanted with MDA-

MB-231-4175-vector (EV) or MDA-MB-231-4175-fibulin-3 cells (FBLN3) were 

immunostained for pan-cytokeratin (G, upper panel), fibronectin (G, bottom panel), p-

Smad2 (H) and FBLN3 (H), respectively. Representative staining frequency and intensity is 

shown.
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Fig. 8. Fibulin-3-mediated regulation of TGF-β signaling and biology
(A) TGF-β induces fibulin-3 expression and secretion. Fibulin-3 inhibits TGF-β signaling by 

interaction with TβRI, blocking complex formation with TβRII and downstream signaling. 

(B) Fibulin-3 expression decreases during breast cancer progression, with decreased 

fibulin-3 promoting TGF-β signaling in breast cancer cells and endothelial cells, and in turn 

promoting EMT, migration, invasion in breast cancer cells and endothelial permeability, 

collectively promoting metastasis.
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