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Abstract
The movement of animals in groups is widespread in nature. Understanding this phenomenon presents an important problem in
ecology with many applications that range from conservation to robotics. Underlying all group movements are interactions
between individual animals and it is therefore crucial to understand the mechanisms of this social behaviour. To date, despite
promising methodological developments, there are few applications to data of practical statistical techniques that inferentially
investigate the extent and nature of social interactions in group movement. We address this gap by demonstrating the usefulness
of a Hidden Markov Model approach to characterise individual-level social movement in published trajectory data on three-
spined stickleback shoals (Gasterosteus aculeatus) and novel data on guppy shoals (Poecilia reticulata). With these models, we
formally test for speed-mediated social interactions and verify that they are present. We further characterise this inferred social
behaviour and find that despite the substantial shoal-level differences in movement dynamics between species, it is qualitatively
similar in guppies and sticklebacks. It is intermittent, occurring in varying numbers of individuals at different time points. The
speeds of interacting fish follow a bimodal distribution, indicating that they are either stationary or move at a preferred mean
speed, and social fish with more social neighbours move at higher speeds, on average. Our findings and methodology present
steps towards characterising social behaviour in animal groups.
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Introduction

The movement of animals in groups is studied widely and is
regarded to provide important insights for several areas of
research. For example, studying the benefits individuals de-
rive from moving in groups could highlight drivers for the
evolution of sociality, understanding animal movement pat-
terns is crucial for conservation, animal husbandry and pest

control, and the behavioural mechanisms underlying group
movement can inspire algorithms for optimisation or the con-
trol of robot swarms (Krause and Ruxton 2002; Vicsek and
Zafeiris 2012; Sumpter 2010). The dynamics of group move-
ment range from highly coordinated displays of collective
motion (e.g. schools of fish or flocks of birds) to cohesive
but internally disordered aggregates (e.g. mosquito swarms)
and non-cohesive movement, where individuals frequently
move between separate groups (e.g. in guppies; Krause and
Ruxton 2002; Vicsek and Zafeiris 2012; Tunstrøm et al.
2013). Common to these systems is that their dynamics cru-
cially depend on the interactions between individuals, or the
way in which individuals adjust their movement in response to
the position and movement of others. Typical interactions that
have been suggested are the alignment of movement direc-
tions, speed modulation in response to others, collision avoid-
ance and aggregating behaviours (Vicsek and Zafeiris 2012).
Identifying when, to what extent and according to what mech-
anisms such interactions occur is thus a key challenge.

The current approaches for studying interaction mecha-
nisms in moving animal groups can broadly be split into four
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categories. First, theoretical models are used to establish what
group-level dynamics emerge from hypothesised interaction
mechanisms (Vicsek and Zafeiris 2012). Second, in controlled
experiments, aspects of individuals’ sensory input are manip-
ulated to test specific hypotheses about how animals respond
to their social and physical environment (e.g. severing nerves:
Bazazi et al. 2008; virtual reality: Stowers et al. 2017). Third,
measurements from, or model fits to field or laboratory move-
ment data are used to estimate the extent and nature of social
interactions at the level of the entire group (e.g. Bode et al.
2012; Tunstrøm et al. 2013; Dalziel et al. 2016). Fourth, sim-
ilar approaches to the previous category are used to investigate
social movement behaviour at the level of individuals (e.g.
Delgado et al. 2014; Langrock et al. 2014; Giuggioli et al.
2015). Here, we focussed on the fourth category and fit statis-
tical models for individual movement to experimental data.

While data on animal group movement are increasingly
available, the use of practical statistical models to test hypoth-
eses about individual-level social movement across species is
still underexplored. Recently, many studies have started to
present interesting methodological developments, but have
predominantly applied them to previously published data
(Niu et al. 2016; McDermott et al. 2017). Other models are
developed for specific experimental systems (e.g. Russell
et al. 2017) and therefore lack the general applicability needed
for cross-species comparisons. Moreover, it is often assumed
that the way individuals interact does not change over time
(e.g. Mann 2011; Bode et al. 2012). However, not all individ-
uals in animal groups continuously show social behaviour. For
example, there is evidence in some ungulates that individuals
adopt temporally intermittent social behaviours by switching
between grazing independently from others and moving to-
wards conspecifics to maintain group cohesion (Langrock
et al. 2014; Ginelli et al. 2015). To address these gaps in the
literature, we demonstrate here the novel application of a well-
developed statistical modelling framework to infer temporally
varying, individual-level social behaviour in two experimental
data sets on the movement of fish shoals. The guiding princi-
ples of our methodology were conceptual simplicity and wide
applicability.

A plausible starting point for modelling temporal changes
in social behaviour is the assumption that animals adopt dis-
crete behavioural states. Each of these states encodes distinct
individual movement behaviour, possibly socially driven, and
animals adopt different states over time. Such a process can be
described by Hidden Markov Models (HMMs; Zucchini et al.
2016) and we based our approach for investigating social
movement behaviour on this framework, following previous
work by Langrock et al. (2014). Due to their flexibility,
HMMs have been used to investigate a broad range of biolog-
ical contexts, ranging from genetic sequence analysis (Durbin
et al. 1998) to estimating species abundance (Borchers et al.
2013) and estimating population dynamics from mark-

recapture studies (Pradel 2005). Basic N-state HMMs describe
an observed process (e.g. movement) via an unobserved N-
state Markov chain whose states (e.g. behavioural states) are
associated with emission distributions for the observed pro-
cess. Awell-established framework of dynamic programming
algorithms allows evaluating the likelihood of HMMs, as well
as decoding the most likely state sequences for given data
(Zucchini et al. 2016).

Our work contributes novel methods, data and findings.
Instead of considering indirect interactions, such as group-
level aggregation (Langrock et al. 2014), we directly modelled
pairwise interactions between individuals in our HMM. To
demonstrate the usefulness of our approach, we applied it to
data sets from two different fish species: guppies (Poecilia
reticulata) and three-spined sticklebacks (Gasterosteus
aculeatus). The former of these is novel and the latter was
obtained from the literature (Bode et al. 2010). Based on the
ecology of these fish species, we expected substantial differ-
ences in the group movement dynamics between them
(FitzGerald and Wootton 1986; Griffiths and Magurran
1998). For example, guppies are known to show fission-
fusion dynamics, where individuals frequently move from
one local aggregation to another (Griffiths and Magurran
1998). Sticklebacks form more stable shoals, such as ones
assorted by body size (Ranta and Lindström 1990). We first
investigated characteristics of the movement dynamics at the
shoal-level, to explore how the two experimental data sets
differed. Subsequently, we used HMMs to statistically test
for evidence of individuals adopting social behavioural states.
As this was the case, we then employed our models to infer
when this social behaviour occurred. This allowed us to char-
acterise social movement behaviour and compare it across our
data sets.

Methods

Guppy experiments

We performed experiments between 9.00 am and 9.00 pm in
March and April 2011 at the University of Exeter. We used
Trinidadian guppies (Poecilia reticulata) from a large
laboratory-reared population bred from fish collected on the
island of Trinidad in 2008 from the lower reaches of the Aripo
River (10°40’N 61°14’W). Adult fish were collected from
laboratory stock tanks (150 × 300 cm), separated according
to biological sex and subsequently housed on a 12:12-h
light-dark cycle in gravel-bottomed holding tanks (30 × 30 ×
45 cm) with no more than 50 individuals per tank. The num-
bers of male and female fish in holding tanks were continu-
ously replenished, but each fish was only used once and was
collected from stock tanks at least 24 h prior to being used in
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our experiment. All experimental procedures were performed
in conformance with UK Home Office guidelines.

We performed experiments in awhite Perspex, flat-bottomed,
square tank with a side length of 60 cm. This tank was emptied,
wiped with 98% alcohol and rinsed with untreated water be-
tween trials. For experiments, we filled the tank with 21 l of
water. This resulted in a water depth of approximately 6 cm.
We then transferred 12 guppies from the holding tanks into the
experimental tank, let them habituate for 30 min and subse-
quently recorded their movement for 25 min at a rate of 10
frames per second using a standard definition, overhead camera
(SonyHandycamDCR-SX33). Fishwere transferred to separate
housing tanks after experiments to ensure they were not reused.

While we performed our experiment on shoals with differ-
ent sex-ratios, we did not investigate the effects of sex-ratios
on shoal behaviour here. For completeness, the three group
compositions we tested were all-male, all-female and a bal-
anced sex-ratio of 6 male and 6 female fish. We performed 20
replicate trials for male and female groups and 22 replicate
trials for mixed-sex groups. Thus, we conducted a total of 62
experimental trials including 744 guppies.

The light colour of the tank and the absence of plants or
rocks inside the brightly-lit experimental tank meant that
guppies were highly conspicuous. This aided data acquisition
(see below), but was also likely to heighten stress levels in the
fish (Bode et al. 2010).

Guppy data acquisition

We obtained data on individual fish positions and subsequently
trajectories from the video recordings of experiments using the
open-source tracking software ‘SwisTrack’ (Correll et al. 2006)
and previously established methodology (Bode et al. 2010). As
the water in the experimental tank was shallow, we only con-
sidered movement in two dimensions. Recent work further
corroborates the appropriateness of this approximation (Watts
et al. 2017). We smoothed position time series using a 3 frames
wide moving window average and approximated the instanta-
neous speed of individuals from the distanceΔx between con-
secutive tracked positions (0.1 s apart) with the formula Δx/
0.1s. Speed time-series at this temporal resolution were highly
auto-correlated (Pearson’s correlation at lag 0.1 s: 0.94). To
plausibly fit our statistical models, which did not capture
auto-correlations at such a fine temporal scale, we coarse-
grained the speed time-series by only using instantaneous
speeds that were 1 s apart (Pearson’s correlation in coarse-
grained data at lag 1 s: 0.54). Figure 1 shows a top-down view
of our experimental tank and examples for trajectories.

While we did not use sex-specific data here, differences in
body shape and size in guppies (Magurran 2005) allowed for a
semi-automated way to identify smaller males and larger fe-
males by using the number of pixels representing fish in video
recordings. We visually checked the correctness of the

automated part of this procedure and manually labelled gen-
ders based on body shapes whenever size differences were
ambiguous. In the discussion, we indicate how this additional
data could be used.

Reflections on the water surface and overlaps of fish result-
ed in missing or erroneous fish positions that we had to re-
move from our data (approach described in Bode et al. 2010).
Furthermore, we only used data when the positions of all 12
fish in the experimental tank were tracked. Following this, we
obtained a total of 445,332 observations of instantaneous
speeds across all experimental trials and individuals (from
37,111 observation time points of entire shoals). This repre-
sents approximately 40% of all time points in our experi-
ments. We also discuss this in more detail in the supplemen-
tary information, section S1.1.

Stickleback data

We used previously published experimental data on stickle-
back movement (Bode et al. 2010). In these experiments, the
movement of shoals of 8 three-spined sticklebacks
(Gasterosteus aculeatus) was observed inside a circular exper-
imental arena. Eight shoals were tested and each shoal was
exposed to four different experimental treatments that altered
the threat levels perceived by the fish. Here, we combine the
data from all experimental treatments and therefore average
over observed differences in behaviour across treatments
(Bode et al. 2010). All further details on the stickleback ex-
periments can be found in (Bode et al. 2010).

We applied the same procedures as described above for the
guppy data to the stickleback data. The stickleback experi-
ments were recorded at a frame rate of 25 frames per second
and at this temporal resolution speed time-series were highly
auto-correlated (Pearson’s correlation at lag 0.04 s: 0.96). As
for the guppy data, we thus used instantaneous speeds that
were 1 s apart (Pearson’s correlation in coarse-grained data
at lag 1 s: 0.68). We only used data when the positions of all
8 fish in the experimental tank were tracked. This resulted in a
total of 256,816 observations of instantaneous speeds across
all experimental trials and individuals (from 32,102 observa-
tion time points of entire shoals).

We tested the robustness of our findings to the size of the
time gap between consecutive data points used in our analysis
(see below).

Initial trajectory analysis

For a shoal-level characterisation of movement behaviour, we
computed the two most widely adopted order parameters used
to categorise collective behaviour (Tunstrøm et al. 2013).
Contrasting these broadly adopted measures with our
Hidden Markov Model approach served to contextualise and
highlight the additional insights we gained.
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The first order parameter, polarisation, Op, measures how
aligned individuals are. It is computed using the normalised
instantaneous movement direction, ui, of fish, where individuals
are numbered i = 1,…,N with N indicating the size of the shoal:

Op ¼ Σi¼1…N uið Þj j=N : ð1Þ

The polarisation, or the absolute value of the mean individ-
ual movement direction, takes value 1, if all individuals move
in the same direction, and value 0 if there is no alignment on
average (e.g. when individuals move in random directions).

The second order parameter, rotation, Or, measures the ex-
tent to which the shoal rotates around its centre of mass. In
addition to individuals’ movement direction, it also incorpo-
rates the unit vector ri pointing from the shoal’s centre of mass
towards individual i to compute the mean normalised angular
momentum,

Or ¼ jΣi¼1…N ui � rið Þj=N ; ð2Þ
where we set the vertical component of all vectors to zero, as
we only considered two-dimensional movement. The rotation
takes values between 0 (no rotation) and 1 (strong rotation).

We used these order parameters to obtain an overview of
the shoal-level organisation and movement structure in our
guppy and stickleback data. However, the polarisation and
rotation do not capture important aspects of social behaviour.
For example, if only pairs of fish interacted by moving con-
sistently at the same speed this would not necessarily be cap-
tured by shoal-level measures. Therefore, we developed sta-
tistical models to characterise social movement in more detail.

Statistical movement models

The guppy trajectories shown in Fig. 1 already suggested high
variability in fish movement. At any given time, some fish
may move, possibly in a group, while others remain

stationary. To quantitatively investigate and further character-
ise these movements, we fit statistical models to our data. In
contrast to the shoal-level order parameters introduced above,
we considered individuals’ speeds in our models rather than
their movement directions. Modelling speeds had the advan-
tage that they were easily measured and that they, in contrast
to movement directions, did not need to be expressed as non-
trivially truncated probability distributions whenever fish are
near to tank walls (as seen in Fig. 1). An additional argument
for considering speeds is given by the empirical evidence
suggesting that speed regulation dominates fish interactions
(Katz et al. 2011). We developed three separate models.
Models 1 and 2 assumed that individual fish move indepen-
dently from each other. Using model 3, we tested for social
interactions between fish. By comparing the relative quality in
explaining our data of model 3 to the other models, we provide
quantitative evidence for the existence and ubiquity of speed-
mediated social interactions in our guppy and stickleback
data.

Model 1 is a simple baseline model that has previously
been used for individual speeds in fish (Aoki 1982). In this
model, we assumed that the individual speed of a guppy at
time t, denoted by V(t), can be modelled by a gamma distri-
bution with constant mean μ and standard deviation σ:

Model 1 : V tð Þ∼Γ μ;σð Þ ð3Þ
Here, μ and σ are model parameters to be estimated by

fitting the model to our data. We used gamma distributions
to model speeds throughout, because they capture the mean
and variance with one parameter each and only support values
greater or equal to zero, as required for speeds. In model 1 the
speed of an individual does therefore not depend on the speeds
of other individuals and the mean speed of individuals does
not change over time. Under this framework, individuals may
temporarily be stationary, but longer time periods of maintain-
ing the same speed are highly unlikely.

(a)

10 cm

(b) (c)

Fig. 1 Top-down view of experimental tank and examples of guppy
trajectories. We show trajectories constructed from 10 regularly spaced
positions over the 10.0 s previous to the current video frame. Trajectories
for different fish are shown in different colours and current positions are

indicated with a circle. All data are from the first experimental trial
conducted. Panels (a), (b) and (c) show trajectories starting 26.9 s,
67.4 s and 149.5 s after the start of the trial. Fish IDs (colours) are not
preserved across the figure panels
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To allow for changes in mean individual speed over time
(e.g. stationary versus movement phases) and to incorporate
possibly intermitted social behaviour, we extendedmodel 1 by
incorporating additional behavioural states into our models.
We used the well-established framework of Hidden Markov
Models (HMMs) to this end (Zucchini et al. 2016) and built on
previous work on animal group movement (Langrock et al.
2014). In models 2 and 3 we assumed that individuals display
two or three behavioural states, respectively, that we cannot
observe directly, and that they switch between these states
according to transition probabilities that only depend on the
state they are currently in (Markov property). Each behaviour-
al state is associated with parameterised probability distribu-
tions for individual speeds. Given data and using established
methodology it is possible to estimate the parameters of these
distributions, as well as the transition probabilities (see be-
low). We refer the reader to general textbooks for further
background on HMMs and algorithmic details (Zucchini
et al. 2016).

In model 2, we assumed individuals move independently
from each other and display two distinct behavioural states,
both with constant mean and standard deviation:

Model 2 : State 1 : V tð Þ∼Γ μ1;σ1ð Þ
State 2 : V tð Þ∼Γ μ2;σ2ð Þ ð4Þ

This model has six parameters: two means and standard
deviations each and two parameters capturing the four transi-
tion probabilities (since the probabilities of remaining in the
current state and switching to the other state sum to one).

Model 3 extended model 2 with an additional behavioural
state that captures social interactions by assuming that the
speed of individuals depends on the speed of their nearest
neighbour, Vn.n. (t):

Model 3 : State 1 : V tð Þ∼Γ μ1;σ1ð Þ
State 2 : V tð Þ∼Γ μ2;σ2ð Þ
State 3 : V tð Þ∼Γ Vn:n: tð Þ;σ3ð Þ

ð5Þ

This model has eleven parameters, as there are now nine
transition probabilities. For simplicity, we assumed that the
mean speed of individuals in state 3 is the current speed of
the nearest neighbour, rather than its speed a short time ago.
We argue that the high auto-correlation in speed time series in
combination with short reaction times justifies this approach.
We also assumed that while the mean of speeds in state 3
could vary, the variance, σ3, was constant. Large means in
gamma distributions are often associated with large variances
and vice-versa. Thus, our assumption could affect the fit of
model 3 to the data, but we nevertheless decided to keep our
model as simple as possible.

We used a maximum likelihood approach to fit models 1–3
to our guppy and stickleback data (see also supplemental dis-
cussion, section S1.2). Our implementation in the R

programming environment (version 3.01; R Core Team
2012) builds on previous work (Langrock et al. 2014). As
explained above, there were gaps in our speed time series
due to missing data. We accounted for these by separately
computing the contribution to the likelihood of uninterrupted
time series segments. In technical terms, we re-started the
forward algorithm using the stationary distribution of the un-
derlying Markov chain for behavioural states every time there
was a gap in our data and multiplied the resulting likelihood
contributions to obtain the overall likelihood.

To compare the relative fit of the three models to the data,
we computed the Akaike Information Criterion (AIC) from
the maximum likelihood for models. Lower AIC values sug-
gest better model fit and the AIC penalises models with more
parameters. We used a permutation test to assess whether the
change in AIC, denoted ΔAIC, between models 2 and 3 was
larger than expected by chance. Specifically, we tested the
hypothesis that the observed ΔAIC was no larger than we
would expect under random pairings of individual speeds
and nearest neighbour speeds. To compute a p-value, we fit
model 3 to randomised data in which the (V(t),Vn.n. (t))
pairings had been shuffled and recorded ifΔAIC of this model
fit to model 2 was larger thanΔAIC observed for the original
data. Computing the fraction of times this was the case in
across replicate repetitions of this procedure yielded our p-
value. We used a similar randomisation procedure to assess
the robustness of our parameter estimates (see supplementary
information).

In addition to presenting a way to test for the existence and
ubiquity of social interactions, model 3 also allowed us to
classify individual fish behaviour into the three behavioural
states. After fitting the model, we applied the Viterbi algo-
rithm to speed time series to infer the most likely behavioural
state sequence of individuals. Briefly, for a fitted HMM and
given a sequence of observations, the algorithm determines
the most likely sequence of hidden states using the estimated
probability distributions for speeds in the different states and
the transition probabilities between states. From this analysis,
we thus obtained for a given time series of individual speeds a
sequence of inferred behavioural states that individuals were
in. We used the Viterbi-decoded occurrence of state 3 to char-
acterise speed-mediated social behaviour.

Results

Shoal-level movement characterisation

As already indicated by the trajectories in Fig. 1, guppy move-
ment in our experiments was seldom highly structured at the
level of the shoal. Both polarisation and rotation were typical-
ly low (Fig. 2a). In contrast, stickleback movement was highly
structured at the shoal-level, as all individuals frequently
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moved in the same direction (high polarisation, Fig. 2b). It is
interesting to contrast our findings with previous work on
golden shiners (Notemigonus crysoleucas) and simulation
models, where shoals showed clear transitions between three
different dynamically stable collective states: swarm (low Op

and Or), polarised (high Op, low Or) and milling group states
(low Op, high Or; Tunstrøm et al. 2013). In terms of this
characterisation, the stickleback shoals showed almost exclu-
sively the polarised state. The guppy shoals displayed
unorganised swarms. However, as they frequently fragmented
into smaller groups (see e.g. Fig. 1), it may not be appropriate
to describe our guppy data in terms of a shoal-level collective
state that implies cohesion.

From these findings, it is clear that the two experimental
systems we studied differed substantially. Sticklebacks ap-
peared to frequently align their movement with that of others,
whereas for guppies the timing and extent of such social in-
teractions was difficult to discern. To systematically test for
and further characterise social interactions in the shoals, we
next investigated individual speeds first at the aggregate level
and subsequently using our statistical models.

Global speed profiles

The global distribution of guppy speeds across trials revealed
a high variability in individual speeds (Fig. 3a). We found a
pronounced peak of zero speeds or speeds close to zero, but
we also recorded guppy speeds of up to 28.03 cm/s in our
experiments (mean ± s.d.: 2.31 ± 2.42 cm/s). Fitting model 1
to this distribution revealed that guppies were stationary less
frequently but moved at higher speeds more frequently than

expected under a gamma distribution (compare distribution to
grey dashed lines in Fig. 3a).

To investigate signatures for social interactions in guppy
speeds, we computed the bivariate distribution of instanta-
neous speeds and concurrent nearest neighbour speeds (Fig.
3b). This bivariate distribution showed a pronounced peak for
zero or low speeds of both individuals and the frequency of
observations decreased sharply with increasing speeds of ei-
ther or both individuals. We compared this distribution to a
control distribution in which the temporal concurrence of
speeds and nearest neighbour speeds was removed, to estab-
lish if guppies moved at similar speeds to their nearest neigh-
bours more often than expected by chance. Figure 3c shows
clear evidence that this was the case. We found higher fre-
quencies of individuals moving at similar speeds to their
nearest neighbours than expected under the control distribu-
tion (diagonal from bottom left to top right in Fig. 3c). This
suggests that guppies actively matched the speeds of nearby
individuals at least some of the time.

Repeating the same analysis for our stickleback data further
corroborated the difference between the two experimental sys-
tems observed above (Fig. 3d–f). The global distribution of
stickleback speeds was bimodal with a peak at speeds close to
zero and another at speeds around 13 cm/s (mean ± s.d.: 11.59
± 11.65 cm/s; Fig. 3d). Such a distribution cannot be explained
by a unimodal Gamma distribution (model 1). The bivariate
distribution of instantaneous speeds and concurrent nearest
neighbour speeds showed a clear tendency of sticklebacks to
move at the same speed as their nearest neighbours (high
frequencies along the leading diagonal in Fig. 3e).
Comparing this distribution against a control distribution, as
described above, further suggested that nearest neighbours
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Fig. 2 Polarisation and rotation in (a) guppy and (b) stickleback shoals.
We show the bivariate distribution of polarisation-rotation combinations
observed in the data. Frequencies are indicated by colours. To ensure the
entire spread of observed values is visible, we use natural logarithm scales
for frequencies. Zero frequency values are shown as zero on the log-scale.
Therefore, values of one are shown in the same colour as zero.

Considering the large range of values, this does not cause problems in
interpretation. We use a 60 × 60 grid within the value range shown to
construct bivariate distributions and interpolate between grid cells for a
smoother presentation. Plots show data for all group-level data points
(37,111 for guppies and 32,102 for sticklebacks)
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moved at similar speeds more often than expected by chance
(Fig. 3f).

Evidence for intermittent social movement

To quantitatively confirm and characterise the social behav-
iour suggested by Fig. 3c, we fit our statistical models to the
guppy data. Despite the increase in number of parameters
from models 1 to 3, the AIC of models improved between
models 1 and 2 (ΔAIC = 355,749) and between models 2
and 3 (ΔAIC = 7524; see supplementary Table S1 for details
onmodel fits). Models 2 and 3 thus outperformedmodel 1 and
included at least one additional behavioural state that
modelled speeds as a gamma distribution with a separately
determined mean. We found that the mean speeds varied sub-
stantially across behavioural states in both models 2 (μ1 =
3.05 cm/s, μ2 = 0.22 cm/s) and 3 (μ1 = 2.96 cm/s, μ2 =

0.20 cm/s), suggesting that fish adopted two distinct behav-
ioural states.

We focussed on the comparison of models 2 and 3 and used
this as a formal test for the presence of speed-mediated social
behaviour. We confirmed that the improvement in AIC be-
tween models 2 and 3 was greater than expected by chance
(permutation test; none of 100 permutations of data resulted in
a higher ΔAIC; supplementary fig. S1). While model 3 was
unlikely to explain all social behaviour, it provided one ap-
proach for measuring when and therefore how often a certain
type of social behaviour occurred (see below for further dis-
cussion on our model selection).

Our fit of model 3 to the data revealed that the two non-
social behavioural states included one in which individuals
moved at moderate speeds (mean: 2.96 cm/s) and another in
which individuals were nearly stationary (mean: 0.20 cm/s).
Estimated transition probabilities suggested that individuals
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Fig. 3 Guppy and stickleback speed distributions over all experimental
trials. (a-c) show guppy data. Panel (a) shows the distribution of all
445,332 recorded instantaneous individual speeds for guppies. The inset
shows the cumulative distribution function for the same data and grey
dashed lines show a gamma distribution fit to the data (model 1). Panel
(b) shows the bivariate distribution of instantaneous speeds and
concurrent nearest neighbour speeds. Frequencies are indicated by
colours. Panel (c) shows the difference in frequencies between the
distribution in (b) and the average frequencies from 100 permutations
of this distribution that were obtained by randomly pairing up
individual speeds and nearest neighbour speeds. Positive values in (c)

relate to higher frequencies in (b) than in the randomised distribution,
and differences in frequencies are indicated by colours. Panels (d-f) show
the same plots for the 256,816 recorded individual speeds of
sticklebacks. To ensure the presentation is not dominated by the
pronounced peak of speeds close to zero, we use natural logarithm
scales for frequencies or difference in frequencies in panels (b, e) and
(c, f). Zero values are shown as zero on the log-scale. Therefore, values of
one are shown in the same colour as zero. Considering the large range of
values, this does not cause problems in interpretation. We use a 60 × 60
grid within the speed range shown to construct bivariate distributions and
interpolate between grid cells for a smoother presentation
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had a high persistence (p = 0.95) for both of these states (i.e. a
high probability of remaining in these states), whereas the
persistence for the social state (state 3) was much lower (p =
0.56). Transition probabilities from the social to the stationary
state (state 2) and vice-versa were estimated to be essentially
equal to zero. In contrast, changing from the social state (state
3) to state 1, but not vice-versa, was estimated to occur more
frequently (with a probability of 0.44; supplementary
Table S1).

To illustrate these findings, we used Viterbi-decoded states
to obtain speed distributions separately for each behavioural
state (Fig. 4). Speed distributions differed considerably across
states and individuals spent about 74% of time points in state 1
(movement), about 25% in state 2 (stationary) and just over 1%
in the social state 3. This suggested that the social behaviour
captured by our model occurred infrequently. Figure 4c also
showed that the speeds at which social behaviour occurred had
a bimodal distribution with peaks for very low speeds and for
speeds between 4 cm/s and 10 cm/s. This was in stark contrast
with the global speed distribution (Fig. 3a).

We tested the robustness of our parameter estimates by
randomly selecting 30% of all data points and removing them
before fitting model 3 to this reduced data set. Repeating this
procedure n = 100 times showed that the parameter estimates
for the non-social behavioural states in the model were highly
robust to this data reduction, whereas parameter estimates for
the social state changed somewhat (supplementary fig. S2).
The low prevalence of social behaviour in the guppy data
could explain the sensitivity of the social parameters to data
loss.

Fitting our models to the stickleback data produced the
same qualitative improvement in models from model 1 to
model 2 (ΔAIC = 149,402) and model 2 to model 3
(ΔAIC = 64,284; see supplementary Table S2 for details on
model fits). As expected from the evidence on interactions
between individuals in stickleback shoals presented above,
the improvement in AIC frommodel 2 to model 3 was greater
than expected by chance (permutation test; none of 100 per-
mutations of data resulted in a higher ΔAIC; supplementary
fig. S1). The parameter estimates for the two non-social be-
havioural states in model 3 showed a clear difference in mean
speeds between a faster- (mean: 14.45 cm/s) and a slower-
movement state (mean: 5.59 cm/s). Estimated transition prob-
abilities and additional parameter estimates can be found in
supplementary Table S2). Based on Viterbi-decoded states,
sticklebacks spent half of the time in the social state (50% of
time points) and about 25% of time points each in the fast- and
slow-movement state (Fig. 4d–f). This suggested that stickle-
backs showed intermittent but frequent speed-mediated social
behaviour. Interestingly, based on Viterbi-decoded states, the
distribution of stickleback speeds in the social state was bi-
modal with a small peak for speeds near to zero and another
broad peak around speeds of about 12 cm/s (Fig. 4f). Thus,

qualitatively, social speeds in guppies and sticklebacks, as
estimated by our models, followed the same distribution.
When considering the marked qualitative difference in global
speed distributions between the two data sets, this was an
unexpected result (cf Fig. 3a, d). We found that all parameter
estimates for model 3 were robust to reduction in the amount
of available data (supplementary fig. S3). To further test the
robustness of our findings, we repeated our analysis using
different coarse-graining of speed time series. Results shown
in the main text use a step of 1.0 s between instantaneous
speed recordings. We additionally considered steps of 0.5 s
and 2.0 s. Speed distributions in Viterbi-decoded states for this
additional analysis were qualitatively very similar to the ones
shown in Fig. 4 (supplementary figs. S4 and S5).

In summary, this analysis provided evidence for intermit-
tent social behaviour in guppies and sticklebacks that occurred
both when fish were stationary or when they were moving.

Characterisation of social movement

To illustrate the usefulness of our approach for investigating
social behaviour, we next asked how the occurrence of social
behaviour in shoals was distributed over individual fish and
time. For example, shoals may switch from all fish to no fish
showing social behaviour. Alternatively, a few fish may show
social behaviour, while the remaining fish move independent-
ly from each other. We used Viterbi-decoded behavioural
states to compute for every time point the number of fish
within shoals showing social behaviour (see supplementary
fig. S6 for examples of trajectories with inferred behavioural
states). Figure 5a showed that at most five out of the twelve
guppies in the experimental tank showed social behaviour at
the same time. However, this did not occur often and most
commonly, none of the guppies in the tank showed social
behaviour. The observation frequency for an increasing num-
ber of social guppies decreased approximately exponentially
(Fig. 5a). In contrast, for sticklebacks we commonly observed
social behaviour in all individuals at the same time (Fig. 5c).
Despite the high level of social behaviour in sticklebacks, we
still observed instances when none or only a small fraction of
fish in the experimental tank displayed social behaviour.

The data in Fig. 5a, c suggest that sometimes only one
individual fish was in the social behavioural state. At first
glance, we might expect that at least two fish should interact.
However, our model allowed individual fish to be social and
more importantly it is behaviourally possible that one fish
responds to another without this social behaviour being
reciprocated.

Finally, we investigated how social behaviour in guppies
and sticklebacks changed depending on how many others
nearby were also in the social state. The speed distribution
for guppies and sticklebacks that were in the social state varied
depending on how many nearest neighbours who were also in
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the social state they had (Fig. 5b, d). For both data sets, social
fish whose nearest neighbour was not in the social state were
more likely to move at low speeds compared to social fish that
had one or more social nearest neighbours. Social fish with
many social nearest neighbours were on average more likely
to move at higher speeds.

Discussion

Our findings provide evidence for intermittent speed-
mediated social behaviour in guppies and sticklebacks.
Importantly, we present a quantitative method, based on
Hidden Markov Models, to identify and characterise this be-
haviour. On the one hand, our findings broadly confirmed our
expectation of differences in the social movement between
guppies and sticklebacks. The former showed less stable and
smaller shoals (i.e. socially moving aggregations) than the
latter and this was reflected in the frequency of observing fish
in the social state inferred using model 3. On the other hand,
our results suggest than when individuals moved socially,

there were broad similarities between the two species, despite
substantial differences in global speed profiles. Speeds in the
social state showed a bimodal distribution and fish in the so-
cial state, without nearest neighbours that were also social,
were on average likely to move more slowly. One potential
qualitative difference in social behaviour between guppies and
sticklebacks was indicated in the second peak of the speed
distributions in the social state. For sticklebacks, this peak
was broad and addi t ional analys is (Fig. 5d and
supplementary fig. S5c) suggested it could itself contain two
peaks. More data and analysis would be needed to confirm
this, but if true, it may suggest that additional behavioural
states could be needed to describe stickleback behaviour.
Nevertheless, our models led to a plausible and easy-to-
interpret summary of social movement data that facilitates
comparison across species. It would be interesting to apply
our analysis to additional data to investigate to what extent
our findings generalise.

The speeds at which social behaviour occurred followed a
bimodal distribution with peaks for speeds close to zero and
speeds around 7 cm/s for guppies and around 12 cm/s for
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Fig. 4 Cumulative distribution functions for individual speeds in the
Viterbi-decoded states from the fit of model 3 to the guppy (a–c) and
stickleback data (d–f). Insets show the corresponding probability density
functions for the same data on the same x-axis as the main plot. Panels (a)
and (b) show the speed distributions for the non-social states 1 and 2,

respectively. Panel (c) shows data for the social state 3. Note the
bimodality of the speed distribution in (c), in contrast to the
distributions in (a) and (b). We indicate the number of data points n used
in each panel. Panels (d–f) show the same plots for the stickleback data
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sticklebacks. This highlights that we defined social behaviour
based on the temporal synchronicity in speeds between indi-
viduals, regardless of the speed value. As such, individuals
that remained stationary near to each other could be labelled
as being social by our model. This bimodality could not be
expected from the unimodal global distribution of individual
guppy speeds, but it does reflect the global speed distribution
in sticklebacks. It suggests that in addition to remaining sta-
tionary with others, fish of both species in our experiments
appeared to have a preferred range of speeds at which to move
with others. One explanation for this could be an overall pre-
ferred speed of individuals, possibly related to their physiolo-
gy (Bainbridge 1958). However, for the guppy data such a
global preferred speed was not discernible. To the best of
our knowledge, such preferred social speeds have not previ-
ously been reported. It would be interesting to establish if
certain speeds are particularly suitable for matched-speed be-
haviour when additional data becomes available.

As all model selection studies, we can only explore a lim-
ited set of models and it is always possible that an unexplored
model explains the data better. Furthermore, model selection
on HMMs using standard information criteria, such as the
AIC, can favour the model with the largest number of states
– additional states in HMMs can account for structure in data,

even if it is not included in the model formulation (Pohle et al.
2017). This could affect the change in AIC between models 2
and 3 in addition to the presence of social behaviour. To pro-
vide additional insight into our model comparison, we con-
ducted permutation tests to assess the improvement in AIC
between models 2 and 3. These tests avoided certain assump-
tions of commonly used parametric tests, such as the
Likelihood Ratio Test (Andrews 2001). For example, our per-
mutations preserved residual auto-correlations in speed time
series and avoided issues with asymptotic chi-squared distri-
butions that arise when parameters are close to the boundary
of the parameter space (e.g. mean speed close to zero for
stationary state in guppies). We used similar data
randomisation procedures to assess the robustness of parame-
ter estimates to missing data (by deleting a percentage of
available data points). Thus, while our model selection is sub-
ject to the limitations discussed above, we provide additional
information through our permutation tests and we indepen-
dently assess the existence of social behaviour by comparing
the bivariate distribution of individuals speeds and nearest-
neighbour speeds to randomised control distributions (Fig. 3).

Putting these issues of model selection aside, our models
are flexible and can be extended further to address specific
questions. By explicitly modelling when transitions between
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behaviour from the fit of model 3.
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of the number of fish in the social
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states occur, or by modelling movement at a finer temporal
resolution, to account for the auto-correlation in individuals’
speeds, our models could be adjusted to investigate intermit-
tent locomotion in animals, such as burst-and-glide movement
patterns in fish (Laan et al. 2017). Alternatively, much current
work on the structure of social ties in animals relies on repeat-
ed observations of spatial associations of individuals (Krause
et al. 2014). Our models, or similar ones (Langrock et al.
2014), show an alternative approach to establish when social
behaviour occurs that could enhance or complement current
work on animal social networks. Thus, our Hidden Markov
Models provide a useful tool to categorise and quantify be-
haviour that opens additional possibilities for research.

We designed our approach to be accessible, practical and
widely applicable. We chose to only model speed time series.
While this means that our models cannot be used to simulate
the full spatial movement of animal groups (Langrock et al.
2014), they can be fit to data from different experimental
geometries (e.g. circular and square, as demonstrated here).
By limiting our models to three behavioural states and by
modelling social interactions as speed correlations, we en-
sured the complexity of our models was low. As a result, it
was feasible to perform our analysis on large data sets using
standard desktop computers without any code optimisation
(one model fitting for the guppy data took 1–2 h). This meth-
odological accessibility, combined with the fact that we con-
sidered standardised experimental assays for social move-
ment, means that our work provides a promising avenue for
further cross-species comparisons. Such comparisons are a
prerequisite for developing a general understanding of social
movement, including the identification of common or distinct
evolutionary pathways for this behaviour across taxa.

We assumed that individuals only interact with their nearest
neighbour in our model. While some previous work supports
this assumption (Herbert-Read et al. 2011), it is likely that
interactions with additional neighbours are important (Katz
et al. 2011). It is also possible that individuals do not respond
to others based on spatial distance, but based on different
mechanisms (Jiang et al. 2017), such as whether they are in
their field of view (Strandburg-Peshkin et al. 2013). Our
models could be extended to account for such alternative in-
teractions or information transfer mechanisms. However, it is
important to consider the substantial increase in model com-
plexity this would entail, which can considerably affect ro-
bustness of parameter estimation.

We fit individual speeds in our models using nearest-
neighbour speeds at the same point in time, rather than includ-
ing a time delay. As explained above, the high auto-correlation
in speed time series means that this simplifying assumption
did not affect results substantially. However, this means that it
is not possible to simulate from our social model, as this
would require knowing nearest-neighbour speeds before sim-
ulating them, in addition to keeping track of relative positions

of individuals in a non-spatial model. Therefore, as developed
above, our models can only be used for data analysis and
would have to be extended to make simulations and this pre-
dictions from them possible.

The stickleback experiments we used in our study were
designed to alter stress in fish by exposing them to different
levels of perceived threat (Bode et al. 2010). As already men-
tioned above, our guppy experiments were also likely to
heighten stress levels in the fish. Our findings should be
interpreted accordingly. Fish undoubtedly experience varying
stress levels in the wild and it is important to cover the full
behavioural spectrum. The methodology we developed could
be used to explicitly test how social behaviour depends on
internal or external factors. For example, the Viterbi-decoded
fraction of time sticklebacks spend in the social behavioural
state could be compared across the experimental treatments
reported in previous work (Bode et al. 2010). Alternatively,
our models could be fit separately to the data from each treat-
ment to subsequently compare estimated model parameters.
Furthermore, in the Methods section, we reported on the dif-
ferent sex-ratios used in our guppy experiments and on how
we labelled trajectories as belonging to male or female fish.
Previous work suggests that fish have sex-specific association
preferences (Ruhl and McRobert 2005). Our data and ap-
proach thus provide an excellent starting point for investigat-
ing how interactions between different sexes, such as court-
ship behaviour, affect intermittent social movement. More
generally, our methodology provides a clear pathway for com-
paring the extent and character of speed-mediated social be-
haviour across individuals, e.g. based on sex or familiarity,
and across conditions, such as food abundance or deprivation.

The finding that social behaviour is intermittent, even in
highly coordinated stickleback shoals, highlights the impor-
tance of considering time-varying social interactions. While
most theoretical models deliberately avoid this additional com-
plexity, recent work has started to investigate how temporal
changes in individual behaviours may drive group-level aggre-
gation and dispersion phenomena (Ginelli et al. 2015). We
suggest that further work in this regard is needed and that future
uses for models like ours could be to investigate not only when
social behaviour occurs, but also when different social behav-
ioural rules or heuristics are adopted (Seitz et al. 2016).
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