
entropy

Article

An Image Encryption Algorithm Based on
Time-Delay and Random Insertion

Xiaoling Huang and Guodong Ye *

Faculty of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang 524088, China;
xyxhuang@gdou.edu.cn
* Correspondence: guodongye@hotmail.com or yegd@gdou.edu.cn; Tel.: +86-759-2383064

Received: 19 November 2018; Accepted: 13 December 2018; Published: 15 December 2018 ����������
�������

Abstract: An image encryption algorithm is presented in this paper based on a chaotic map. Different
from traditional methods based on the permutation-diffusion structure, the keystream here depends
on both secret keys and the pre-processed image. In particular, in the permutation stage, a middle
parameter is designed to revise the outputs of the chaotic map, yielding a temporal delay phenomena.
Then, diffusion operation is applied after a group of random numbers is inserted into the permuted
image. Therefore, the gray distribution can be changed and is different from that of the plain-image.
This insertion acts as a one-time pad. Moreover, the keystream for the diffusion operation is designed
to be influenced by secret keys assigned in the permutation stage. As a result, the two stages are mixed
together to strengthen entirety. Experimental tests also suggest that our algorithm, permutation–
insertion–diffusion (PID), performs better when expecting secure communications for images.
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1. Introduction

With fast development of computer and network technologies, digital information (multimedia)
modalities (such as images, video, and audio) have been widely adopted for daily communication.
Among these, image analysis is a most direct and simple way to learn and understand the natural
world. Images are increasingly transformed over networks every day, according to the Google
analysis. Images and applications utilizing image processing are used in many fields, such as medicine,
education, and aerospace, to name a few. However, illegal attackers may visit, read, or intercept our
transmitted information.

Cryptology can be utilized to develop methods for secure transmission of images. However,
images are different from text files, and have many unique characteristics, such as bulk data capacity,
high redundancy, and strong inter-pixel correlation. As a result, traditional encryption algorithms such
as DES, AES, and IDEA are not suitable for secure encoding of images. Development of algorithms
for effective image encryption remains an important priority in the fields of computer science
and communications. Recently, chaos-based image encryption schemes have received considerable
attention; these methods allow for hiding image-related information accounting for the desirable
properties [1,2] of extreme sensitivity to initial conditions, ergodicity, and pseudo-randomness of
chaos systems (maps). As early as 1998, Fridrich [3] proposed an image encryption method that used
a two-dimensional chaotic map. In what follows, many encryption algorithms have been designed,
which fully or partially utilize the Fridrich structure (i.e., permutation–diffusion). For example, a
bit-level image encryption algorithm [4] was proposed based on piecewise linear chaotic maps, in
which a diffusion strategy was introduced followed by a permutation of bits for each value. Quantum
chaotic map [5] with a diffusion-permutation architecture-based image encryption algorithm has been
presented. Norouzi et al. designed diffusion-only image encryption schemes [6,7]. The test results
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show high sensitivity and high complexity. The behavior of quantum walks was proved [8] to be
chaotic, and a permutation-based image encryption algorithm has been proposed. It calculates the sum
of the plain-image and uses the resulting value to diffuse the image’s pixels. Furthermore, to enhance
the sensitivity of the encryption method, a quantum hash function is taken to act as a hash function for
the privacy amplification process [9]. Exclusive OR (XOR) as a diffusion operation and shuffling as
a permutation are then applied to the plain-image and yield a cipher-image with a new encryption
structure. A unique and more distinctive encryption algorithm is proposed based on the complexity
of a highly nonlinear S box in Flesnelet domain [10]. DNA-based image encryption methods [11–13]
and other similar architectures [14–22] have also been presented as encryption techniques to ensure
communication of images.

However, some schemes have been found to be insecure. For example, Li [23] evaluated a class of
permutation-only encryption algorithms. Using a known(chosen)-plaintext attack, the plain-image
could be recovered if the encryption algorithm [24] was used. Furthermore, it was shown how
permutation-only image encryption schemes can be broken with little computation complexity [25,26].
Eslami and Bakhshandeh [27] designed a new image encryption to promote the plain-text sensitivity
and to enhance the diffusion performance. However, the keystream used in that diffusion was not
related to the plain-image. As a result, Akhavan et al [28] re-evaluated the security and broke it
successfully using a chosen plain-text attack [27]. Other cryptanalysis methods [29–32] have been
proposed as well.

To solve the above security problem and to enhance the connection between the plain-image and
the keystream, a novel chaotic image encryption scheme, named permutation–insertion–diffusion
(PID), is proposed in this paper. A middle parameter is designed to revise the outputs of the chaotic
map, acting like a time-delay phenomena. To enhance the security of the Fridrich structure, especially
the shortcoming of unchanged gray values before the diffusion operation [33,34], a group of random
numbers are inserted in the pre-encrypted image to rewrite the gray distribution followed by the
diffusion encryption. As a result, the proposed algorithm can be seen as a one-time pad. The rest of
this paper is organized as follows. The proposed cryptosystem is described after an introduction of a
chaotic map. Then, some experimental results are shown by using our method. After that, security
analyses are evaluated to explain the better performance of our scheme. Finally, conclusions are drawn
followed by a discussion.

2. The Proposed Cryptosystem

A two-dimensional (2D) chaotic map, called a 2D Sine Logistic modulation map (2D-SLMM), was
studied in [34]. The map is defined by{

xi+1 = u(sin(πyi) + v)xi(1− xi),
yi+1 = u(sin(πxi+1) + v)yi(1− yi), i = 0, 1, 2 · · · , (1)

where u ∈ [0, 1], v ∈ [0, 3]. To enhance the nonlinearity and the randomness, parameter v is set to
modulate the output of the Logistic map. When we let v be close to 3, the output pairs (xi+1, yi+1)

of 2D-LASM distribute in the whole data range of the 2D phase plane. Thus, v is set to be 3 [34] in
2D-SLMM to display good chaotic performance. Figure 1 shows the chaotic orbit for the 2D-SLMM
output. A detailed description of the map is provided in [34].
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Figure 1. Chaotic dynamics in the 2D-SLMM map.

2.1. Image Cryptosystem

To deduce the strong correlation among adjacent pixels in the plain-image, pixel shuffling is
considered as a first step. Let P be an m× n plain-image, and randomly set initial conditions u = 0.9966,
v = 3.000, x0 = 0.4237 and y0 = 0.1784 in the permutation stage. Then, after a certain number
of iterations, two sets {xi} and {yi} are obtained. To generate a keystream with a time-delay-like
phenomenon, the following operations are performed:

s = 1 + ∑ Pi,j,
t = dyi × 1014 + semod 7 + 1,
xi = xi+t,

hi = d3xi × 1014emod n + 1, i = 1, 2, · · · ,

lj = d5xj × 1014emod m + 1, j = 1, 2, · · · ,

(2)

where dae corresponds to the floor operation on a, and t is a time-delay factor. As a result, we obtain
H = {h1, h2, · · · , hm} and L = {l1, l2, · · · , ln} for circular permutations of row and column. Assume
that the permuted image is T after permutation encryption.

If permutation-only operation is applied to a plain-image, then the gray distribution of the
permuted image is the same as that of the plain-image. Moreover, encryption schemes in this family
were found to be insecure. To enhance the security level of the proposed algorithm, random numbers
are inserted into the image T before the first row with a random row a and the first column with a
random column b. A new image B is obtained, with the dimensions of (m + 1)× (n + 1). As a result,
the gray distribution of B is different from that of image P. Fortunately, the insertion function acts as a
one-time pad owing to the random numbers being generated anew each time. For example, vector
a = {3, 8, 9, 20}may become a = {11, 34, 5, 7} randomly with a four-dimension. Thus, the obtained
cipher-images are different, even if the encryption is performed on the same plain-image in different
communications.

To determine the relationship between the different pixels in the cipher-image, diffusion is further
used to encrypt the permuted image B. Again, random initial conditions are set as u = 0.9966,
v = 3.000, x̂0 = 0.6028 and ŷ0 = 0.1883 in the diffusion stage, and the chaotic map is iterated. Then,
a chaotic matrix M with the same size as B is obtained after a certain number of iterations. To revise
the gray distribution, the following operation is performed on the matrix rows:
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D = B + M mod 256,
r = d(x0 + y0)× 1014emod 7 + 1,

Ci = Ci−1 + rMi + Di mod 256, i = 1, 2, · · · , m + 1,
(3)

where Ci, Mi, and Di represent the row vectors of C, M, and D, respectively. C0 is a constant vector.
Finally, a cipher-image C is obtained. It is noted that, before the diffusion operation, a rewriting
operation for the permuted image B should be performed, which overcomes the shortcoming of the
Fridrich structure and enhances the encryption security. Considering a similar function in the case of
columns, the above function by row is applied again, this time on the columns of image C, and the
following cipher-image E is obtained:{

F = C + M mod 256,
Ej = Ej−1 + rMj + Fj mod 256, j = 1, 2, · · · , n + 1.

(4)

2.2. Encryption Steps

As described above, the proposed encryption scheme can be summarized in the following steps,
with the symmetric PID structure:

Step 1. Read the plain-image as P and obtain its size m× n.
Step 2. Compute the sum s over the plain-image.
Step 3. Generate the two sets H and L by simulating a time-delay phenomena.
Step 4. Apply circular permutation to both rows and columns, and obtain T.
Step 5. Insert random numbers into the permuted image T and obtain B by simulating a one-time pad.
Step 6. Iterate the chaotic map again and obtain matrix M.
Step 7. Apply the diffusion operation to revise the gray distribution, on both row and column dimensions.
Step 8. Obtain the cipher-image E.

2.3. Decryption

Owing to the symmetric cryptosystem nature of our method, image decryption can be performed
by applying the same steps in reverse, starting from the ciphered image and ending up with the plain
image. Using correct keys, the diffusion operation is firstly applied, followed by the permutation
operations in the reverse order.

3. Experimental Results

Three images were randomly chosen, tests were performed using our proposed method, and the
results are reported in this section. The test was implemented in Matlab 2011b running on Windows 7
(Notebook with Intel(R) Core(TM) i3-2350, 2.30 GHz CPU). To increase the security, the PID process
was applied twice to each image. Then, the former 100 iteration results for the chaotic map were
deleted to avoid harmful effects. Figure 2 shows the plain-images, corresponding cipher-images, and
their decrypted results. It is clear that these cipher-images contain no useful image-related information,
compared with their corresponding plain-images.
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Figure 2. Experimental tests: (a) plain-image of Tree; (b) cipher-image of Tree; (c) decrypted image of
Tree; (d) plain-image of Lake; (e) cipher-image of Lake; (f) decrypted image of Lake; (g) plain-image of
Building; (h) cipher-image of Building; (i) decrypted image of Building.

4. Security Analyses

4.1. Key Space Analysis

The key space corresponds to the space of all combinations of keys that can be used in a certain
encryption scheme. Here, there are four keys, i.e., x0, y0, x̂0, ŷ0, not including the parameters u, v.
The key space becomes as large as 1056 ≈ 2186 if the precision is set to 10−14. As a result, it is difficult
to conduct a successful brute-force.

4.2. Histogram Analysis

To reduce the chance of attack and to efficiently hide the information of a plain-image, the
histogram of the corresponding cipher-image should be uniform and significantly distinct from that of
the plain-image. Figure 3 shows the histograms for the images of Lena, Baboon, Boat, and Peppers
before and after using our encryption scheme. It is clear that the histograms of the encrypted images
are flat. Thus, successful attacks are impossible.
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Figure 3. Histograms of: (a) the plain-image of Lena; (b) the cipher-image of Lena; (c) the plain-image
of Baboon; (d) the cipher-image of Baboon; (e) the plain-image of Boat; (f) the cipher-image of Boat;
(g) the plain-image of Peppers; (h) the cipher-image of Peppers.
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4.3. Information Entropy Analysis

Information entropy [1] is an efficient measure of the randomness of an input image (message).
This measure can be defined using the following equation:

E(m) =
L−1

∑
i=0

p(mi)log2
1

p(mi)
, (5)

where L = 2k is the total number of states of the tested message (k = 8 for a gray level image).
Here, we tested four images, and the results are listed in Table 1 (using code “entropy” in Matlab).
We conclude that the information entropy indicates that it is difficult to conduct a successful attack
because the values of the information entropy for the cipher-images are close to a theoretical value
of 8 [35,36]. The random numbers inserted into the image in each encryption, so the values of
the information entropy would be changed very slightly each time. Figure 4 shows the results for
encrypting Lena and Boat at different times.

Table 1. Information entropy tests.

Test Images Plain-Image Cipher-Image

Lena 7.4532 7.9970
Boat 7.1238 7.9993

Peppers 7.5715 7.9992
Baboon 7.3579 7.9993

0 2 4 6 8 10 12 14 16 18 20
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7.995
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8

 

 
Lena
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Figure 4. Information entropy at different times of encryption.

4.4. Key Sensitivity Analysis

A good image encryption algorithm should be very sensitive to all of the keys used. We tested our
algorithm on the image of Lena, and the results are listed in Figure 5. Figure 5a–d shows the incorrect
decryption from the cipher-image with a small change (i.e., 10−14) added in keys x0, y0, x̂0, and ŷ0,
respectively. Therefore, the proposed image encryption algorithm possesses a high key sensitivity and
can frustrate brute-force attackers.
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(a) (b)

(c) (d)

Figure 5. Key sensitivity tests for Lena: (a) decryption with x0 + 10−14; (b) decryption with y0 + 10−14;
(c) decryption with x̂0 + 10−14; (d) decryption with ŷ0 + 10−14.

4.5. Differential Analysis

To test the sensitivity of the proposed encryption method to a small change, even one bit, in the
plain-image, we used two common measures [37,38], the number of pixel change rate (NPCR) and the
unified average changing intensity (UACI). The measures are defined as follows:

NPCR =
∑i,j D(i, j)

m× n
× 100%, (6)

UACI =
1

m× n ∑
i,j

|C′(i, j)− C(i, j)|
255

× 100%, (7)

D(i, j) =

{
0, if C′(i, j) = C(i, j),
1, otherwise, (8)

where C′ and C are two cipher-images corresponding to the same plain-images differing only in one
bit. The results of this test are listed in Table 2 for a change in the value of the (100, 89) position. The
results in Table 2 show that our method has high sensitivity to changes in the plain-images because the
values are nearly ideal [39].
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Table 2. Sensitivity tests.

Test Images UACI NPCR

Lena 33.3537 99.6109
Boat 33.4899 99.5900

Peppers 33.5186 99.6044
Baboon 33.5280 99.6136

UACI: unified average changing intensity; NPCR: number of pixel change rate.

4.6. Run Test for Randomness

The run test mainly examines whether the probability of an event is random. In Matlab software,
”runstest” performs a run test on a given sequence X. This is a test of the hypothesis that the values
in X come in a random order. If the sequence is random, then the test result is 0, or the result is
1. By using our algorithm, the test results are listed in Table 3. Therefore, the outputs show good
statistical randomness.

Table 3. Run test for randomness.

Images Lena Peppers Boat Baboon

Results 0 0 0 0
Randomness Pass Pass Pass Pass

4.7. Comparisons

To make a comparison, information entropy was taken to measure the randomness of different
plain-images and their corresponding cipher-images. Here, a color image of Lena was selected for
comparison with some methods [1,38,40]. The results are given in Table 4 for tests on cipher-images.
Obviously, the information entropy values are close to the ideal value of 8 for our proposed scheme.
Furthermore, computational complexity is an important metric for measuring the efficiency of the
designed algorithm. Table 5 compares the proposed algorithm with some recent references, for different
sizes. Considering key size, information entropy, and running speed, Table 6 displays the comparisons
for some of other methods [41–45], where information entropy is tested for a cipher-image. Thus, our
method can show good performance to satisfy a real-time communication.

Table 4. Comparisons of information entropy.

Channels R G B Average

Ref. [1] 7.9903 7.9890 7.9893 7.9895
Ref. [38] 7.9871 7.9881 7.9878 7.9877
Ref. [40] 7.9278 7.9744 7.9705 7.9576
Ref. [46] 7.9969 7.9974 7.9970 7.9971
Ref. [47] 7.9895 7.9897 7.9893 7.9895
Ref. [48] 7.9968 7.9970 7.9972 7.9970

Ours 7.9977 7.9973 7.9975 7.9975

Table 5. Comparisons of speed performance.

Sizes Ref. [46] Ref. [47] Ref. [48] Ours

256× 256 0.1641 s 0.0552 s 0.0671 s 0.0312 s
512× 512 0.6630 s 0.2031 s 0.2293 s 0.1373 s
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Table 6. Comparisons by gray Boat image.

Sizes Key Size Information Entropy Running Speed Software

[41] 2298 7.9993 21.684 s Matlab
[44] 2128 7.9993 5.960 s Matlab
ours 2186 7.9992 0.137 s Matlab

5. Discussion and Conclusions

In this paper, an image encryption scheme was proposed that utilizes a chaotic map. This paper
makes four significant and novel contributions: (1) The keystream used in the permutation stage is
affected by the plain-image, (2) a time-delay phenomenon is simulated and constructed for choosing
chaotic outputs, (3) a group of random numbers are inserted into the permuted image before diffusion,
and (4) the keystream used in the diffusion stage is affected by the keys assigned in the permutation
stage. According to the results of some tests and security analyses, the proposed image encryption
scheme exhibits a good performance and is suitable for application in secure communications.

An image encryption algorithm based on time-delay and random insertion with a PID structure
was investigated in this paper. With the help of chaotic map as key generator and its inherent properties,
time-delay was simulated by outputs of chaotic map. Then, random numbers are inserted before
diffusion operation to remedy the shortcoming of Fridrich structure. Compared with previous works,
the proposed image encryption algorithm has the following features:

(1) High sensitivity to keys and the plain-image.
(2) Time-delay phenomenon is simulated according to outputs of the chaotic map.
(3) One-time pad is designed by inserting random numbers before diffusion.
(4) The keystream used in the diffusion stage is affected by keys assigned in the permutation stage.
(5) Faster speed to implement the encryption.

Author Contributions: X.H. proposed the main idea of random insertion; G.Y. performed the experiments and
then wrote the paper.
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