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a novel VP4 type, P[32]
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Abstract – A porcine group A rotavirus (GARV) strain, 61/07/Ire, was isolated from a 4–5 week
asymptomatic piglet, during an epidemiological survey of porcine herds in Southern Ireland, in 2007. The
nucleotide (nt) and amino acid (aa) sequence of the full-length VP4 protein of the PoRV strain 61/07/Ire was
determined. Based on the entire VP4 open reading frame (nt), strain 61/07/Ire displayed � 76.5% identity to
representatives of the established 31 P-types, a value far lower than the percentage identity cutoff value
(80%) established by the Rotavirus Classification Working Group (RCWG) to define a novel P genotype.
Strain 61/07/Ire revealed low aa identity, ranging from 57.1% to 83.6%, to the cognate sequences of
representatives of the various P genotypes. The aa identity was lower in the VP8* trypsin-cleavage fragment
of the VP4, which encompasses the VP4 hypervariable region, ranging from 36.9% to 75.3%. Sequence
analyses of the VP7, VP6, and NSP4 genes revealed that the GARV strain 61/07/Ire possessed a G2-like
VP7, an E9 NSP4 genotype and an I5 VP6 genotype. Altogether, these results indicate that the GARV strain
61/07/Ire should be considered as a prototype of a new VP4 genotype, P[32], and provide further evidence
for the vast heterogeneity of group A rotaviruses.
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1. INTRODUCTION

Rotaviruses are classified into seven antigen-
ically distinct groups (A to G). Groups A, B,
and C are associated with acute gastroenteritis
in humans and animals, while groups D, E, F
and G have been detected only in animals
[10, 25]. In humans, group A rotavirus (GARV)
is estimated to cause 138 million cases of
gastroenteritis annually, resulting in approxi-
mately 619 000 deaths, mostly in developing
countries [21].

The rotavirus genome consists of 11 double
stranded RNA segments, enclosed in a triple
layered capsid. The outer capsid proteins, VP7

and VP4 (defining the G-types and P-types,
respectively), both elicit serotype-specific neu-
tralising antibodies and are important for
immune protection and for vaccine develop-
ment [10, 23, 65]. To date, 23 G-types and 31
P-types have been identified in humans and ani-
mals [1, 26, 34, 36, 41, 44, 58–61, 63].
Rotavirus strains within a G serotype share at
least 90–91% VP7 amino acid (aa) sequence
identity [10]. Rotavirus strains sharing > 89%
VP4 aa sequence identities belong to the same
P genotype, while those with < 89% VP4 aa
sequence identities belong to different P geno-
types [17]. Moreover, the greatest aa divergence
in VP4 is seen between aa 71 and 204 of the
VP4 trypsin-cleavage product VP8*, which
tends to correlate with VP4 serotype specificity
[29, 30].* Corresponding author: helen.oshea@cit.ie
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The middle capsid protein, VP6, bears the
subgroup (SG) specificities which allow the
classification of GARV into SG I, SG II, both
SG I and II, or into neither SG, based on reac-
tivity with SG specific monoclonal antibodies
(MAbs) [10], or into genogroups I or II, based
on sequence analysis of a fragment of the VP6
gene, known to correlate with SG specificity
[24]. The non-structural glycoprotein NSP4
possesses enterotoxic activity, and has multiple
functions in rotavirus morphogenesis and path-
ogenesis [10]. Sequence analyses of the NSP4
gene from human and animal rotavirus strains
has revealed the presence of five distinct
NSP4 genogroups, KUN- (A), Wa- (B), AU-
1- (C), EW- (D), and avian-like (E) [9, 47].
Rotavirus strains isolated from rabbits, horses,
cows, and pigs generally cluster according to
species of origin, and all PoRV strains identified
to date cluster into NSP4 genogroup B, Wa-like
[9, 40].

More recently, based on sequence compari-
son of large data sets, including full-length rota-
viral genome sequences, a novel classification
system was proposed, based on nucleotide iden-
tity cut-off percentages, and different genotypes
were defined for each genome segment. An
alpha-numeric letter code, Gx-P[x]-Ix-Rx-Cx-
Mx-Ax-Nx-Tx-Ex-Hx, is used to designate
and classify the VP7-VP4-VP6-VP1-VP2-
VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 encod-
ing genes, respectively [45]. Within this
classification system, at least 13 VP6 genotypes
(I1 to I13) and 12 NSP4 genotypes (E1 to E12),
have been defined [45].

GARV are one of the most frequently
detected viral agents associated with diarrhoea
affecting piglets between 1 and 8 weeks of
age [53]. GARV may also be detected in non-
diarrheic piglets [31]. Infection of pigs with
GARV has been recognised in both enzootic
and epizootic forms of diarrhoea, resulting in
economic losses in commercial piggeries [54].
Antigenic and molecular characterization of
GARV has revealed a broad heterogeneity in
the VP7 and VP4 genes. The most common
G-types identified in pigs are G3, G4, G5 and
G11, associated with common P-types, P[6]
and P[7] [19]. Porcine GARV strains with

additional P-types, P[13], P[19], P[23], P[26]
and P[27] have also been described, but more
sporadically. Furthermore, porcine strains dis-
playing human-like G-types (G1, G2, G9 and
G12) and P-types (M37-like P[6] and P[8])
and bovine-like G-types (G6, G8 and G10)
and P-types (P[1], P[5] and P[11]) have also
been described [6–8, 16, 19, 20, 35, 38, 40,
41, 50].

Several epidemiological investigations have
revealed that infections by unusual, animal-like
strains, or animal-human rotavirus reassortants
may not be infrequent in humans [57]. There-
fore, the study of animal rotaviruses is pivotal
to fully understand the evolution and ecology
of human rotaviruses [39]. Also, this is funda-
mental for the development of new instruments
to improve the prophylaxis of rotaviral diarrhea
in piglets. Between 2005–2007, a surveillance
study for rotavirus was conducted on Irish por-
cine herds in Southern Ireland. Porcine faecal
samples were collected from asymptomatic ani-
mals and screened by molecular assays to detect
GARV RNA. In this report, we describe a novel
VP4 genotype carried by a G2-like PoRV
strain, 61/07/Ire.

2. MATERIALS AND METHODS

2.1. Sample collection

Porcine GARV strain 61/07/Ire was identified
during an epidemiological survey in Irish pig herds,
in 2007. A total of 292 faecal samples were obtained
from 4–5 week old asymptomatic pigs from porcine
herds in Ireland, over 3 years, from 2005–2007. The
samples were collected from 3 different herds in
County Cork. Eighty samples were collected
in May 2005 (farm 1), 80 samples were collected
in September 2006 (farm 2) and 102 samples in
May 2007 (farm 3). A collection of 30 samples
(farm 4) was also obtained in March 2007, in County
Dublin, from 8–9 week old piglets.

2.2. RNA Preparation

Total nucleic acids were extracted from the sam-
ples by a standard phenol-chloroform method with
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ethanol precipitation. The extracted nucleic acids
were re-suspended in 100 lL of sterile DEPC H2O
and stored at �80 �C prior to use.

2.3. RT-PCR amplification of GARV and group
C rotavirus (GCRV)

The extracted nucleic acids were tested for the
presence GARV and GCRV by RT-PCR using oligo-
nucleotide primers previously described [15, 55]. For
amplification of the VP7, the primer pair Beg9/End 9
was used [18]. Prediction of the VP7 (G) type was
carried out by multiplex PCR as described in previ-
ous studies [13, 18, 20, 66]. Partial amplification of
the VP6 gene was determined with primer pair
VP6F-VP6R [24]. For amplification of the NSP4
gene, the primers 151 and 152 were used [5].

2.4. RT-PCR amplification of the VP8* and VP4

For amplification of the VP8* subunit of the VP4
gene, the primers Con2 and Con3 were used [15].
Full-length amplification of the VP4 gene was
achieved using the consensus primer 170 (ggt cac
awc ctc tag mmr ytr ctt a) at the 30 end of the genome
segment in combination with primer Con3 [40].

2.5. Sequence analysis

The RT-PCR-amplified products were sequenced
by Genome Express (Meylan, France). The
sequences were assembled, edited and analyzed using
the Bioedit software package version 2.1 [22]. Phylo-
genetic and molecular evolutionary analyses were
conducted using MEGA version 2.1 (Arizona State
University, USA) [28]. In addition, the sequences
were analyzed using the web-based sequence analy-
sis tool BLAST1. The full-length sequence of the
VP4 strain 61/07/Ire has been assigned the accession
number FJ492835 in the Genbank database. The par-
tial VP8* sequence of strains, 2F/05/Ire, 60/07/Ire,
1/07/Ire, 48/06/Ire, 2B/05/Ire and 2/07/Ire have been
registered in the Genbank database as HM149304-
309 respectively. The partial sequences of the VP7
strains 48/07/Ire and 61/07/Ire have been registered
under the accession numbers FJ492832 and
FJ492831, respectively. The partial sequences of the
NSP4 strains 48/07/Ire and 61/07/Ire have been
assigned the accession numbers FJ492833 and
FJ492834, respectively. The partial sequence of

VP6 strains 61/07/Ire and 48/07/Ire have been regis-
tered as HM149310 and HM149311, respectively.

3. RESULTS

3.1. RT-PCR screening for group A and C
rotaviruses

A total of 19 out of 292 samples (6.5%)
were found to contain GARV, while 13 samples
(4.4%) contained GCRV [11]. None of the
GARV-positive samples were found to contain
GCRV. The GARV positive samples were
detected in 3/4 herds surveyed (2005–2007).
GARV were detected in 6/80 samples of the
2005 collection, 4/80 samples from 2006, 9/
102 samples from 2007, all of which had been
collected in County Cork. In addition, GARV
infection was not diagnosed in 30 samples from
the 2007 collection, made in County Dublin.

3.2. Sequence analysis of the VP8* fragment
of the VP4 gene

The VP4 sequence of 15 out of 19 GARV
samples was obtained while the sequence of
four samples was not exploitable for further
analyses. Sequence analysis allowed character-
ization of the majority of the strains as P[6],
P[7], P[13], P[13]/P[22] and P[26]. However,
two strains, 48/07/Ire and 61/07/Ire, were dis-
tantly related to representative rotavirus strains
of established P genotypes (Fig. 1). Based on
the VP8* fragment (about 880 bp), strain 48/
07/Ire and 61/07/Ire displayed > 98%nucleotide
identity to each other, therefore, the sequence of
the full-length VP4 gene of one such strain, 61/
07/Ire, was determined. The basic structure of
the VP4 gene of the Irish strain was very similar
to those of other rotavirus strains, in that it con-
sisted of 2 362 bp with one open reading frame
(ORF) beginning at nucleotide 10, and a single
TAA stop codon at nucleotide 2 238. The
predicted size of the porcine VP4 protein was
776 aa, similar to those of most rotavirus
strains, which are 775 or 776 aa in length
[10]. The deduced aa sequence of the VP4 of
the PoRV strains 61/07/Ire was compared with
those of representative rotavirus strains of the1 http://www.ncbi.nlm.nih.gov.

Novel VP4 genotype identified in pigs Vet. Res. (2010) 41:73

(page number not for citation purpose) Page 3 of 12

http://www.ncbi.nlm.nih.gov


P[32]

6B/05/Ire

2B/05/Ire

Po/JP13-3/P[13]/[22]

Po/HP140/P[13]

Po/A46/P[13]

La/3489-3/P[22]

La/229/01/P[22]

La/160-01/P[22]

Po/MRD-13/P[13]

1/07/Ire

88/07/Ire

48/06/Ire

51/06/Ire

Po/134/04-15/P[26]

60/07/Ire

7F/05/Ire

2F/05/Ire

Bo/Hg18/P[21]

Po/344/04-1/P[27]

Hu/Ecu534/P[28]

Po/OSU/P[7]

2/07/Ire

Bo/RF/P[1]

Eq/L338/P[18]

Si/SA11/P[2]

Si/RRV/P[3]

Ov/Lp14/P[15]

Si/TUCH/P[24]

Po/A34/P[23]

Hu/69M/P[10]

Eq/H-2/P[12]

Mu/EB/P[16]

Mu/EHP/P[20]

Bo/UK/P[5]

48/07/Ire

61/07/Ire

Hu/RV-5/P[4]

Hu/Wa/P[8]

Po/4F/P[19]

Po/Gottfried/P[6]

54/06/Ire

67/07/Ire

16/06/Ire

Hu/BP1227/P[6]

Po/JP3-6/P[6]

Hu/M37/P[6]

Hu/NB123/P[6]

Po/51/02/P[6]

Po/134/4-10/P[6]

Po/221-04-13/P[6]

Hu/Dhaka6/P[25]

Hu/K8/P[9]

La/ALA/P[14]

Bo/AzuK/P[29]

Bo/B223/P[11]

Ch/661G1/P[31]

Bo/993/83/P[17]

Ch/2G3/P[30]

100

100

100

100

100

100

100

100

100

100

96

96

82

87

99

91

95

88

86

99

99

98

97

96

99

85

80

Figure 1. Neighbor-joining phylogenetic tree (2362 bp) of the VP4 nucleotide sequences displaying the

Vet. Res. (2010) 41:73 P.J. Collins et al.

Page 4 of 12 (page number not for citation purpose)



majority of the P genotypes. The conserved
prolines and cysteines, and the potential tryp-
sin-cleavage sites [2] were maintained in the
VP4 of the Irish strain (data not shown). The
additional cleavage sites identified in the
VP5*, Lys-259, and putatively, Arg-467 [12],
were also conserved (data not shown). The aa
sequence of the full-length VP4 protein of
PoRV strain 61/07/Ire showed aa identity val-
ues, ranging from 57.1% to 83.6% when com-
pared to those of strains representatives of all P
genotypes (Tab. I). Likewise, the aa sequence of
the VP8* of 61/07/Ire shared low aa identity
(36.9-75.3%), with the homologous sequences
of representative strains of other P genotypes
(Tab. I). Sequence comparison based on the
nucleotide alignment of representative of the
various P genotypes (Tab. I), and analysis by
BLAST also revealed that in the 4th dsRNA
segment strain 61/07/Ire shared < 76.5% nt
identity with all the GARV strains identified
thus far. This value is below the cutoff value
proposed by Matthijnssens et al. [44] for the
VP4 gene (80%).

3.3. Sequence analysis of the gene encoding
the outer capsid protein VP7

By PCR genotyping using several pools of
G-type specific primers [13, 18, 20, 66], strains
48/07/Ire and 61/07/Ire remained uncharacter-
ized. Sequence analysis of the VP7 gene
allowed the characterization of such untypeable
GARV, 48/07/Ire and 61/07/Ire, as G2-like
strains. A phylogenetic tree was constructed
with a selection of human and porcine G2
strains. Two major lineages were observed, with
one including the human G2 strains, and the
other lineage consisting exclusively of porcine
G2-like strains (Fig. 2).

The VP7 gene segments of strains 48/07/Ire
and 61/07/Ire displayed the highest aa identity

(92.4–93%) to the porcine strain 34461/4, the
reference G2-like porcine strain, identified in
Spain [38]. The Irish G2-like strains displayed
12 and 7 nt mismatches in the binding sites of
the G2-specific primers aCT2 and 9T1-2,
respectively [13, 18], that likely prevented rec-
ognition by the genotyping probes (data not
shown). In the VP7 antigenic regions A (aa
87 to 101), B (aa 141 to 152), C (aa 208 to
224) and F (235 to 242) [7, 14, 27, 48], strain
48/07/Ire differed in 9 residues and 61/07/Ire
differed in 8 residues from the prototype G2-
like porcine strain 34461/4 (data not shown).

3.4. NSP4 and VP6 analysis

In the NSP4-based tree (Fig. 3), strains 48/
07/Ire and 61/07/Ire were clustered with the
human strain A_G4_120 and the porcine strains
P21-5 and CMP034, within the E9 genotype,
while the vast majority of porcine viruses are
E1. In the NSP4, strain 48/07/Ire and 61/07/
Ire displayed 99% nucleotide identity to each
other. The Irish GARV strains displayed the
highest nt identity (93.6–93.9%) to E9 strains
(P21-5, CMP034 and A_G4_120), while nt
identity to other E types was lower than the
established cutoff value (85%).

The VP6 genotype was determined by
amplification of a 379-bp fragment, spanning
from amino acids 241 to 367 of the VP6, with
primer pair VP6F-VP6R [24]. In the VP6, strain
48/07/Ire and 61/07/Ire displayed only 83.1%
nucleotide identity to each other. Based on this
short fragment, strain 48/07/Ire closely resem-
bled human SGII (� 99.2% nt identity), within
the I1 genotype, while strain 61/07/Ire resem-
bled porcine SGI strains (92.6% nt identity to
porcine strain CM), within the I5 genotype
(Fig. 4). Accordingly, the two Irish strains pos-
sessed a diverse VP6 gene, likely due to a reas-
sortment event.

relationship between strains 61/07/Ire (designated with an arrow and referred to as P[32]) with all the known
P genotypes. Genbank accession of the VP4 sequences are in Table I. Abbreviations: Si, simian; Eq, equine;
Po, porcine; Ca, canine; Bo, bovine; Mu, murine; Hu, human; Ov, ovine; La, lapine. All phylogenetic trees
in this study were statistically supported by bootstrapping of 500 replicates. Bootstrap values below 80%
were not shown in the phylogenetic trees in this study. The scale bar represents 0.1 substitutions per site.
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4. DISCUSSION

A surveillance studywas conducted in South-
ern Ireland, to investigate the diversity of GARV
strains circulating in asymptomatic animals in
porcine herds in Ireland from 2005-2007.
Sequence analysis of the VP7 and theVP4 genes
of the strains detected in this study identified
a spectrum of G and P genotypes, including

G2-like, G4, G5, G9, G11, P[7], P[13], and
P[26]. In addition, sequence analysis of the
VP8* subunit of the VP4 gene (Fig. 1) identified
two GARV strains, 48/07/Ire and 61/07/Ire,
which could not be placed into any of the previ-
ously established VP4 genotypes. Epidemiolog-
ical studies from diverse geographical settings
worldwide have demonstrated the existence of
several novel Pgenotypes inpigs [26, 40, 41, 60].

Table I. Comparison of the nucleotide and amino acid sequences of VP8*, VP5* and VP4 of porcine strain
61/07/Ire with those of representatives of established P genotypes. Abbreviations: Si, simian; Eq, equine;
Po, porcine; Bo, bovine; Hu, human; Ov, ovine; Ca, caprine; Mu, murine. In boldface the highest identity
matches.

Species/Strain/Accession No/P type VP4 (nt) VP8* (aa) VP5 (aa) VP4 (aa)

Bo/RF/U65924/P[1] 73.1 69.8 83.9 78.9
Si/SA11/M23188/P[2] 73.7 71.5 84.7 80
Si/RRV/M18736/P[3] 72.3 71.5 83.7 79.3
Ca/K9/D14725/P[3] 73.1 69.4 85.4 79.6
Hu/RV-5/M32559/P[4] 69.9 59.4 75.9 70.6
Bo/UK/M22306/P[5] 68.8 61.9 77.6 72.1
Hu/M37/L20877/P[6] 69.3 61 79 73.1
Po/Gottfried/M33516/P[6] 68.5 60.6 77.2 72
Po/OSU/X13190/P[7] 75.1 71.9 86.6 81.5
Hu/Wa/M96825/P[8] 69.8 59.4 75.3 70.2
Hu/K8/D90260/P[9] 65.5 55.6 73.6 67.7
Hu/69M/M60600/P[10] 72.5 69.4 84.3 79.2
Bo/B223/D13394/P[11] 59.3 36.9 67.1 57.1
Eq/H-2/L04638/P[12] 71 64.8 83 76.9
Po/A46/AY050274/P[13] 75.9 66.3 87.7 80.4
Hu/Pa169/D14724/P[14] 66.3 58.1 74.4 69
Ov/Lp14/L11599/P[15] 72.3 69.8 83.3 78.8
Mu/EB/L18992/P[16] 66.5 55.2 78.6 71
Bo/993/83/D16352/P[17] 62.5 41.4 70.2 60.8
Eq/L338/D13399/P[18] 72.9 67.7 82.4 77.7
Po/4F/L10359/P[19] 69.8 59.8 79.9 73.3
Mu/EHP/U08424/P[20] 69.1 67.7 81.2 76.6
Bo/Hg18/AF237665/P[21] 72 62.3 83.3 76.4
La/160/01/AF526374/P[22] nd 65.1 nd nd
Po/A34/AY174094/P[23] nd 64 nd nd
Si/TUCH/AY596189/P[24] 71.5 70.2 84.7 79.7
Hu/Dhaka6/AY773004/P[25] 66.4 56 72.7 67.1
Po/134/04-15/DQ061053/P[26] 76.5 75.3 87.7 83.6
Po/344/04-1/DQ242615/P[27] 69.9 61 78.6 72.8
Hu/Ecu534/EU805773/P[28] 69.8 64 81.1 75.3
Bo/AzuK/AB454420/P[29] 64.5 47.3 70 62.3
Ch/Ch-2G3/EU486956/P[30] 60.9 42.6 68.9 59.9
Ch/Ch-661G1/EU486962/P[31] 61.9 41 69.7 60.2
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The GARV strains 48/07/Ire and 61/07/Ire
were collected from 4–5 week old piglets in
the same farm in County Cork, in 2007.
Based on analysis of the VP4, strain 61/07/Ire
displayed the highest identity (83.6% aa) to
strain Po/134/04-15 [40]. By comparing the nt
sequence of the entire VP4 ORF, the strain
61/07/Ire displayed � 76.5% identity to all
other VP4 full-length sequences available in
the databases, a value which was far lower than
the percentage identity cutoff value (80%)
established by the Rotavirus Classification
Working Group (RCWG) to define a novel P
genotype [44]. The sequence was submitted to

the RCWG and was assigned a new P geno-
type, P[32].

Analysis of the VP7 gene identified strains
48/07/Ire and 61/07/Ire as G2-like, since they
displayed the highest aa identity (92.4–93%)
to the G2-like porcine strain 34461-4. G2-like
strains have been identified in pigs in Europe
[38] and in Asia [26]. These porcine VP7 genes
are similar to human G2 viruses, although they
cluster clearly in a separate mono-phyletic
branch.

When the NSP4 gene sequence was ana-
lysed, the Irish strains 48/07/Ire and 61/07/Ire
were placed separately from rotaviruses of the
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Figure 2. Neighbor-joining phylogenetic tree (920 bp) based on the VP7 nucleotide sequences of various
porcine G2-like and human G2 porcine strains with porcine strains 48/07/Ire and 61/07/Ire. The Irish
porcine strains are highlighted in bold. The scale bar represents 0.05 substitutions per site.
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E1 genotype, which encompasses the majority
of porcine viruses. Interestingly, the Irish strains
48/07/Ire and 61/07/Ire clustered with a small
group of viruses, including the unusual human
strain A_G4_120 and the porcine strains P21-
5 and CMP034, within the E9 genotype. Phylo-
genetic analyses of the VP6 gene revealed that
strain 61/07/Ire resembled porcine strains of
genotype I5. Conversely, strain 48/07/Ire clus-
tered with genotype I1 viruses. Therefore, 61/
07/Ire possessed a different VP6 gene, suggest-
ing a genetic reassortment. Since different
strains were found to co-circulate at the same
time in each of the examined herd (three strains
in farm 1, two in farm 2 and seven in farm 3).
Reassortment is frequent among rotaviruses
and, along with positive accumulation of single
point mutations, inter-segmental recombination,
rearrangement, and inter-species transmission,
contributes to their evolution [10, 42].

In recent years, rotavirus surveillance has
intensified throughout the world, monitoring

the appearance of novel antigenic types and
providing evidence for a significant genetic/
antigenic diversity of GARV. Together with
data presented in this study, at least 32 rotavirus
P genotypes and several novel lineages within
the epidemiologically relevant human VP4
genotypes (e.g. P[8] and P[6]) have been recog-
nized, some of which presumably account for
novel antigenic P types or subtypes [3, 4, 32,
33, 37, 46, 49, 51, 52].

Along with cattle, pigs are regarded as
important reservoirs for human rotavirus
diversification, and there is evidence that heter-
ologous rotaviruses of porcine origin or por-
cine-human reassortants may have occurred
and spread successfully throughout human pop-
ulations in a few occasions in Latin America
[43, 56], South East Asia [62, 64] and Europe
[4, 39]. Human GARV with unusual G-types
such as G5, G6, G8, G9, G10, G11 and G12
associated with P-types P[3], P[6], P[9],
P[11], P[14] and P[25] have been detected
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Po/CMP034/E9

Hu/Wa/E1

Bo/PP-1/E8

Hu/Au-1/E3

Hu/N26-02/E6
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Figure 3. Neighbor-joining phylogenetic tree (729 bp) based on the NSP4 reference strains, E1–E12.
The scale bar represents 0.1 substitutions per site.
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[51, 57]. Therefore, mapping the precise distri-
bution of rotavirus G and P-types in the various
animal species is important to provide a base-
line to readily identify the source of atypical
GARV infections in humans. Also, it is impor-
tant to develop more effective tools for the
prophylaxis of rotaviral diarrhea in animals.
A better understanding of rotavirus epidemiol-
ogy will help understanding the global ecology
and the evolution of rotaviruses.
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