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Abstract

Optical mapping is a unique system that is capable of producing high-resolution, high-throughput genomic map data that
gives information about the structure of a genome . Recently it has been used for scaffolding contigs and for assembly
validation for large-scale sequencing projects, including the maize, goat, and Amborella genomes. However, a major
impediment in the use of this data is the variety and quantity of errors in the raw optical mapping data, which are called
Rmaps. The challenges associated with using Rmap data are analogous to dealing with insertions and deletions in the
alignment of long reads. Moreover, they are arguably harder to tackle since the data are numerical and susceptible to
inaccuracy. We develop cOMet to error correct Rmap data, which to the best of our knowledge is the only optical mapping
error correction method. Our experimental results demonstrate that cOMet has high prevision and corrects 82.49% of
insertion errors and 77.38% of deletion errors in Rmap data generated from the Escherichia coli K-12 reference genome. Out of
the deletion errors corrected, 98.26% are true errors. Similarly, out of the insertion errors corrected, 82.19% are true errors. It
also successfully scales to large genomes, improving the quality of 78% and 99% of the Rmaps in the plum and goat
genomes, respectively. Last, we show the utility of error correction by demonstrating how it improves the assembly of Rmap
data. Error corrected Rmap data results in an assembly that is more contiguous and covers a larger fraction of the genome.
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Introduction

In 1993 Schwartz et al. developed optical mapping, a system for
creating an ordered, genome-wide, high-resolution restriction
map of a given organism’s genome [1]. Since this initial devel-
opment, genome-wide optical maps have found numerous ap-
plications including discovering structural variations and rear-
rangements [5], scaffolding and validating contigs for several
large sequencing projects [4,3, 6], and detecting misassembled
regions in draft genomes [7]. Thus, optical mapping has assisted
in the assembly of a variety of species including various prokary-
ote species [8, 9, 10], rice [11], maize [2], mouse [12], goat [3],
parrot [6], and Amborella trichopoda [4]. The raw optical mapping
data are generated by a biological experiment in which large

DNA molecules cling to the surface of a microscope slide using
electrostatic charge and are digested with one or more restric-
tion enzymes. The restriction enzymes cut the DNA molecule
at occurrences of the enzyme’s recognition sequence, forming a
number of DNA fragments. The fragments formed by digestion
are painted with a fluorescent dye to allow visibility under laser
light and a CCD (Charged Coupled device) camera. Computer
vision algorithms then estimate fragment length from consol-
idated intensity of fluorescent dye and apparent distance be-
tween fragment ends.

The resulting data from an experiment are in the form of an
ordered series of fragment lengths [13]. The data for each sin-
gle molecule produced by the system is called an Rmap. Rmap
data have a number of errors due to the experimental conditions
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and system limitations. In an optical mapping experiment, it is
unlikely to achieve perfectly uniform fluorescent staining. This
leads to an erroneous estimation of fragment sizes. Also, restric-
tion enzymes often fail to digest all occurrences of their recog-
nition sequence across the DNA molecule. This manifests as
missing restriction sites. Additionally, due to the fragile nature
of DNA, additional breaks can incorrectly appear as restriction
sites. Last, the limitations of the imaging component of the opti-
cal mapping system and the propensity for the DNA to ball up at
the ends introduces more sizing error for smaller fragments. In-
terested readers will find more details about the causes of these
errors in Valouev et al. [14] and Li et al. [15]. Because of all these
experimental conditions, Rmap data generated through optical
mapping experiment have insertion (added cut sites) and dele-
tion (missed cut sites) errors along with fragment sizing errors.

In most applications of optical map data, the Rmaps need
to be assembled into a genome-wide optical map. This is be-
cause the single molecule maps need redundant sampling to
overcome the presence of the aforementioned errors and be-
cause single molecule maps only span on the order of 500 Kbp
[14]. The first step of this assembly process involves finding pair-
wise alignments among the Rmaps. In order to accomplish this,
the challenge of dealing with missing fragment sizes has to be
overcome. This challenge is analogous to dealing with insertions
and deletions in the alignment of long reads [16]. In fact, it is ar-
guably harder since the data are numerical. At present, the only
nonproprietary algorithmic method for pairwise alignment of
Rmaps is the dynamic programming-based method of Valouev
et al. [14], which runs in O(α × β) time where α and β are the
number of fragments in the two Rmaps being aligned. To align
an optical map dataset containing n Rmaps, the complexity be-
comes O(n2 × �2) where � is the average size of an Rmap.

This method is inherently computationally intensive. How-
ever, if the error rate of the data could be improved, then non-
dynamic programming-based methods that are orders of mag-
nitude faster such as Twin [17], OMBlast [18], and Maligner [19]
could be used for alignment. This would greatly improve the
time required to assemble Rmap data. Thus, we present cOMet
in order to address this need. To the best of our knowledge, it
is the first Rmap error correction method. Our experimental re-
sults demonstrate that cOMet has high precision and corrects
82.49% of insertion errors and 77.38% of deletion errors in Rmap
data generated from the Escherichia coli K-12 reference genome.
Out of the deletion errors corrected, 98.26% are true errors. Sim-
ilarly, out of the insertion errors corrected, 82.19% are true er-
rors. Furthermore, we show that the assembly of Rmaps is more
contiguous and covers a larger fraction of the genome if the
Rmaps are first error corrected. It also successfully scales to large
genomes, improving the quality of 78% and 99% of the Rmaps in
the plum and goat genome, respectively.

Background

From a computer science perspective, optical mapping can be
seen as a process that takes in two strings, a nucleotide se-
quence Si[1, n] and a restriction sequence B[1, b], and produces
an array (string) of integers Ri[1, m]. The array Ri is an Rmap cor-
responding to Si and contains the string-lengths between cuts
produced by B on Si. Formally, Ri is defined as follows: Ri[j] = y − x
where y represents the location (starting index) of jth occurrence
of B in Si and x represents the location of (j − 1)th occurrence of B
in Si and Ri[1] = y − 1 and Ri[m] = n − x. For example, say we have
B = act and Si = atacttactggactactaaact. The locations of B in Si are

as follows: 3,7,12,15,20. Then, Ri will be represented as Ri= 2, 4,
5, 3, 5, 2. The size of an Rmap denotes the number of fragments
in that Rmap. Therefore, the size of Ri is 6.

We note that millions of Rmaps are produced for a single
genome since optical mapping is performed on many cells of
the organism and each cell provides thousands of Rmaps. The
Rmaps can be assembled to produce a genome-wide optical
map. This is analogous to next-generation shotgun sequencing
where Rmaps are analogous to reads and a genome-wide optical
map is analogous to the assembled whole genome.

There are three types of errors that can occur in optical map-
ping: (1) missing cut sites, which are caused by an enzyme not
cleaving at a specific site; (2) additional cut sites, which can
occur due to random DNA breakage; and (3) inaccuracy in the
fragment size due to the inability of the system to accurately
estimate the fragment size. Continuing again with the exam-
ple above, a more representative example Rmap would include
these errors, such as R′

i = 7, 6, 3, 4.

The error rates of optical maps depend on the platform used
for generating the maps. Li et al. [15] recently studied the error
rates of optical maps produced by the Irys system from BioNano
Genomics. According to their study, a missing cut site type of er-
ror, i.e., error type (1),happens when a restriction site is incom-
pletely digested by the enzyme and causes two flanking frag-
ments to merge into one large fragment. The probability of com-
plete digestion of a restriction site can be modeled as a Bernoulli
trial whose probability of success is a function of the size of
the two flanking fragments. Additional cut sites, i.e., error type
(2),results from random breaks of the DNA molecule. The num-
ber of false cuts per unit length of DNA follows a Poisson distri-
bution. The inaccuracy of the fragment sizes, i.e., error type (3),
is modeled using a Laplace distribution. If the observed and ac-
tual size of a fragment are ok and rk, respectively, then the sizing
error is defined as sk = ok/rk and

sk ∼ Laplace(μ, β)

where μ and β, the parameters of the laplace distribution, are
functions of rk. In practice, when aligning a pair of Rmaps, one
should allow for twice the error rate of a single Rmap since each
Rmap will deviate from the genomic map by the above parame-
ters.

Valouev et al. [14] provides a dynamic programming algo-
rithm for pairwise alignment, which generates a score for every
possible alignment between two Rmaps and returns the align-
ment that achieves the highest score, which is referred to as
the S-score. It is computed within a standard dynamic program-
ming framework, similar to Smith-Waterman alignment [20].
The scoring function is based on a probabilistic model built on
the following assumptions: the fragment sizes follow an expo-
nential distribution, the restriction sites follow an independent
Bernoulli process, the number of false cuts in a given genomic
length is a Poisson process, and the sizing error follows a nor-
mal distribution with mean zero and variance following a linear
function of the true size. Last, a different sizing error function
is used for fragments less than 4 kbp in length since they do
not converge to the defined normal distribution. The score of an
alignment is calculated as the sum of two functions: one func-
tion that estimates and scores the sizing error and a second that
predicts and scores the presence of additional and/or missing
cut sites between the fragments. The S-score will be used later
to evaluate the error correction process.



Mukherjee et al. 3

Methods

Given a set of n Rmaps R = {R1, .., Rn}, our method aims to detect
and correct all errors in R by considering each Ri ∈ R and finding
a set of Rmaps that originate from the same part of the genome
as Ri. This step is performed heuristically in order to avoid align-
ing every pair of Rmaps in R.

Preprocessing

Our first step is to remove the first and last fragments from each
Rmap in R. These fragments have one of their edges sheared by
artifacts of the DNA prep process (preceding the optical map-
ping process) and not by restriction enzymes. Unless removed,
they can misguide alignment between two Rmaps during the
error correction process. In addition, short Rmaps, i.e., those
that have fewer than 10 fragments, are removed at this stage
since any Rmap that contains fewer than 10 fragments is typ-
ically deemed too small for analysis even in consensus maps
[21]. Next, the data are quantized so that a given genomic frag-
ment is represented by the same value across multiple Rmaps
despite the noise. Our quantization method assigns a unique
value to a range of fragment sizes by dividing each fragment
size by a fixed integer, denoted as b, and rounding to the near-
est integer. For example, if an Rmap Ri = {36, 13, 15, 20, 16, 5,
21, 17} is quantized using b= 3, then the quantized Rmap will be
Rquantized

i = {12, 4, 5, 7, 5, 2, 7, 6}. Say another Rmap, Rj = {17, 23,
34, 12, 14, 21, 14, 5} has overlap with Ri; however, due to noise in
the data, this relation is not apparent. By quantizing Rj using the
same b= 3, we get Rquantized

j = {6, 8, 11, 4, 5, 7, 5, 1}. This allows us
to uncover a region (in this case, {4, 5, 7, 5}) that is common to
both the Rmaps. It should be noted that, in some cases, a frag-
ment may have different values across two Rmaps even after
quantization (e.g., the fragment values 36 from Ri and 34 from
Rj are quantized to 12 and 11, respectively). The quantized data
are used to find the set of related Rmaps, as explained in the next
section.

The setting of parameter b depends on the amount of sizing
error in the optical map data. With zero sizing error, b can be set
at 1. As sizing error increases, the value of b is increased accord-
ingly. If the value of b is too small, we are not be able to uncover
relations between overlapping Rmaps. If the value is too large,
then unrelated Rmaps have common regions in their quantized
states, which makes them appear related. Considering the error
rate of optical maps from BioNano genomics, the default value
of b = 4000.

Finding related Rmaps

We refer to two Rmaps as related if their corresponding error-free
Rmaps originate from overlapping regions of the genome. Next,
we define a k-mer as a string of k consecutive fragments from a
(quantized) Rmap. For example, if we have the Rmap R = {3, 3, 5,
2, 6, 5, 5, 1} and k = 4, then the following k-mers can be extracted
from R: (3,3,5,2), (3,5,2,6), (5,2,6,5), (2,6,5,5),and (6,5,5,1). In order
to avoid aligning all pairs of Rmaps to find the related Rmaps,
we use the number of common k-mers to discriminate between
pairs of Rmaps that are related and those that are not. To accom-
plish this efficiently, we first extract all unique k-mers in each
quantized Rmap and construct a hash table storing each unique
k-mer as a key and the list of Rmaps containing an occurrence
of that k-mer as the value. We call this the k-mer index. Next,
we consider each Ri in R and use the k-mer index to identify the
set of Rmaps that have m or more k-mers in common with Ri.

Unfortunately, although this set contains all related Rmaps, it
also likely contains Rmaps that are not related to Ri. Therefore,
we filter this set of Rmaps using a simple heuristic that tries to
match each Rmap in this set with Ri in order to ascertain if it
is related to Ri. The heuristic traverses through two Rmaps (Ri

and one Rmap from the set, say Rj) attempting to match sub-
sets of the fragments from each until it either reaches the end of
one Rmap or it fails to match the fragments. We start the traver-
sal from the first matching k-mer between Ri and Rj. We denote
the position of the next fragment to be matched in Ri and Rj as
x and y, respectively, and assume that each fragment prior to
these positions is matched. Next, we consider all combinations
of matching the fragments at positions x, x+ 1, and x + 2 of Ri

with fragments at positions y, y+ 1, and y + 2 of Rj. We evaluate
the cost of each combination based on the difference in the total
size of fragments from Ri and Rj. That is ∀α, β = [0, 2],

cost(x + α, y + β) =
∣∣∣

x+α∑

g=x

Ri [g] −
y+β∑

h=y

R j [h]
∣∣∣

where Ri[g] and Rj[h] denote the g-th and h-th fragments of Ri

and Rj, respectively. We select the combination with the least
cost; if there exists a tie, we select the match that has the least
number of added or missing cut sites (i.e., the combination with
the least value of α + β). If this selected match leads to a cost
that is greater than a specified threshold (which was set to 25%
of the larger-sized fragment in practice), then we conclude that
there is not a match at these positions and return that Ri and Rj

are unrelated. Otherwise, we increment x and y accordingly and
move onto the next fragments. If this heuristic continues until
the last fragment of either Ri or Rj is reached, then we return that
Ri and Rj are related. Using this heuristic, we filter out the Rmaps
that were deemed to be related based on the number of k-mers
in common with Ri but are in fact unrelated to Ri.

The setting of parameters k and m are correlated. If the value
of k is increased, that makes the k-mers more specific, hence,
the value of m is lowered. On the other hand, if the value of k is
reduced, then we increase the value of m. The value of k is in-
creased when there are fewer insertion and deletion errors and
decreased otherwise. The default values are k = 4 and m = 1.

Rmap alignment

Next, for each Ri in R, we use the alignment method of Valouev
et al. [14] to find the S-score of all pairwise alignments between
Ri and each Rmap in its set of related Rmaps. The Rmaps that
have an alignment score, i.e., S-score less than a defined thresh-
old (which we denote as St), are removed from the set of related
Rmaps, and the alignments of the remaining Rmaps are stored
in a multiple alignment grid, denoted as Ai . This grid is a two-
dimensional array of integer pairs, where the number of rows is
equal to the number of remaining Rmaps in the set of related
Rmaps of Ri and the number of columns is equal to the number
of fragments in Ri. An element of this array, Ai [ j, k], stores an
integer pair in the form of (x, y) representing that x fragments
of Ri (which includes the k-th fragment of Ri) matches to y frag-
ments of Rj in the optimal alignment between Ri and Rj. Figure1
illustrates an example of Ai . The first fragment of Ri does not
match with any fragment of Rj and therefore (0,0) is stored at
this position. Fragments 2, 5, 6, 8, and 9 of Ri each matches with
one fragment of Rj, e.g., 1, 3, 4, 7, and 8, respectively. To repre-
sent these matches, we store a (1,1) in the 2nd, 5th, 6th, 8th,
and 9th columns of row j. Fragments 3 and 4 of Ri match with



4 Error correcting optical mapping data

Figure 1: An alignment between Ri and Rj as given by Valouev et al. [14] and its corresponding entry in the multiple alignment grid Ai . Each column of Ai represents
one fragment from R i, and each row represents one Rmap from its set of related Rmaps. The fragment sizes are in Kbp.

one fragment of Rj, i.e., the 2nd fragment. To represent this, we
store (2,1) in Ai [ j, 3] and Ai [ j, 4]. Fragment 7 of Ri matches with
two fragments of Rj, i.e., the 5th and 6th fragments. To represent
this, we store (1,2) in Ai [ j, 7]. Fragments 10 and 11 of Ri match
with two fragments of Rj, i.e., the 9th and 10th fragments. To
represent this, we store (2,2) in positions Ai [ j, 10] and Ai [ j, 11].
Finally, fragments 12 and 13 match with three fragments of Rj,
i.e., fragments 11, 12, and 13. In this case, we store (2,3) in posi-
tions Ai [ j, 12] and Ai [ j, 13].

The setting of parameter St controls the number of Rmaps
that are included in the multiple-alignment grid of an Rmap. If
we increase the value of St, fewer Rmaps will be added to the
grid, but the ones included will be of higher quality (i.e., have
greater overlap with the Rmap under consideration). The default
value for the parameter St= 8. We show in the Experiment sec-
tion how we select this value.

Error correcting using the consensus

The multiple alignment grid is used to find the consensus grid,
denoted as Ci , for Rmap Ri. The grid Ci is a one-dimensional ar-
ray of integer pairs with size equal to the number of fragments
in Ri. The grid is constructed for each Ri in R by iterating through
each column of Ai and finding the most frequent integer pair,
breaking ties arbitrarily. The most frequent integer pair is stored
at each position of Ci if the frequency is above a given threshold
d; otherwise, (0,0) is stored. Figure2 illustrates the construction
of a consensus grid from an alignment grid. The type of error in
each fragment of Ri can be identified using Ci [k] = (x, y) as fol-
lows: if x and y are equal, then a sizing error occurs at the k-th
fragment of Ri, otherwise, if x is greater than y, then an addi-
tional cut site exists, and, last, if x is less than y, then a missing
cut site exists. Next, we use Ci and Ai to correct these errors in Ri.
For each fragment of Ri, we consider the consensus stored at the
corresponding position of Ci , identify the positions in the corre-
sponding column of Ai that are equal to it, and replace the frag-
ment of Ri with the mean total fragment size computed using the
values at those positions in Ai . If Ci is equal to (0,0) at any posi-
tion, then the fragment at that position in Ri remains unchanged
since it implies that there is no definitive result about the type of
error in that position. In addition, if consecutive positions in Ci

are discordant, then the fragments in those positions in Ri also
remains unchanged. For example, if there is a (2,1) consensus at
some position of Ci , then we expect the preceding or successive
position to also have a (2,1) consensus. However, if this is not
the case, then we do not error correct those fragments since the
consensus is discordant at those positions. Figure2 shows this

error correction. As it is illustrated, to error correct the second
fragment of Ri, we compute the average of the matched frag-
ments from related Rmaps 2, 3, 4, 5, and 6 and replace the sec-
ond fragment of Ri with that value as shown in Fig. 2. Similarly,
to correct the third fragment in this example, we identify that
(2,1) is in the consensus, which implies that the majority of the
related Rmaps are such that two fragments of Ri match with one
fragment from the set of related Rmaps and therefore replace
the third and fourth fragments with the average from the corre-
sponding Rmaps and positions.

The threshold d determines the accuracy and precision of er-
ror correction. A high value of d improves precision but lowers
accuracy as many fragments are left uncorrected. Similarly, a
low value of d improves accuracy but lowers precision. The de-
fault setting is d = 3.

Complexity

We define � to be the length of the longest Rmap in R. Quan-
tization of the Rmaps takes O(� × n) time. Constructing the k-
mer index also takes O(� × n) time. The k-mer index stores the
occurences of each quantized k-mer across all Rmaps. Let u be
maximum frequency of a k-mer. That is, a k-mer occurs in max
u Rmaps (in practice u < <n). Then, the complexity of finding re-
lated Rmaps from the k-mer index is O(n × � × u). For each Rmap,
the filtering heuristic runs in time linear to the size of the Rmap.
Therefore, filtering the set of related Rmaps also takes linear
O(� × n) time. The most expensive step is the pairwise alignment
that uses the Valouev et al. aligner. As mentioned earlier, this
aligner is based on DP and therefore has a O(�2) time complexity
to perform one pairwise alignment. If the maximum cardinal-
ity of the set of related Rmaps for any Rmap is v, then the total
complexity of this step is bounded by O(n × v × �2). The value of v
depends on the coverage of the optical map data. The alignment
generated using the Valouev et al. method is stored in the multi-
ple alignment grid in constant time, and it takes O(n × v × �) time
to generate the consensus maps for n Rmaps and error-correct
them. Thus, the runtime of cOMet is O(n × v × �2).

Datasets

We performed experiments on both simulated and real data. For
the real data, we used the Rmap data from the plum [22] and do-
mestic goat [3] sequencing projects. These datasets were built on
the OpGen mapping platform and are more error prone. We also
experimented on a human dataset [23] built on the new BioNano
platform. This dataset is built using the latest optical mapping
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Figure 2: Example of a multiple alignment grid and a consensus grid. The figure shows the multiple alignment grid Ai for an Rmap Ri and its consensus grid Ci .
Each row of the multiple alignment grid represents the alignment of Ri with one of its related Rmaps, and the columns represent the fragments of Ri. The figure
also demonstrates error correction using the consensus grid, with the error-corrected Rmap denoted as R′

i . The fragment sizes are in Kbp. To demonstrate the error
correction process for the 3rd, 4th, and 5th fragments, we also include the fragments (in parentheses) to which they align. The error-corrected fragment is the mean of

the fragments from the corresponding positions that have the same alignment as the consensus. For example, for the 5th fragment, the consensus is (1,1). Therefore,
the mean of the aligned fragments with (1,1) alignment, i.e., 8.488, 8.132, 8.964, and 9.432, is the error-corrected value for the 5th fragment.

Table 1: Summary of the real and simulated data

Genome Size No. of Rmaps

E. coli 4.6 Mbp 2,504
Plum 284 Mbp 749,895
Goat 2.66 Gbp 3,447,997

Rmaps with fewer than 10 fragments were omitted from all the experiments.
cOMet was run on the remaining 2,504, 548,779, and 3,049,439 Rmaps for the E.

coli, plum, and goat genomes, respectively.

Table 2: Summary of the real and simulated BioNano data.

Genome Size No. of Rmaps

E. coli 4.6 Mbp 123,251–157,743
Human 3.2 Gbp 793,199

OMSim was used to simulate eight different BioNano datasets, each of which

had varying error rates and, thus, had a different number of Rmaps.

Table 3: Results for the data simulated from E. coli K-12 MG 1655.

Total no. of insertion errors
corrected 556

TPR of corrected insertions 82.49 % (457)
FPR of corrected insertions 0.21 % (99)
Total no. of deletion errors
corrected

5,894

TPR of corrected deletions 77.38 % (5,792)
FPR of corrected deletions 0.25 % (102)

The data was simulated according the algorithm described in Datasets. This sim-
ulation resulted in 2,505 Rmaps containing 7,485 deletion and 554 insertion er-

rors.

technology and has significantly better quality than the plum
and goat genomes. The genome size and number of Rmaps for
these species are shown in Tables 1 and 2.

In addition, we simulated Rmap data from E. coli K-12 sub-
str. MG 1655 as follows. First, the reference genome was copied
200 times, and uniformly distributed random loci were selected
for each of these copies. These loci form the ends of a single
molecule that would undergo in silico digestion. Next, molecules
smaller than 150 Kbp were discarded, and the cleavage sites for
the RsrII enzyme were then identified within each of these simu-
lated molecules. These error-free Rmap data are used for validat-
ing the output of our method. Last, deletion, insertion, and siz-
ing errors were incorporated into the error-free Rmaps accord-
ing to the error model discussed by Li et al. [15]. The error model
was described earlier in the Background section. This simula-
tion resulted in 2,505 Rmaps containing 7,485 deletion and 554
insertion errors.

Last, we simulated optical map data from a simulation soft-
ware called OMSim [24] that generates synthetic optical maps
that mimics real Bionano Genomics data. The software takes
two parameters as input: the false positive rate (FPR) rate,
which is the number of additional cut sites erroneously in-
serted per 100kbp, and the false negative rate (FNR), which
is the percentage of times a cut site is missed. Using this
method, we simulated eight datasets of Rmaps from E. coli K-
12 substr. MG 1655 using the restriction enzyme BspQI. The
default FPR and FNR for BspQI are 1% and 15%, respectively.
We generated additional datasets with the following error
rates (FPR,FNR) : (0.5%,15%), (1.0%,15%), (2.0%,15%),(5.0%,15%),
(1.0%,5%), (1.0%,25%), (2.0%,5%),and (2.0%,25%).

Experiments and Discussion

We performed all experiments on Intel E5-2698v3 processors
with 192 GB of random access memory (RAM) running 64-bit
Linux. The input parameters to cOMet include b (quantization
bucket size), k (k-mer value), m (the number of k-mers needed to
be conserved between two Rmaps), and d (the minimum number
of Rmaps required to form consensus at a position). The default
parameters are b = 4,000, k = 4, m = 1, and d = 3and led to the
best result across all datasets.
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Determining the value of St

The setting of the parameter St depends on the sensitivity of the
Valouev et al. aligner. If the alignment score between two Rmaps
is less than St, then the aligned Rmaps are deemed to be un-
related. We say an Rmap, Rs is overlapping with an Rmap, Rt if
at least 50% of Rs overlaps with Rt. That is, either the first half
or the second half of Rs is entirely and exactly (exact fragment
matches) contained in Rt.

We carried out the following experiment to determine the op-
timum setting for St. From the set of simulated error-free Rmaps,
we computed the set of overlapping Rmaps for each Rmap. We
denote this set as related Rmaps. Then, we used the Valouev et
al. aligner to score all pairwise wise alignments between the
simulated Rmaps (with errors added) and plot the scores in the
form of a histogram, which is shown in Fig.3. The percentage of
related Rmaps with an S-score less than 8 is 6.06%. Hence, we
choose the setting of St = 8.

Experiments with our simulated data

The cOMet error correction was run on the simulated E. coli data.
The corrected Rmaps were then aligned to the error-free Rmaps
to determine the number of corrected insertions and deletions.
The results of this experiment are shown in Table 3. To deter-
mine the quality of error correction, we computed the true pos-
itive rate (TPR), which is the ratio between the number of in-
sertion (or deletion) errors that cOMet correctly identified and
removed and the number of insertion (deletion) errors, and the
FPR, which is the ratio between the number of insertion (or dele-
tion) errors that cOMet incorrectly identified and removed and
the total number of fragments not containing an insertion (dele-
tion) error. The TPR is 82.49% and 77.38% with respect to the
number of corrected insertions and deletion errors; whereas the
FPR is 0.21% and 0.25% with respect to the number of corrected
insertions and deletion errors. This demonstrates the high accu-
racy of the correction made by cOMet. Our method also has high
precision. Of the deletion errors corrected, 98.26% are true er-
rors. Similarly, of the insertion errors corrected, 82.19% are true
errors.

Additionally, for each corrected Rmap, we computed the
alignment S-score of both the original Rmap and the corrected
Rmap with the error-free Rmap. We found that for 96.5% of the
Rmaps, the S-scores improved after error correction. In other
words, cOMet brought 96.5% Rmaps closer to their error-free
state. The mean S-score before error correction was 44.91 and
it improved by 14.03% to 51.30 after error correction. For 17.5%
of the Rmaps (415 Rmaps), the S-score improved by more than
10. Last, we mention that the error correction was achieved in
241 central processing unit (CPU) seconds and using 79.54 MB of
memory.

To demonstrate the importance of error correction, we as-
sembled the Rmaps before and after error correction using the
Valouev et al. assembler [25]. Table 4 summarizes the results of
this experiment. We assembled the uncorrected data into five
assembled optical maps and the error-corrected data into two
assembled optical maps. The N50 statistic of the assembly in-
creased from 1,242 Kbp for the uncorrected data to 3,348 Kbp for
the corrected data. Next, we aligned each assembled map to the
genome-wide (error-free) optical map using the Valouev et al.
aligner in order to locate their positions on the genome and cal-
culate the percentage of the genome that was covered by at least
one of the assembled maps. The genome fraction covered by
the five assembled maps from the uncorrected Rmaps was 80%,

while the genome fraction covered by the two assembled maps
from the corrected Rmaps was 82%. Moreover, the assembled
maps from the uncorrected data had 47 insertion and deletion
errors when aligned to the reference, while the error-corrected
data had only 34 such errors. In order to further contextual-
ize these results, we assemble the error-free Rmap dataset and
summarize this assembly in Table 4.

Experiments with OMSim data

To present the robustness of our method and its applicability
across datasets, we conducted experiments on synthetic data
from an optical map–simulating software called OMSim [24]. As
described in the Datasets section, we generated eight datasets
of synthetic optical maps by varying the insertion and deletion
error rates.

In the first experiment, we fixed the FNR at 15% and varied
the FPR between 0.5, 1.0, 2.0, and 5.0, respectively. For each of
the four datasets, we align each Rmap (using the Valouev et al.
aligner) before and after error correction to the reference opti-
cal map obtained using the same restriction enzyme and report
the percent of Rmaps whose alignment S-score increased after
error correction and the mean increase in the S-score. We note
that for each Rmap, the aligner returns the highest-scored align-
ment, and the score represents how closely the Rmap aligns to
the reference genome-wide optical map. Table 5 summarizes the
results from this experiment. We observe that the efficiency of
error correction improves as the FPR is initially increased. When
the FPR reaches a high value of 5, the efficiency of error correc-
tion drops. The mean S-score improves by more than 9 (∼10%)
when the FPR is reasonable.

In the second experiment, we first fix the FPR at 1.0 and vary
the FNR between 5%, 15%,and 25%, respectively. We then fix the
FPR at 2 and vary the FNR between 5%, 15%,and 25%, respec-
tively. We report the same results as in the previous experiment.
Table 6 shows the results. Similar to the previous experiment,
we find that the efficiency of error correction improves as the
FNR increases from 5% to 25%. The error correction improves
the quality of a high percentage of Rmaps (>70%) for all values
of parameters.

Experiments with real data

Table 7 summarizes the results of running cOMet on the plum
and goat datasets. The plum and goat datasets do not contain
error-free Rmaps. Therefore, we are restricted to reporting the
number of corrections made and the improvement to the S-
score. In order to compute the S-score before and after error
correction, we generated an in silico digested genome-wide op-
tical map from the reference genome and aligned both the un-
corrected and corrected Rmap to the genome-wide optical map.
If it aligned to multiple positions, then we considered the align-
ment position where the corrected Rmap aligned with greatest
S-score and considered the difference in the S-score when the
uncorrected and corrected Rmap aligned to that position. How-
ever, we note that this process is error prone because of the frag-
mented nature of the draft genomes and possible misassemblies
present in the genomes. We observed that the S-score after error
correction improved for 78% of the plum Rmaps and 99% of the
goat Rmaps. Figures 4 and 5 show the histograms of the distri-
bution of S-scores before and after error correction. For the plum
genome, the mean S-score improved from 8.60 before error cor-
rection to 14.72 after error correction (a 71% improvement in the
score), while for the goat genome, it improved from 9.38 before
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Figure 3: Distribution of S-scores of Rmap alignments between related Rmaps and unrelated Rmaps.

Table 4: Assembly results of uncorrected Rmaps, corrected Rmaps, and error-free Rmaps using the Valouev et al. assembler

Rmap status Assembled Map id Number of Map length
Alignment location in

reference
fragments (Kbp) (start-loci, end-loci)

Uncorrected Rmaps Assembled Map 0 75 921.41 (246,321)
Assembled Map 1 88 1,242.40 (11,95)
Assembled Map 2 30 531.65 (225,255)
Assembled Map 3 44 759.16 (181,228)
Assembled Map 4 107 1,699.60 (87,194)

Corrected Rmaps Assembled Map 0 102 1,397.60 (225,322)
Assembled Map 1 237 3,348 (8,230)

Error-free Rmaps Assembled Map 0 60 808.74 (185,239)
Assembled Map 1 91 1,100.5 (241,324)
Assembled Map 2 104 2,474.4 (19,185)

The Rmaps are simulated from the E. coli genome. Each assembled map is aligned to the reference genome-wide (error-free) optical map using the Valouev et al. aligner.

The genome-wide optical map contains 383 fragments.

Table 5: Efficiency of error correction when the FPR is varied and the FNR is fixed at 15%

FPR No. of Percent of Rmaps Mean S-score Mean S-score Mean S-score

Rmaps
with improved

S-score
before error
correction after error correction improvement

0.5 129,820 93.42 78.66 91.12 12.46
1.0 126,133 94.01 76.25 89.44 13.19
2.0 140,623 92.99 71.93 85.29 13.36
5.0 130,019 81.35 64.65 71.36 6.71

correction to 16.97 after correction (an 80.92% improvement in
the score).

We also measured the genome coverage, i.e., the fraction of
the genome covered by at least one Rmap, for both the origi-
nal Rmaps and the corrected Rmaps as follows. First, we aligned
all Rmaps to the genome-wide optical map and then picked the
best alignment for each original Rmap and each corrected Rmap.

Based on these alignments, we then computed the fraction of
the genome covered by at least one original Rmap and the frac-
tion of the genome covered by at least one corrected Rmap. On
the goat genome, the genome coverage was 73.08% before cor-
rection and it increased to 84.56% after correction. The increase
in genome coverage shows that our method is able to correct
Rmaps from across the genome. Furthermore, it shows that even
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Table 6: Efficiency of error correction when the FNR is varied

FPR FNR (%) No. of Percent of Rmaps Mean S-score Mean S-score Mean S-score

Rmaps
with improved

S-score
before error
correction

after error
correction improvement

1.0 5 142,684 87.36 81.32 87.62 6.3
15 126,133 94.01 76.25 89.44 13.19
25 123,252 96.09 70.24 87.44 17.20

2.0 5 148,912 89.23 76.54 84.47 7.93
15 140,623 92.99 71.93 85.29 13.36
25 130,763 93.02 66.95 81.65 14.7

Figure 4: Alignment scores of Rmaps from the plum genome with the reference optical map. Before error correction, the S-score had a mean of 8.6 with a standard
deviation of 6.49. After error correction, the mean S-score improved to 14.72 with standard deviation of 6.72.

Table 7: Results on the Rmap data of plum and goat genomes

Genome name Plum Goat

Running time 7.4 days 105.7 days
Memory 12.20 GB 113.56 GB
No. of insertion
errors corrected

433,282 2,530,060

No. of deletion
errors corrected

430,329 3,187,023

Peak memory was measured as the maximum resident set size as reported by
the operating system with sufficient RAM to avoid paging. Running time is the

user process time, also reported by the operating system.

if Rmaps could not originally be reliably aligned to some regions
of the genome, our method is sensitive enough to recover simi-
lar Rmaps from these regions; thus, after correction, the fraction
of the genome covered by aligned Rmaps is higher. For the plum,
the genome coverage dropped negligibly from 99.01% before er-
ror correction to 98.85% after error correction (which is less than
1% of the genome size).

In addition, as shown in Table 7, the running time and peak
memory usage were recorded for the plum and goat genomes.
Although these experiments have significant running times (7.4

and 105.7 CPU days for plum and goat, respectively), these fig-
ures are not prohibitive given that this computation can easily
be parallelized since the error correction process for each Rmap
is independent. For example, we ran the goat genome on 20
machines, and it required 126.84 hours for all Rmaps to be cor-
rected. In addition, we note that error correction of a dataset will
likely only be done once for any dataset, so 5.2 human days for
a large genome is not unreasonable. Last, the peak memory us-
age was 12.20 GB and 113.56 GB for plum and goat, respectively;
thus, cOMet is able to run on any modern server.

Next, we ran experiments on the human dataset. Again,
since we do not possess the error-free Rmaps corresponding
to the raw Rmaps for this dataset, we follow a similar evalu-
ation method as in the previous experiments. We performed
our evaluation on an in silico digested human reference genome
(GenBank assembly accession: GCA 000001405.15, Genome Ref-
erence Consortium Human Build 38) using BspQI, which was the
restriction enzyme that was used for generating the Rmap data.
cOMet improved the S-score of 74.78% of the Rmaps. The aver-
age S-score improved from 85.96 before error correction to 88.65
after error correction.
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Figure 5: Alignment scores of Rmaps from the goat genome with the reference optical map. The mean and standard deviation of the S-scores before error correction
were 9.38 and 6.54, respectively. After error correction, the mean S-score improved to 16.97 with a standard deviation of 6.21.

Conclusion

Error correction of high-throughput sequencing data has be-
come an imperative preprocessing step in genome assembly
since 2008 when Chaisson and Pevzner showed the dramatic im-
provement it can have on the quality of the assembly [26, 27,
28]. For example, after error correction, the contig N50 size of
an assembly of Rhodabacter sphaeroides improved from 233 bp to
7,793 bp using the same assembler [28]. Due to this inarguable
benefit on genome assembly, many methods have been devel-
oped for error correction of sequence reads, including BFC [29],
Coral [30], EULER [26, 31], and Reptile [32]. Unfortunately, even
though there has been a massive effort in error correction of se-
quence data, there currently does not exist a publicly released
method for error correction of Rmap data—a method that would
likely improve the quality of genome-wide optical map assem-
blies and allow such assemblies to be computed with greater ef-
ficiency.

Here, we presented cOMet, an error correction method for
Rmap data and demonstrated that it corrects and improves the
quality of a high percentage of Rmaps in both simulated and
real datasets. As previously discussed, Rmap data are subject to
high error rates. In addition to insertion and deletion errors, they
contain sizing errors that necessitate the use of a dynamic pro-
gramming algorithm for pairwise alignment and, subsequently,
assembly. By correcting a significant number of errors in Rmap
data, cOMet can make it possible to use faster alignment meth-
ods [18, 19, 17] and explore the development of more efficient
Rmap assembly algorithms.

Availability of source code

Project name: cOMet
Project home page : https://github.com/kingufl/cOMet
Operating system(s): Linux
Programming language: C++
Other requirements: GCC version 5.2.0 or higher

License: GNU General Public License
Research resource identifier: SCR 016276
An archival copy of the code is available via the GigaScience repos-
itory GigaDB[33].

Availability of supporting data

The optical mapping data for plum and goat are publicly avail-
able and can be accessed from their respective manuscripts [3,
22] and via GigaDB [34] The human optical map data can also
be accessed from its manuscript [23]. The simulated data for E.
.coli are provided in the github repository along with the python
scripts used to generate it, and snapshots of the data and code
are also included in GigaDB[33].

Additional material

In Figure S.1 we show the distribution of lengths of Rmaps whose
S-score increases after error correction. From the distribution,
we can tell that our method is able to error correct Rmaps of
all sizes. We also show the distribution of fragment sizes from
Rmaps whose score increases after error correction in Figure S.2.

Figure S.1: Distribution of Rmap lengths whose S-score in-
creased after error correction. The Rmaps are simulated from
the E. coli K-12 substr. MG 1655 as explained in the text.

Figure S.2: Distribution of fragment sizes of Rmaps whose S-
score increased after error correction. The Rmaps are simulated
from the E. coli K-12 substr. MG 1655 as explained in the text.

Abbreviations

CPU: central processing unit; FNR: false negative rate; FPR: false
positive rate; RAM: random access memory; TPR: true positive
rate; CCD : charged coupled device.
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