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Abstract: Seeds from non-drug varieties of hemp (Cannabis sativa L.) have been used for traditional
medicine, food, and fiber production. Our study shows that phytol obtained from hemp seed oil
(HSO) exerts anti-inflammatory activity in human monocyte-macrophages. Fresh human monocytes
and human macrophages derived from circulating monocytes were used to evaluate both plasticity
and anti-inflammatory effects of phytol from HSO at 10–100 mM using FACS analysis, ELISA, and
RT-qPCR methods. The quantitative study of the acyclic alcohol fraction isolated from HSO shows
that phytol is the most abundant component (167.59 ± 1.81 mg/Kg of HSO). Phytol was able to
skew monocyte-macrophage plasticity toward the anti-inflammatory non-classical CD14+CD16++

monocyte phenotype and toward macrophage M2 (CD200Rhigh and MRC-1high), as well as to reduce
the production of IL-1β, IL-6, and TNF-α, diminishing the inflammatory competence of mature
human macrophages after lipopolysaccharide (LPS) treatment. These findings point out for the first
time the reprogramming and anti-inflammatory activity of phytol in human monocyte-macrophages.
In addition, our study may help to understand the mechanisms by which phytol from HSO contributes
to the constant and progressive plasticity of the human monocyte-macrophage linage.

Keywords: phytol; nutraceuticals; unsaponifiable; hemp seed oil; functional foods; immunonutrition

1. Introduction

Hemp seeds (Cannabis sativa L.) of non-drug varieties have been widely used for
many years as a source of medicines, foods, or fibers [1–6]. Compared to other vegetable
oils, hemp seed oil (HSO) offers many benefits for the food industry, as an ingredient
itself, or as an additive to increase the quality of animal-derived food products [2,3].
Additionally, regarding the ratio omega-6/omega-3 (3:1) of linoleic and linolenic acids, two
essential polyunsaturated fatty acids (PUFAs) for human nutrition, HSO is considered to
be remarkably balanced [7]. In line with our investigations of medicinal and food plants
as a source of secondary metabolites with bioactivity, our group has recently evaluated
a preliminary analytic screening of HSO [8]. The composition of HSO includes terpenes,
phytosterols, and some tocopherols with remarkable anti-oxidative activity to scavenge
free radicals that may have a role in certain signaling pathways related to the regulation
of the inflammatory response [9–11]. Therefore, HSO-related compounds emerge with an
anti-inflammatory and immune-modulatory role as a novel added value of HSO [2,3].

Conventional food waxes contain acyclic fatty alcohols, which have been isolated
using saponification and solvent extraction from spinach, sugarcane, or beeswax [12]. These
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alcohols are responsible for health benefits, including reduction of cholesterol levels, platelet
aggregation, or endothelial damage [13]. Phytol (3,7,11,15-tetramethylhexadec-2-en-1-ol) is
one of those acyclic diterpene alcohols present in the composition of the essential oils of
some aromatic plants and in the unsaponifiable fraction of vegetable oils [14]. The most
abundant compounds in the unsaponifiable fraction of HSO are β-sitosterol, campesterol,
phytol, cycloartenol, and γ-tocopherol [8]. Previous data report many therapeutic activities
of phytol against mycobacteria and as an anticonvulsant, antispasmodic, or antitumoral
agent [15–17]. Although some data point to the promising anti-inflammatory activity of
diterpenes [14,18–21], little is known about the bioactivity of phytol [22]. In addition,
although it is a major component of the unsaponifiable fraction of HSO, the biological
activity in primary human monocytes of isolated HSO phytol has not been studied to date.

Both monocytes and macrophages appear to be notable therapeutic targets as the main
sources of pro-inflammatory and anti-inflammatory cytokines, contributing to oxidative-
mediated inflammatory cascades that occur during all stages of inflammatory disorders
such as atherosclerosis [23–25]. In humans, monocyte cells are classified in classical mono-
cytes (CD14++CD16−), intermediate monocytes (CD14++CD16+) and non-classical mono-
cytes (CD14+CD16++) [26–28]. The highest proportion (around 85% of the total) of mono-
cytes is classical monocytes. These cells behave like expert phagocytes, greatly express
CCR2, and give rise to the M1 macrophage phenotype, which causes reactive oxygen species
and cytokines (TNF-α, IL-1β, and IL-6) during inflammation or infection in response to
LPS [29,30]. On the other hand, intermediate monocytes secrete pro-inflammatory cytokines
and highly express CCR5, CD163, TLR4, and HLA-DR during activation [31]. Finally, non-
classical monocytes are smaller and less granular cells, showing lower expression of CCR2
compared to classical or intermediate monocytes [31], but rich in CD16. Non-classical
monocytes tend to the anti-inflammatory phenotype of polarizing M2 macrophages after
various stimuli, such as IL-4, and play a role in patrolling, tissue repairing, and wound heal-
ing [30,32]. The purpose of this paper is to examine the effects of phytol, the acyclic diter-
pene alcohol isolated from the unsaponifiable fraction of HSO, on the activation of primary
monocytes and mature macrophage human cells as indicators of inflammatory disorders.

2. Materials and Methods
2.1. Isolation of Phytol from an Unsaponifiable Fraction of Hemp Seed Oil

Following conventional protocols, from 1 Kg of HSO (Naturgreen, Murcia, Spain),
the unsaponifiable fraction was isolated. The composition of this fraction was analyzed as
described in Montserrat-de la Paz et al. using the IUPAC method [33]. Ethanol was used for
the extraction of the acyclic alcohol fraction three times at room temperature, removing the
solvent under vacuum conditions, to obtain a residue (225 mg) that was suspended using
water, to continue the extraction with petroleum ether and chloroform. Using silica gel
column chromatography, the residue from the chloroform layer was fractioned with eluents
CHCl3–Me2CO, followed by purification using exclusion resin (RP C18 Si-gel column)
with eluent CH3OH–water (8:2–7:3). The GC-MS study was assessed using a capillary gas
chromatograph HP 5890 Series II Plus connected to a mass spectrometer HP 5972 (both
models from Hewlett-Packard). Operating conditions and equipment were as follows:
a capillary column (30 m by 0.25 mm internal diameter, Hewlett-Packard) coated with
HP silicon 5% phenyl methyl, an oven temperature increasing 30 ◦C min−1 from 60 ◦C
to 130 ◦C, followed by 4 ◦C min−1 rising from 130 ◦C to 300 ◦C, a carrier gas pressure
(He) fixed until the end of the temperature program at 1.05 × 105 Pa, increasing then at
0.04 × 105 Pa min−1 from 1.05 × 105 to 1.5 × 105 Pa, temperature of 50 ◦C for injector (on
column), 70 eV of electron energy, 170 ◦C of source temperature and 1.5 s of cycle time. To
confirm the purity grade, the isolated phytol from HSO was analyzed by GC compared to
the phytol standard (>97% purity, Sigma-Aldrich, Madrid, Spain).
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2.2. Blood Collection Procedure and Human Monocytes Isolation

The “Centro Regional de Transfusiones Sanguíneas y Banco de Tejidos de la province
de Sevilla y Huelva” provided samples from which peripheral blood mononuclear cells
(PBMC) were obtained from buffy coats after centrifugation using a Ficoll-Histopaque
gradient (Sigma). According to the manufacturer’s instructions, with a midiMACS system
(Miltenyi Biotec, Madrid, Spain), monocyte cells were isolated from PBMC using CD14
microbeads and LS columns. By flow cytometry (FACScanto II flow cytometer and FACS-
Diva software, BD), the purity for CD14 monocyte isolations was quantified routinely at
>90%. After isolation, monocyte cells became resuspended in RPMI 1640 medium, in which
10% heat-inactivated fetal bovine serum, penicillin, streptomycin, and L-glutamine were
added [34].

2.3. FACS Immunostaining of Circulating Monocytes Cells

Using flow cytometry, membrane expression of CD14 (APC-Cy7 anti-human CD14,
Miltenyi), CD16 (PE anti-human CD16, Miltenyi), and CCR2 (APC anti-human CCR2,
Vitro) in circulating monocytes were analyzed. After in vitro stimulation in the presence
or absence of 100 ng/mL LPS, 5 × 105 purified monocytes cells were treated for 24 h with
10–100 mM phytol, according to the manufacturer’s instructions. The cells were incubated
at room temperature, in the dark, for 15 min, with antibodies, and finally, erythrocytes
were removed using FACS lysing solution (BD). Using a FACSCanto II flow cytometer
(BD) calibrated with FACSDiva software (BD), the mean fluorescence intensity (MFI) was
quantified. For each sample, the MFI of 104 counted cells was tested. Monocyte cells became
gated as forward scatterhigh (FSChigh)-side scatterhigh (SSChigh) cells. Expression levels
appear as MFI values corrected with isotope control antibodies for nonspecific binding.

2.4. Differentiation and Polarization of Monocyte-Derived Macrophages M1 and M2

To differentiate into M0 macrophages, for 6 days in the presence of 25 ng/mL of
human recombinant M-CSF, monocytes were induced. Every 2 days, the culture medium
was replaced with fresh medium. Using flow cytometry (>95%) and CD68 antigen (anti-
human CD68 monoclonal antibody, Miltenyi Biotec, Madrid, Spain), we determined the
degree of differentiation of the resulting cells. To obtain M1 or M2 polarized macrophages,
additional treatment of M0 macrophages was evaluated for 24 h with LPS (100 ng/mL) and
IFNγ (20 ng/mL) or with IL-4 (20 ng/mL) [35]. Finally, M0 macrophages were exposed to
10–100 mM phytol for 24 h to determine the effects of the polarization process. As a positive
control, 1 µM of dexamethasone (Sigma, Madrid, Spain) was used (data not shown).

2.5. MTT Cell Viability Assay

First, 1 × 105 monocytes cells/well were seeded in 96-well plates and then differ-
entiated into M0 macrophages. Afterward, macrophages were incubated for 24 h with
or without 10–100 mM phytol. Finally, incubation of cells with MTT solution (Sigma)
was assessed until a purple precipitate formed. MTT-formazan crystals were solubilized
using DMSO (Sigma) before quantification with a microplate reader at 570 nm corrected to
650 nm [36]. When these values were compared with those of nontreated cells as controls,
the survival of the cells was displayed as the percentage of absorbance.

2.6. Isolation of RNA and qRT-PCR Protocol

According to the manufacturer’s instructions, Trisure Reagent (Bioline) was used for
the extraction of total RNA. To assess the quality of RNA, the ratio A260/A280 obtained in
a NanoDrop ND-1000 Spectrophotometer (Thermo Scientific, Madrid, Spain) was used.
The first step in this process was to subject 1 µg RNA to reverse transcription (iScript,
Bio-Rad, Madrid, Spain); 20 ng of the obtained cDNA was used as a template for real-time
PCR amplifications. Using a CFX96 system (Bio-Rad), mRNA levels were analyzed for
specific genes. In every PCR reaction, the cDNA template was mixed with a Brilliant SYBR
green QPCR Supermix (Bio-Rad) in which glyceraldehyde 3-phosphate dehydrogenase
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(GAPDH) as the housekeeping gene or the primer pairs for either gene were present
(Table 1). PCR amplifications were performed in triplicate, and to quantify the relative
levels of mRNA expression for every gene tested, the average threshold cycle (Ct) numbers
of triplicates were used. With the standard 2−(∆∆Ct) method, the proportion of change in
mRNA expression in candidate genes was quantified. Data were expressed as percentages
adjusted to controls and normalized to endogenous reference gene content [37].

Table 1. Sequences of RT-PCR primers for gene expression analysis.

Target GenBank
Accession Number Direction Sequence (5′→3′)

CD80 NM_005191.3 Forward
Reverse

GGGAAAGTGTACGCCCTGTA
GCTACTTCTGTGCCCACCAT

CD200R NM_138940.2 Forward
Reverse

GTTGCCCTCCTATCGCATTA
TGGAAATTCCCATCAGGTGT

MR NM_002438.3 Forward
Reverse

GGCGGTGACCTCACAAGTAT
ACGAAGCCATTTGGTAAACG

CD64 NM_000566.3 Forward
Reverse

GTCCAAATCTCCAAGTGCGG
CCCAAGTATGAGAGCAGCGT

GAPDH NM_001289746 Forward
Reverse

CACATGGCCTCCAAGGAGTAAG
CCAGCAGTGAGGGTCTCTCT

2.7. Cytokine Release Measurement

Following the manufacturer’s indications, we quantified the levels of TNF-α, IL-6,
and IL-1β cytokines in culture supernatants using the ELISA (enzyme-linked immunosor-
bent) assay (Diaclone, Besancon, France). In each assay, cytokine concentrations were
expressed in pg/mL after serial dilution of human recombinant standards were calculated
in calibration curves.

2.8. Data Analysis

Data are expressed as arithmetic means ± standard deviations (SD). Values were
estimated using version 6.01 of the Graph Pad Prism software (San Diego, CA, USA). In
each parameter, the statistical importance of variances among the groups was analyzed
using a one-way ANOVA analysis of variance, following the Tukey multiple comparison
post-hoc test. Any p-value < 0.01 was determined statistically relevant.

3. Results and Discussion
3.1. Chemical Characterization of HSO

Our study performed the isolation and characterization of the acyclic fatty alcohol
fraction from an unsaponifiable matter of HSO. On the other hand, and for the first time, we
explored the effect of phytol, the major compound in this fraction, on both the inflammatory
response and reprogramming of functional phenotypes in human primary monocyte-
derived mature macrophages. As shown in Figure 1, the main acyclic alcohols present in
HSO were phytol (73.57%), followed by geranylgeraniol (11.45%) and hexacosanol (7.05%),
representing 92% of the total fraction (226.94 ± 2.26 mg/kg of HSO). These components
are quite different from those of policosanol, which is a commercial mixture of very long-
chain alcohols containing mostly octocosanol (~60%), triacosanol (~13%), and hexacosanol
(~6%) [38], and other vegetable oils such as olive oil, pomace olive oil, grape seed oil, and
evening primrose oil [12,39,40].
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Figure 1. Characterization of phytol isolated from HSO. (A) Gas chromatogram of acyclic aliphatic
alcohols, triterpene alcohols, and 4-methylsterol fractions of unsaponifiable HSO and chemical
structure of phytol (3,7,11,15-tetramethylhexadec-2-en-1-ol). (B) Mass spectrum and (C) schematic
representation of the phytol mass fragmentation pattern.

To date, several chemical and nutritional studies have reported that acyclic fatty
alcohols obtained from waxy materials of different origins exert beneficial effects on phys-
iology [13,41]. For example, fixed oil has been described as having beneficial effects
on osteoarthritis [42], hyperlipidemia [43], hyperalgesia [44], and inflammation [45,46].
However, little research has dealt with the pharmacological effects of phytol (3,7,11,15-
tetramethylhexadec-2-en-1-ol), the main compound (167.59 ± 1.81 mg/kg of HSO) present
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in the acyclic fatty alcohol fraction isolated from HSO [16]. Phytol is scarcely present in
human foods, such as asparagus, beans, spinach, or raw vegetables [47].

Free phytol in those products was reported in the range of 0.7–2 mg/kg of undried
food. In dried tea or beef stock cubes, higher amounts of (12.5–14.7 mg/kg) phytol have
been reported [48]. To date, previous studies have demonstrated the low toxicity and
high tolerance of phytol, increasing the interest in this natural bioactive compound from
plants [14,16,49]. Many data support the bioactivity of phytol in vivo and in vitro [50–52].
Our study demonstrates that HSO is one of the phytol-richest natural products.

3.2. Effect of Phytol on Monocyte Differentiation and Macrophage Polarization

The literature on HSO has already highlighted the value of this natural product for
the identification and medicinal use of its components, including phytol. For that rea-
son, it is necessary to support the promising advantages of HSO in the immunology area
or in inflammatory and vascular-related dysfunctions where one of the pivotal cells for
the initiation of inflammation is the monocyte [53–55]. Most circulating monocytes are
known as classical monocytes (CD14++CD16−). Other subsets are non-classical mono-
cytes (CD14+CD16++) and intermediate monocytes [26,27]. Both classical and intermediate
monocytes have a pro-inflammatory phenotype that, as a response to LPS treatment, quite
actively produces TNF-α, IL-1β, and IL-6, thus promoting various inflammatory disorders,
including atherosclerosis [56,57]. Consequently, to avoid continuous inflammatory events
and complete controlled repair, the correct balance of the monocyte cell subsets appears to
be critical. There is a significant increase in CD14 expression in classical and intermediate
monocytes when comparing LPS-treated cells with control untreated cells (Figure 2A,B).
The addition of phytol overrode the LPS effect diminishing CD14 expression and also
remarkably increasing CD16 (Figure 2C). The results of our study point, for the first time,
to the feasible role of phytol as a regulator in human monocytes of the balance among the
different subsets of monocytes. Classical and intermediate cells with pro-inflammatory phe-
notype show lower surface expression, while non-classical monocytes exhibit higher CD16
values after phytol doses compared to LPS. Therefore, phytol appears to be a promising
indicator for preventing persistent inflammation and achieving controlled repair.

In response to specific local microenvironments, tissue-infiltrated monocyte-derived
macrophages undergo polarization into M1, pro-inflammatory type 1, or M2, anti-
inflammatory type 2 cells, both of which play a critical role in early events and subsequent
resolution of the immune response [23,57]. These M1 and M2 macrophages illustrate
the extremes of a continuum of functional phenotypes [27,58]. On the one hand, M1
macrophages originate from LPS and/or IFNγ, while the phenotype of M2 macrophages is
influenced by IL-4. Therefore, macrophage plasticity modulation appears to be a potential
strategy to control joint inflammation. The phytol has previously been observed to decrease
acute inflammation in vivo and pro-inflammatory cytokine production in peritoneal
exudate and neutrophils from mice [14,59,60]. Therefore, we asked whether phytol had
any effect on polarization and cytokine response in human mature macrophages. For that
purpose, we quantified the gene expression of phenotypic macrophage markers for M1
(CD80, CD64) and M2 (CD200R, MRC-1). As shown in Figure 3, both CD80 and CD64
genes appear to be up-regulated by LPS plus IFNγ, while CD200R and MRC-1 appear to
be up-regulated by IL-4. It was noteworthy to observe that phytol skewed macrophage
polarization towards M2.
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3.3. Effects of Phytol on Pro-Inflammatory Cytokine Levels

This ability of phytol to regulate the polarization of M0 macrophage cells was addi-
tionally studied by analyzing the release into the culture medium of pro-inflammatory
cytokines of the M1 phenotype, such as TNFα, IL-6, or IL-1β, upon exposure to LPS. Anal-
ysis of cytokine production (Figure 4A–C) illustrated that phytol significantly decreased
the inflammatory capability of mature human mature macrophages. The quantification
of pro-inflammatory cytokines in culture medium showed lower values than the control
M1 when IL-1β, IL-6, and TNF-α were tested. This tendency correlates with phytol doses,
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diminishing half the average values when comparing 10-, 50-, and 100 mM treatments. IL-6
release after 50 mM phytol is the lowest decrease, well over half of the 10 mM dose. Finally,
the production of pro-inflammatory cytokines compared to M1 was decreased in the lowest
proportion with 10 mM phytol and dramatically diminished with 100 mM phytol dose, as
shown in Figure 4C.
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Figure 4. Effect of phytol on the release of pro-inflammatory cytokines. Cells from M0 macrophages
were incubated in the presence of LPS and IFNγ, for M1 control, or with IL-4 for the M2 control, or
with 10–100 mM Phytol for an additional 24 h. Using ELISA protocols, in polarized macrophage
culture supernatants, the concentrations of (A) IL-1β, (B) IL-6, and (C) TNFα were measured. The
values are means ± SD (n = 3) and, if marked with different letters, they are significantly different
(p < 0.01).

Previous research findings have shown that macrophage-derived cytokines are crucial
in human aging [61,62] and also in a wide range of human inflammatory disorders [63–70].
This phenotype is considered to operate in dynamic interchange if there is an extreme
risk of inflammation risk and a negative feedback procedure is needed, for example, to
stop inflammation [71,72]. These findings support the idea that phytol ingestion may
prevent macrophage activation and alter macrophage plasticity in human tissue under
inflammatory conditions.

4. Conclusions

These results showed that phytol, which was isolated and identified for the first
time in HSO, can help to better understand the specific mechanism by which this acyclic
diterpene exerts beneficial effects on monocyte-macrophage plasticity. So far, HSO has
already been demonstrated to include healthy polyunsaturated fatty acids, as well as
antioxidant tocopherols and anti-inflammatory phytosterols in its unsaponifiable fraction.
In recent years, inflammation has emerged as a leading pathophysiologic mechanism in
atherosclerosis and other diseases, so the effects of phytol on different hallmarks of the
inflammatory response contribute to the recommendation of HSO as an interesting source
of functional compounds.
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