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Abstract: Severe acute respiratory syndrome–associated coronavirus (SARS-CoV) initiates the
cytokine/chemokine storm-mediated lung injury. The SARS-CoV unique domain (SUD) with three
macrodomains (N, M, and C), showing the G-quadruplex binding activity, was examined the possible
role in SARS pathogenesis in this study. The chemokine profile analysis indicated that SARS-CoV
SUD significantly up-regulated the expression of CXCL10, CCL5 and interleukin (IL)-1β in human
lung epithelial cells and in the lung tissues of the mice intratracheally instilled with the recombinant
plasmids. Among the SUD subdomains, SUD-MC substantially activated AP-1-mediated CXCL10
expression in vitro. In the wild type mice, SARS-CoV SUD-MC triggered the pulmonary infiltration of
macrophages and monocytes, inducing CXCL10-mediated inflammatory responses and severe diffuse
alveolar damage symptoms. Moreover, SUD-MC actuated NOD-, LRR- and pyrin domain-containing
protein 3 (NLRP3) inflammasome-dependent pulmonary inflammation, as confirmed by the NLRP3
inflammasome inhibitor and the NLRP3−/− mouse model. This study demonstrated that SARS-CoV
SUD modulated NLRP3 inflammasome-dependent CXCL10-mediated pulmonary inflammation,
providing the potential therapeutic targets for developing the antiviral agents.

Keywords: SARS-coronavirus; SARS-CoV unique domain (SUD), CXCL10; NLRP3 inflammasome;
pulmonary inflammation

1. Introduction

Severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) is a highly
contagious agent that causes severe lung damage, including bronchial epithelial dysfunction, pulmonary
infiltration with immune cells, and even lung fibrosis [1–4]. Besides SARS-CoV, there are five well
known human coronaviruses (HCoVs), such as HCoV-OC43, HCoV-NL63, HCoV-HKU1, Middle East
respiratory syndrome CoV (MERS-CoV), and coronavirus COVID-19 (formerly known as Wuhan
coronavirus and 2019-nCoV) [5]. Among them, SARS-CoV, MERS-CoV, and COVID-19 are highly
pathogenic HCoVs, and their spread initiated global outbreaks with high fatality rates in 2003, 2012,
and 2020, respectively [6,7]. SARS-CoV infected 8096 confirmed cases with 774 deaths in the outbreak
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of 2002-2003 [8]. MERS-CoV has caused a global spread since June 2012, with 2494 infected patients
including 858 deaths until February 2020 (https://www.who.int/emergencies/mers-cov/en/). Nowadays,
COVID-19 has caused a big outbreak in China and is spreading globally by a limited people-to-people
transmission, resulting in 2,319,066 confirmed cases including 157,920 deaths in 213 countries,
areas or territories, with cases during the period from 31st December 2019 to 21st April 2020
(https://www.who.int/emergencies/diseases/novel-coronavirus-2019). The mortality rate of these
pathogenic coronaviruses ranges from 6.8% for COVID-19 patients to 35% for MERS patients.

SARS-CoV prompts a cytokine storm in the lung tissue and systemic circulation, linking with
the lung injury in SARS patients, such an immune cell infiltration at the early phase and pulmonary
fibrosis at the late phase [9,10]. Gene signatures in the lung of SARS patients indicate that CXCL10,
CCL2, interferon-α/β receptor 1 (IFNAR1), Interferon gamma receptor 1 (IFNGR1), and cluster of
differentiation 58 (CD58) mRNAs are persistently generated during the infection [11]. Cytokine profiles
in the plasma of SARS patients reveals that the proinflammatory CC and CXC chemokines CCL2,
CCL3, CCL5, and CXCL10 level in infected patients is higher than in healthy controls. Meanwhile,
the infected patients who died exhibit significantly higher levels of CXCL10 than those patients who
recovered [9]. Moreover, an increase in the plasma level of CXCL10 is found in the severe pneumonia
patients infected with MERS-CoV and COVID-19, which is linked with the infiltration of immune cells
into alveolar space, peribranchial, and perivascular of the lung [12,13]. Therefore, the dysregulation of
CXCL10 expression in the lung tissue and systemic circulation during infection could play an essential
role in the pathogenesis of pathogenic coronaviruses.

HCoVs contain a single-stranded and positive-sense RNA genome of near 30 kb with a 5′ cap
and a 3′ poly–(A) tract, encoding two replicase polyproteins pp1a and pp1ab, spike (S), envelope (E),
membrane (M), nucleocapsid (N) and several accessory proteins [1,2,14,15]. The replicase polyproteins
pp1a and pp1ab are cleaved by two viral proteases papain-like (PLpro) and 3C-like (3CLpro) to
yield 16 non-structural proteins (Nsp1–Nsp16), which are responsible for viral genome replication.
SARS-CoV Nsp3 is the largest Nsp comprising several domains, e.g., An N-terminal Glu-rich
acidic domain (also called Nsp3a), an X domain with poly(ADP-ribose) binding properties (Nsp3b),
the SARS-CoV unique domain (SUD) (Nsp3c), papain-like protease (PL2pro, Nsp3d), non-canonical
papain-like domain, and a Y domain (Nsp3e) [16]. SARS-CoV unique domain (SUD) appears in
SARS-CoV, as also found in other coronaviruses like MERS CoV and COVID-19. Moreover, amino acid
alignment of SARS-SUD with MERS-CoV and COVID-19 shows 15% and 75% identity, respectively.
SUD contains three macrodomains (SUD-N, SUD-M, and SUD-C) with the structure similarity to
the X-domain (N3), exhibiting a specific affinity for oligo(G) nucleotides (both deoxynucleotides and
ribonucleotides) [17]. The SUD-M domain is a fundamental component of the replication/transcription
complex, involving in SARS-CoV genome replication and transcription [18]. SUD also acts as an
enhancer to reinforce the interaction between SARS-CoV Nsp3 and E3 ubiquitin ligase ring-finger
and CHY zinc-finger domain-containing 1 (RCHY1), and precedes RCHY1-mediated ubiquitination
and degradation of p53 [19]. In addition, SUD binds with the G-stretches within the 3′-nontranslated
regions of mRNAs of host cell genes like Bbc3, RAB6B, and TAB3 [20]. TAB3, a partner of TAK1 kinase,
activates AP-1- and NF-κB-dependent genes, such as CXCL9, CXCL10, and CCL8 [21]. Therefore,
further examining the possible involvement of SUD in CXCL10-mediated SARS pathogenesis is needed.

This study investigates the functional activity and mechanism of SUD in CXCL10-mediated
pulmonary inflammation using in vitro and in vivo assays. To evaluate the mechanism of CXCL10
up-regulation, human lung epithelial cells with transiently transfection and stably expression of
SARS-CoV SUD were examined using real-time PCR plus specific inhibitors, dual luciferase reporter
system, and nuclear translocation of transcriptional factors. The mouse model via the intratracheal
instillation with recombinant plasmids was established for elucidating SUD-induced CXCL10-mediated
pulmonary inflammation.
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2. Results

2.1. SUD-MC Subdomain Up-Regulated the Expression of CXCL10 in Human Lung Epithelial Cells

To clarify the role of SUD in pulmonary inflammation during SARS-CoV infection, transient
transfection of recombinant pSUD-FL plasmid in human alveolar basal epithelial A549 cells was
performed to examine the expression profile of chemokines (Figure 1). Real-time PCR assay indicated
that transiently transfected cells with pSUD-FL, expressing the proteins (Figure 1A) and mRNAs
(Figure 1B) of full-length SUD, had a significant up-regulation of CXCL9, CXCL10 and CCL3 mRNAs
in comparison to empty-vector transfected cells 24 and 48 h post transfection (Figure 1D–F). The results
displayed that SARS-CoV SUD was one of the key viral proteins for initiating the production of
inflammatory chemokines in lung epithelial cells.

To examine the activity of NM and MC subdomains of SARS-CoV SUD in activating the chemokine
expression, the stable clones transfected with pcDNA3.1/His C, pSUD-FL, pSUD-NM, and pSUD-MC,
respectively, were generated after three weeks of G418 selection. Immunofluorescence staining with
SUD-immunized sera and quantitative RT-PCR assay indicated the protein and mRNA expression
of SUD and its subdomains in indicated stable clones (Figure 2A,B). Chemokine expression profile
revealed that SUD-MC expression caused a higher increase of CXCL10 mRNA levels than empty vector
and SUD-NM expression in A549 cells (Figure 2D). The results indicated that SUD-MC subdomain
significantly involved in SARS-CoV SUD-induced activation of CXCL10 expression in human lung
epithelial cells.
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Figure 1. Chemokine profile of full-length SUD-expressing alveolar epithelial cells. A549 cells were 
transiently transfected with pcDNA3.1/His C or pSUD-FL, and harvested 24 h and 48 h post 
transfection. The transfected cells were performed using immunofluorescent staining with anti-His 
mAb and secondary antibodies conjugated with FITC (A). Total RNAs of transfected cells were 
isolated and analyzed by quantitative real-time PCR. Relative mRNA levels of SUD-M (B), CXCL8 
(C), CXCL9 (D), CXCL10 (E), CCL3 (F), and CCL5 (G) were normalized by β-actin mRNA, presented 
as relative ratio. **, p value < 0.01; ***, p value < 0.001 compared with pcDNA3.1/His C transfected cell. 
Scale bar, 200 μm. 

Figure 1. Chemokine profile of full-length SUD-expressing alveolar epithelial cells. A549 cells were
transiently transfected with pcDNA3.1/His C or pSUD-FL, and harvested 24 h and 48 h post transfection.
The transfected cells were performed using immunofluorescent staining with anti-His mAb and
secondary antibodies conjugated with FITC (A). Total RNAs of transfected cells were isolated and
analyzed by quantitative real-time PCR. Relative mRNA levels of SUD-M (B), CXCL8 (C), CXCL9 (D),
CXCL10 (E), CCL3 (F), and CCL5 (G) were normalized by β-actin mRNA, presented as relative ratio.
**, p value < 0.01; ***, p value < 0.001 compared with pcDNA3.1/His C transfected cell. Scale bar, 200 µm.
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Figure 2. Chemokine profiles of human lung epithelial cells in responses to SUD subdomains. Stably 
transfected A549 cell lines expressing full-length SUD, SUD-NM and SUD-MC, respectively, were 
used to examine the protein and mRNA expression of indicated SUD subdomains using 
immunofluorescent staining (A) and real-time PCR (B). Moreover, relative mRNA levels of CXCL9 
(C), CXCL10 (D), and CCL3 (E) in the stable cell lines were determined after normalized by β-actin 
mRNA. *, p value < 0.05; ***, p value < 0.001 compared with the stable cell line transfected with 
pcDNA3.1/His C. Scale bar, 50 or 100 μm. 

2.2. SUD-MC Subdomain Activated AP1-Mediated Activation of the CXCL10 Promoter 

Wild type (IP-10GL3), NF-κB site mutant (IP-10mκB1) and truncated (tIP-10GL3) firefly 
luciferase reporters of CXCL10 promoter were used to examine the transcriptional factor binding 
region for SUD-mediated activation of CXCL10 promoter (Figures 3A and 3B). The dual luciferase 
reporter assays with an internal control Renilla luciferase reporter and wild type CXCL10 promoter 
driven firefly luciferase reporter indicated that SUD-MC subdomain significantly trigger a greater 
than 2.2~6.2-fold increases of CXCL10 promoter driven firefly luciferase activity compared to empty 
vector, NM, N, M, and C subdomains in A549 cells (Figure 3A). In the dual luciferase reporter assays, 
the activity of mutated and truncated CXCL10 promoter driven firefly luciferase discovered that 
ISRE/IRF and AP-1 binding sites could be responsible for SUD-MC-induced CXCL10 promoter 
activation (Figure 3B). To further investigate the nuclear localization of Signal Transducer And 
Activator Of Transcription 1 (STAT1), STAT2, IFN regulatory factor 1 (IRF1), IRF-3, and c-Jun, 
transiently transfected cells with pcDNA3.1/His C and pSUD-MC, respectively, were assessed using 
immunofluorescence staining with indicated primary antibodies, plus DAPI nuclear counterstain 
(Figure 3C). Imaging analysis of immunofluorescence stained cells indicated that a considerable 
amount of c-Jun, but STAT1, STAT2, IRF-1, and IRF-3, was translocalized into the nucleus in SUD-
MC expressing cells, but a slight amount of c-Jun was in the nucleus of vector transfected cells (Figure 
3C). The result displayed that SUD-MC activated AP-1-mediated transcription of CXCL10 gene in 
A549 cells. 

Figure 2. Chemokine profiles of human lung epithelial cells in responses to SUD subdomains.
Stably transfected A549 cell lines expressing full-length SUD, SUD-NM and SUD-MC, respectively,
were used to examine the protein and mRNA expression of indicated SUD subdomains using
immunofluorescent staining (A) and real-time PCR (B). Moreover, relative mRNA levels of CXCL9 (C),
CXCL10 (D), and CCL3 (E) in the stable cell lines were determined after normalized by β-actin mRNA.
*, p value < 0.05; ***, p value < 0.001 compared with the stable cell line transfected with pcDNA3.1/His C.
Scale bar, 50 or 100 µm.

2.2. SUD-MC Subdomain Activated AP1-Mediated Activation of the CXCL10 Promoter

Wild type (IP-10GL3), NF-κB site mutant (IP-10mκB1) and truncated (tIP-10GL3) firefly luciferase
reporters of CXCL10 promoter were used to examine the transcriptional factor binding region for
SUD-mediated activation of CXCL10 promoter (Figure 3A,B). The dual luciferase reporter assays
with an internal control Renilla luciferase reporter and wild type CXCL10 promoter driven firefly
luciferase reporter indicated that SUD-MC subdomain significantly trigger a greater than 2.2~6.2-fold
increases of CXCL10 promoter driven firefly luciferase activity compared to empty vector, NM, N,
M, and C subdomains in A549 cells (Figure 3A). In the dual luciferase reporter assays, the activity
of mutated and truncated CXCL10 promoter driven firefly luciferase discovered that ISRE/IRF and
AP-1 binding sites could be responsible for SUD-MC-induced CXCL10 promoter activation (Figure 3B).
To further investigate the nuclear localization of Signal Transducer And Activator Of Transcription
1 (STAT1), STAT2, IFN regulatory factor 1 (IRF1), IRF-3, and c-Jun, transiently transfected cells with
pcDNA3.1/His C and pSUD-MC, respectively, were assessed using immunofluorescence staining
with indicated primary antibodies, plus DAPI nuclear counterstain (Figure 3C). Imaging analysis of
immunofluorescence stained cells indicated that a considerable amount of c-Jun, but STAT1, STAT2,
IRF-1, and IRF-3, was translocalized into the nucleus in SUD-MC expressing cells, but a slight amount
of c-Jun was in the nucleus of vector transfected cells (Figure 3C). The result displayed that SUD-MC
activated AP-1-mediated transcription of CXCL10 gene in A549 cells.
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pSUD-N, pSUD-M and pSUD-C, respectively. Relative firefly luciferase activity was normalized by 
internal control renilla luciferase activity 48 h post transfection. In addition, the transiently transfected 
cells were executed using the immunofluorescent staining with mouse anti-His mAb plus anti-mouse 
IgG conjugated with FITC (green fluorescence), and rabbit anti-c-Jun mAb plus anti-rabbit IgG 
conjugated with Alexa 555 (red fluorescence). After the nuclear staining with DAPI (blue 
fluorescence), the images were photographed by confocal microscopy (Leica TCS SP8X). ***, p value 
< 0.001 compared with pcDNA3.1/His C transfected cell. 
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bronchoalveolar lavage fluids (BALFs) were harvested in order to count and characterize the immune 
cells in the lung (Figures 4B-D). Total cell counting analysis indicated that total cell counts in the 
BALFs of mice intratracheally instilled with pSUD-FL and pSUD-MC reached up to 3*105 cells/mL, 
showing a significantly higher increase compared with the other groups with solvent, pcDNA3.1/His 
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the other groups. Moreover, flow cytometry assay revealed that the count of macrophage/monocyte 
cells was significantly elevated in the BALFs of the mice instilled with pSUD-MC, but not the other 
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Figure 3. Promoter activation of CXCL10 expression in A549 cells induced by SUD-MC subdomain.
Three firefly luciferase reporters including the full length CXCL10 promoter (IP-10GL3) ((A), top),
NF-κB1 deletion CXCL10 promoter (IP-10mκB1 ((B), top), and truncated CXCL10 promoter (tIP-10GL3)
((B), top) were used for the dual luciferase reporter assay to determine the CXCL10 promoter activity
in transiently transfected cells with pcDNA3.1/His (C), pSUD-FL, pSUD-NM, pSUD-MC, pSUD-N,
pSUD-M and pSUD-C, respectively. Relative firefly luciferase activity was normalized by internal
control renilla luciferase activity 48 h post transfection. In addition, the transiently transfected cells
were executed using the immunofluorescent staining with mouse anti-His mAb plus anti-mouse IgG
conjugated with FITC (green fluorescence), and rabbit anti-c-Jun mAb plus anti-rabbit IgG conjugated
with Alexa 555 (red fluorescence). After the nuclear staining with DAPI (blue fluorescence), the images
were photographed by confocal microscopy (Leica TCS SP8X). ***, p value < 0.001 compared with
pcDNA3.1/His C transfected cell.

2.3. SUD-MC Significantly Induced the Pulmonary Infiltration of Immune Cells and Caused Lung Injury
in Mice

To examine whether SUD-MC subdomain triggers the infiltration of immune cells into the lung,
the mice were intratracheally instilled with the solvent (transfection reagent), pcDNA3.1/His C (vector
control), pSUD-FL, pSUD-NM, and pSUD-MC, respectively (Figure 4A). After the instillation (four times,
every two days), the mice were sacrificed at 9 days post instillation, and the bronchoalveolar lavage fluids
(BALFs) were harvested in order to count and characterize the immune cells in the lung (Figure 4B–D).
Total cell counting analysis indicated that total cell counts in the BALFs of mice intratracheally
instilled with pSUD-FL and pSUD-MC reached up to 3 × 105 cells/mL, showing a significantly higher
increase compared with the other groups with solvent, pcDNA3.1/His C, and pSUD-NM (Figure 4B).
In addition, flow cytometry analysis of BALF cells demonstrated that the mice intratracheally instilled
with pSUD-MC had a significant increase of the macrophage/monocyte population in the BALFs
(Gr-1+/CD11b+/F4/80+) gate (Figure 4C), but not the neutrophil papulation (Gr-1+/CD11b+/F4/80−)
gate and the lymphocytes (CD45+/CD3+), compared to the other groups. Moreover, flow cytometry
assay revealed that the count of macrophage/monocyte cells was significantly elevated in the BALFs of
the mice instilled with pSUD-MC, but not the other groups (Figure 4D). To confirm the recruitment
of macrophage/monocyte infiltration into the mouse lungs, the lung tissues from all groups were
subsequently assessed using the immunohistochemistry (IHC) staining (Figure 5A). The assay of IHC
staining with immunized sera against His-tagged SUD displayed the protein expression of CoV SUD



Int. J. Mol. Sci. 2020, 21, 3179 6 of 19

and its subdomains in the lung tissues from the mice instilled with pSUD-FL, pSUD-NM, and pSUD-MC,
respectively (Figure 5A, top two rows). IHC staining with anti-CD11b-specific antibodies showed
that SUD-MC triggered a higher infiltration of CD11b positive cells (macrophages/monocytes) in the
bronchoalveolar space and accumulated around the pulmonary blood vessels of the instilled mice than
full-length SUD, SUD-NM, and pcDNA3.1/His C (Figure 5A, bottom two rows). Therefore, the results
specified that SUD-MC subdomain significantly recruited the migration of macrophage/monocyte cells
into the bronchial and lung interstitial spaces in the instilled mice.

To further determine the effect of the SUD-MC subdomain on inducing pulmonary inflammation,
the histological changes of the mouse lungs from all groups were examined using the H&E staining
(Figure 5B). The mice instilled with pSUD-FL and pSUD-MC exhibited severe diffuse alveolar damage
symptoms, in which discovered the perivascular (PV) and peribranchial (PB) inflammatory cells
infiltration, PV and PB cuffing, edema, and an obvious increase in diameter of alveolar septal injury
(Figure 5B). In addition, the SUD-NM subdomain triggered a slight pulmonary inflammation; vector
and solvent controls showed no significant alteration in the lung tissues of instilled mice (Figure 5B).
Pathology scoring indices of the mouse lung tissues using H&E staining indicated that SUD and its
SUD-MC subdomain initiated a significant increase in the indices of cell aggregation, perivascular
cuffing, inflammation, and pathogenesis within the mouse lungs compared to the other groups
(Figure 5C–F). These results demonstrate that the SUD-MC subdomain substantially caused the severe
diffuse alveolar damage symptoms in mice.
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hemocytometer at Day 9 (B). Moreover, the BALF cells were incubated with APC/Cy7-anti-CD45 
antibody-, APC-anti-CD11b, FITC-anti-Gr-1, and PE-anti-F4/80 for 30 min at room temperature in the 
dark room, and then analyzed by flow cytometry (C). The number of macrophages/monocytes (Gr-
1+/CD11b+/F4/80+) in BALF was gaged (D). *, p value < 0.05; ***, p value < 0.001 compared to the group 
instilled with pcDNA3.1/His C. 

Figure 4. A mouse model using intratracheally instilled with the recombinant plasmids pSUD-FL,
pSUD-NM, and pSUD-NM. Wild type C57BL/6 (n = 5/group) were intratracheally instilled with
solvent, pcDNA3.1/His C, pSUD-FL, pSUD-NM and pSUD-MC four times every two days (A).
Total and differential cell counts in bronchoalveolar lavage fluid (BALF) were determined using a
hemocytometer at Day 9 (B). Moreover, the BALF cells were incubated with APC/Cy7-anti-CD45
antibody-, APC-anti-CD11b, FITC-anti-Gr-1, and PE-anti-F4/80 for 30 min at room temperature in
the dark room, and then analyzed by flow cytometry (C). The number of macrophages/monocytes
(Gr-1+/CD11b+/F4/80+) in BALF was gaged (D). *, p value < 0.05; ***, p value < 0.001 compared to the
group instilled with pcDNA3.1/His C.
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with pSUD-FL, pSUD-NM, and pSUD-MC. The sections of the lung tissues from the instilled mice 
were performed using immunohistochemistry staining with anti-SARS-CoV SUD ((A), first and 
second rows), or anti-mouse CD11b ((A), third and fourth rows), and biotinylated universal 
antibodies from a VECTASTAIN® Elite® ABC Universal Kit (A). The sections were also assessed with 
H&E staining, which the wide range of lung tissues was observed by a light microscope at 40x and 

Figure 5. Histopathological changes in the lung tissues of the wild type mice intratracheally instilled
with pSUD-FL, pSUD-NM, and pSUD-MC. The sections of the lung tissues from the instilled mice
were performed using immunohistochemistry staining with anti-SARS-CoV SUD ((A), first and second
rows), or anti-mouse CD11b ((A), third and fourth rows), and biotinylated universal antibodies from a
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VECTASTAIN® Elite® ABC Universal Kit (A). The sections were also assessed with H&E
staining, which the wide range of lung tissues was observed by a light microscope at 40× and
200×magnification ((B), first and second rows); inflammatory cells infiltrated around the peribranchial
and perivascular, and cell accumulation in alveolar space were examined using a light microscope
at 400× magnification ((B), third and fourth rows). The indices of histopathological changes in
aggregation (C), perivascular cuffing (D), inflammation (E), and pathological index (F) were scored
based on the degree of lesions ranged from one to five depending on severity: 1 = minimal (<1%);
2 = slight (1–25%); 3 = moderate (26–50%); 4 = moderate/severe (51–75%); 5 = severe/high (76–100%),
definite by animal disease diagnostic center (NCHU). ** p value < 0.01; ***, p value < 0.001 compared to
the group instilled with pcDNA3.1/His C. Scale bar, 50 µm.

2.4. SARS-CoV SUD-MC Activated NLRP3 Inflammasome-Mediated Up-Regulation of CXCL10 in
Pulmonary Inflammation

To prove the chemokine expression profile of the lung tissues from the instilled mice, the relative
mRNA levels of SUD-M, CXCL9, CXCL10, CCL3, CCL5, and IL-1β in the lung tissues were assessed
using real-time PCR assays (Figure 6). The profile of chemokine expression in vivo also indicated that
the mice instilled with pSUD-FL and pSUD-MC, but not pSUD-NM and pcDNA3.1/His C, exhibited a
significant increase of CXCL10 and CCL5 in the lung tissues (Figure 6C,E). These results reveal that
SUD and its SUD-MC subdomain substantially activated the CXCL10 expression in vitro and in vivo.
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Figure 6. Chemokine expression profile in the lung tissues of the mice in responses to full-length SUD
and SUD-MC subdomain. The relative mRNA levels of SUD-M (A), CXCL9 (B), CXCL10 (C), CCL3 (D),
CCL5 (E), and IL-1β (F) in lung tissues of the mice intratracheally instilled with indicated plasmids
were examined by real-time PCR, normalized by GAPDH mRNA, and presented as the relative ratio.
*, p value < 0.05; **, p value < 0.01; ***, p value < 0.001 compared to the group instilled with solvent or
pcDNA3.1/His C.

Interestingly, the SUD-MC subdomain also prompted IL-1β expression in the lung tissues of
the instilled mice (Figure 6F). Thus, the protein level of IL-1β in lung tissues of instilled-mice were
further examined (Figure 7). IHC staining of the lung sections with anti-IL-1β antibody discovered
that full-length SUD and its MC subdomain markedly increased the protein level of IL-1β in the mouse
lung tissues in comparison with solvent, vector controls and SUD-NM (Figure 7A). Moreover, IL-1β
secretion in BALFs was examined using dot blot and direct-ELISA assays with anti-IL-1β antibody
(Figure 7B,C). The intensity of dot blots displayed the higher concentration of the secreted IL-1β in
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BALFs of instilled mice with pSUD-FL and pSUD-MC than other groups (Figure 7B). In the directed
ELISA assay, SUD-MC subdomain triggered the significant increase in the IL-1β secretion in BALFs
of instilled mice compared with vector control group (Figure 7C). The results showed that SUD-MC
also initiated the expression of IL-1β in the lung tissues, as linked with the IL-1β secretion in BALFs
responsible for the induction of pulmonary inflammation.
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Figure 7. SUD-MC domain induced up-regulation of IL-1β protein levels in the lung tissue and BALF
of instilled mice. The protein levels of IL-1β expression in the lung tissues of instilled mice were
determined by IHC staining with anti-IL-1β antibody (A). Furthermore, semi and relative quantification
of the secreted IL-1β in the BALFs were performed using the dot-blot assay with anti-IL-1β (B) and
direct-ELISA assay (C), respectively. *, p value < 0.05 compared to the vector control group.

Since the activation of NLRP3 inflammasome-mediated IL-1β secretion was involved in
up-regulating the CXCL10 expression in the alveolar epithelial cells [22], NLRP3-inflammasome
inhibitor MCC950 were further used to examine the association between NLRP3 inflammasome
activation and CXCL10 up-regulation in human lung epithelial cells (Figure 8). The real-time PCR
assays specified the IL-1β upregulation in human lung epithelial cells transfected with pSUD-MC
(Figure 8A). The treatment with MCC950 notably reduced the mRNA levels of CXCL10 and IL-1β
in SUD-MC-expressing lung epithelial cells (Figure 8A). Meanwhile, dual-luciferase reporter assays
demonstrated that MCC950 markedly suppressed SUD-MC-induced transcriptional activity of CXCL10
promoter (Figure 8B). The Western blot assay also discovered that MCC95 significantly reduced
SUD-MC-induced phosphorylation of c-Jun at Serine63 (kDa 48) (Figure 8C). The results showed
that NLRP3-inflammasome inhibitor MCC950 inhibited c-Jun mediated up-regulation of CXCL10
expression in human lung epithelial cells induced by SARS-CoV SUD-MC.
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Figure 8. Inhibitory effect of NLRP3 inflammasome inhibitor MCC950 on SUD-MC-induced CXCL10
up-regulation in human lung epithelial cells. The transiently transfected A549 cells with pcDNA3.1/His
C or pSUD-MC were treated with or without MCC950 (1 µM) for 48 h, and then harvested for measuring
relative mRNA levels of IL-1β and CXCL10 gene by real-time PCR (A), detecting the activity of wild
type CXCL10 promoter using dual-luciferase reporter assay (B) and testing the phosphorylation levels
of c-Jun at Serine 63 by Western blotting (C). ***, p value < 0.001 compared to the transfected cells
without the treatment of MCC950.

Because the activation of NLRP3 inflammasome-mediated IL-1β secretion was related in
lipopolysaccharide-induced pulmonary inflammation [23], the NLRP3 gene knockout (NLRP3−/−) mice
were exploited to verify the effect of NLRP3 inflammasome on SUD-MC-induced CXCL10-mediated
pulmonary inflammation (Figure 9). In the NLRP3 gene knockout (NLRP3−/−) mice, SUD-MC neither
activated the expression of IL-1β and CXCL10 in the mouse lung tissues, nor elicited the migration
of immune cells into the lung in the mouse model (Figure 9B–E). Furthermore, H&E staining of the
mouse lung tissues discovered that the SUD-MC subdomain induced a slight inflammatory response
in the lungs of the instilled NLRP3−/− mice (Figure 9F). These results indicate that SARS-CoV SUD-MC
subdomain stimulated NLRP3 inflammasome-mediated activation of CXCL10 expression in vitro and
in vivo.
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APC-anti-CD11b and PE-anti-F4/80 (D,E). In addition, the histopathological changes in the lung of 
the NLRP3-/- mice were examined based on the tissue section with the H&E staining (F), which the 
images of lung tissues were photographed by a light microscope at 40×, 200×, and 400× magnification. 
Scale bar, 50 μm. 

3. Discussion 

Our study showed that SARS-CoV SUD substantially induced a significant up-regulation of 
chemokines CXCL10 and CCL5 in human lung epithelial cells and the lung tissues of the mouse 
model (Figures 1 and 6). Moreover, SARS-CoV SUD stimulated the infiltration of macrophages and 
monocytes into the lung of the mice instilled with the plasmid (Figure 4), resulting in the CD11b-
positive cell aggregation around bronchial and alveolar spaces (Figure 5). Meanwhile, the up-
regulated expression of chemokines including CXCL10 was hypothesized to be the main 
pathogenesis of SARS-CoV in the recruitment of immune cells into human lung tissues [9,24]. 
Previous studies indicated that SARS-CoV was capable of inducing a significant increase of cytokines 
and chemokines in various human and animal cells and animal models [25–30]. The stimulatory effect 
of SARS-CoV SUD on the pulmonary infiltration of macrophages/monocytes in the mice was related 
with the lung injury in SARS-CoV infected mice [28,29]. Among SARS-CoV proteins, nonstructural 
protein 1 (nsp-1) has been identified as inducing NF-κB-mediated activation of CCL5, CXCL10, and 
CCL3 expression in human lung epithelial cells [31]. Therefore, the finding in this study was the first 
report demonstrating the important role of SARS-CoV SUD in inducing CXCL10-mediated 
pulmonary inflammatory responses in vitro and in vivo.  

 SUD-MC subdomain, but not SUD-NM, SUD-N, SUD-M, and SUD-C, serves the functional 
region of SARS-CoV SUD for activating the CXCL10 and IL-1β expression in human lung epithelial 
cells and the mouse lung tissues (Figures 2, 3, and 6). Dual luciferase reporter assays with wild type, 

Figure 9. Pulmonary pathology of NLRP3−/− mice in response to SARS CoV SUD-MC. The lung
tissues and BALFs of NLRP3−/− mice intratracheally instilled with pSUD-MC or pcDNA3.1/His C
were collected for analyzing the relative mRNA levels of SUD-M (A), CXCL10, and IL-1β (B) using
real-time PCR, quantitating the total cell counts in BALFs using a hemocytometer (C), and discovering
the number of macrophages/monocytes by flow cytometry plus the immunofluorescent staining with
APC-anti-CD11b and PE-anti-F4/80 (D,E). In addition, the histopathological changes in the lung of
the NLRP3−/− mice were examined based on the tissue section with the H&E staining (F), which the
images of lung tissues were photographed by a light microscope at 40×, 200×, and 400×magnification.
Scale bar, 50 µm.

3. Discussion

Our study showed that SARS-CoV SUD substantially induced a significant up-regulation of
chemokines CXCL10 and CCL5 in human lung epithelial cells and the lung tissues of the mouse model
(Figures 1 and 6). Moreover, SARS-CoV SUD stimulated the infiltration of macrophages and monocytes
into the lung of the mice instilled with the plasmid (Figure 4), resulting in the CD11b-positive cell
aggregation around bronchial and alveolar spaces (Figure 5). Meanwhile, the up-regulated expression
of chemokines including CXCL10 was hypothesized to be the main pathogenesis of SARS-CoV in the
recruitment of immune cells into human lung tissues [9,24]. Previous studies indicated that SARS-CoV
was capable of inducing a significant increase of cytokines and chemokines in various human and
animal cells and animal models [25–30]. The stimulatory effect of SARS-CoV SUD on the pulmonary
infiltration of macrophages/monocytes in the mice was related with the lung injury in SARS-CoV
infected mice [28,29]. Among SARS-CoV proteins, nonstructural protein 1 (nsp-1) has been identified as
inducing NF-κB-mediated activation of CCL5, CXCL10, and CCL3 expression in human lung epithelial
cells [31]. Therefore, the finding in this study was the first report demonstrating the important role
of SARS-CoV SUD in inducing CXCL10-mediated pulmonary inflammatory responses in vitro and
in vivo.

SUD-MC subdomain, but not SUD-NM, SUD-N, SUD-M, and SUD-C, serves the functional region
of SARS-CoV SUD for activating the CXCL10 and IL-1β expression in human lung epithelial cells and
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the mouse lung tissues (Figures 2, 3 and 6). Dual luciferase reporter assays with wild type, mutant and
truncated promoter regions of CXCL10 gene displayed that the transcriptional factor binding regions
for STAT1, STAT2, IRF1, IRF3, and AP1 were responsible for SUD-MC induced activation of CXCL10
expression (Figure 3A,B). Additionally, immunofluorescent staining discovered that c-Jun, a subunit
of AP-1 transcriptional factor, was specifically translocated into the nucleus in SUD-MC expressing
cells (Figure 3C). Interestingly, c-Jun plays the critical role in activating the IL-1-inducible genes, such
CXCL10 and IL-1β, in human fibroblasts [32].

SUD-MC, a G-quadruplexes binding protein [17], was suggested to exhibit the quadruplex-binding
specificity and/or quadruplex-helicase activity that could modulate the internal ribosomal entry
site (IRES) initiation for viral translation, the promoter activity for viral transcription, and the
mRNA stability of proto-oncogenes, growth factors, transcription, translation factors, etc. [33].
Recently, a synthetic G-quadruplexes oligodeoxynucleotide significantly interfered with NLRP3
Inflammasome-IL1β production in macrophages in response to oxygen-glucose deprivation and
lipopolysaccharide stimulation [34]. In this study, SUD-MC significantly initiated the up-regulation of
IL-1β expression in the lung tissues, as associated with the secretion of IL-1β in the BALFs of instilled
mice (Figures 6 and 7). Moreover, the NLRP3-inflammasome inhibitor MCC950 significantly decreased
SUD-MC induced c-Jun mediated activation of IL-1β and CXCL10 expression in human lung epithelial
cells (Figure 8). Furthermore, SUD-MC had no significant effect on the induction of IL-1β and CXCL10
expression, the pulmonary infiltration of macrophages/monocytes, and the pathology scoring indices
of the lung tissues in the NLRP3−/− mice (Figure 9). Therefore, the results confirmed that SUD-MC
stimulated NLRP3 inflammasome-mediated activation of IL-1β and CXCL10 up-regulation in vitro
and in vivo, as responsible for the main pathway of SUD-MC-induced pulmonary inflammation.
Taken together, our results suggested that NLRP3 inflammasome pathway plays a key role in the
activation of AP-1-mediated CXCL10 expression by SARS-CoV SUD-MC, proinflammatory chemokines
and cytokines of which, such as CXCL10 and IL-1β, trigger the infiltration of macrophages/monocytes
in the lung tissues (Figure 10). Thus, the signal transduction of NLRP3 inflammasome-dependent
CXCL10 expression, confirmed by MCC950, might be responsible for SARS-CoV SUD-MC-induced
pulmonary inflammation. Importantly, the defect in NLRP3-mediated inflammation in bats is one
of the key mechanisms for a special reservoir host of many viruses, including SARS-CoV-1 and 2,
MERS-CoV [35]. The finding in NLRP3 inflammasome-mediated activation of IL-1β and CXCL10
up-regulation induced by SARS-CoV SUD might be a valuable target in the development of new
anti-SARS agents.

In conclusion, SARS-CoV SUD significantly induced the CXCL10-mediated pulmonary
inflammation in vitro and in vivo. SUD-MC subdomain plays the crucial region to activate
c-Jun-mediated transcriptional activity in up-regulating the CXCL10 expression in human lung epithelial
cells. In the mouse model intratracheally instilled with the recombinant plasmids, SUD-MC pointedly
stimulated the infiltration of macrophages/monocytes into the lung, triggered CXCL10-mediated
pulmonary inflammation with the severe diffuse alveolar damage symptoms. Moreover, SUD-MC
actuated NLRP3 inflammasome-dependent pulmonary inflammation, as confirmed by the assays
with NLRP3 inflammasome inhibitor and the NLRP3−/− mouse model. This study demonstrated
the biological activity of SARS-CoV SUD in modulating NLRP3 inflammasome-dependent
CXCL10-mediated pulmonary inflammation, which provides the potential therapeutic targets for
developing the agents against the coronavirus-induced diseases.
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4. Materials and Methods

4.1. Cells

Human alveolar basal epithelial A549 cells (ATCC CRM-CCL-185) were grown in Dulbecco’s
Modified Eagle’s Medium (DMEM; Gibco, Life Technologies, Waltham, MA, USA) supplemented with
10% fetal bovine serum (FBS; Biological Industries, Kibbutz Beit Haemek, Israel), 100 U/mL penicillin
and 100 µg/mL streptomycin, and 1µg/mL amphotericin B (HyClone, GE Healthcare Life Sciences,
Pittsburgh, PA, USA) in a 5% CO2 incubator at 37 ◦C. A549 cells stably transfected with pSUD-FL,
pSUD-NM or SUD-MC were maintained in above media plus 700 µg/mL G418.

4.2. Plasmids

The nucleotide sequences of SARS-CoV full-length SUD, SUD-NM, and SUD-MC within
the SARS-CoV genome nucleotides 3887–4941, 3887–4673, and 4311–4880 (GenBank accession no.
AY291451), respectively, were amplified using PCR with specific primer pairs. SARS-CoV replicon [36]
kindly provided by Zhengli Shi (Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan,
China) was used as the template. The primer pairs are shown in Table 1 and used for cloning the
full-length SUD, SUD-NM, SUD-MC, SUD-N, SUD-M and SUD-C subdomains, respectively. The PCR
products with a restriction site KpnI at 5′ end and a restriction site XhoI at 3′ end were cloned into the
expression vector pcDNA3.1/His C (Invitrogen, Carlsbad, CA, USA) after double digest reaction with
KpnI and XhoI, and then the resultant recombinant plasmids were named as pSUD-FL, pSUD-NM,
pSUD-MC, pSUD-N, pSUD-M, and pSUD-C, respectively. In addition, firefly luciferase reporter
plasmids IP-10GL3, tIP-10GL3, and IP-10mκB1, as gifted from David Proud at University of Calgary
(Canada), contain wild type (−875/+97), truncated (−279/+97), and NF-κB1 site mutant CXCL10
promoter, respectively.
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Table 1. Primers used for cloning full-length SUD and its subdomains into the expression vector
pcDNA3.1/His C.

Gene Fragments Primer Name Primer Sequence

full-length SUD
F-SUD-N 5′-AGTG GGTACC T ATTAAGGCCTGCATTGATGAG-3′

R-SUD-C 5′-AGTG CTCGAG CG TGTGTGGAGATTAGTGTTGTC-3′

SUD-NM
F-SUD-N 5′-AGTG GGTACC T ATTAAGGCCTGCATTGATGAG-3′

R-SUD-M 5′-AGTG CTCGAG CG TGACGAAGTGAGGTATCC-3′

SUD-MC
F-SUD-M 5′-AGTG GGTACC T TGGAATTTGAGAGAAATG-3′

R-SUD-C 5′-AGTG CTCGAG CG TGTGTGGAGATTAGTGTTGTC-3′

SUD-N
F-SUD-N 5′-AGTG GGTACC T ATTAAGGCCTGCATTGATGAG-3′

R-SUD-N 5′-AGTG CTCGAG CG TAGAATCTCTTCCTTAGC-3′

SUD-M
F-SUD-M 5′-AGTG GGTACC T TGGAATTTGAGAGAAATG-3′

R-SUD-M 5′-AGTG CTCGAG CG TGACGAAGTGAGGTATCC-3′

SUD-C
F-SUD-C 5′-AGTG GGTACC T TCAAAGACATCTGAGGAG-3′

R-SUD-C 5′-AGTG CTCGAG CG TGTGTGGAGATTAGTGTTGTC-3′

4.3. Transient Transfection and Stable Clone Cell Line Generation

A549 cells (2 × 105) were seeded in 6-well plate overnight, and transfected with 2.5 µg of
pcDNA3.1/His C, pSUD-FL, pSUD-NM, or pSUD-MC in 6 µL jetPRIME reagent (Polyplus-transfection
S.A, Illkirch, France). After 24-h or 48-h incubation, the transfected cells were harvested for the further
assays. For generating the cell lines, the transfected cells were selected in above media containing
700 µg/mL G418 (Sigma-Aldrich, Saint Louis, MO, USA) for 1 month. Stable cell lines expressing
SUD-FL, SUD-NM, and SUD-MC were analyzed using qRT-PCR and immunofluorescence staining.

4.4. Real-Time RT-PCR

The total RNAs were purified from transfected cells, stable cell lines and mouse lung tissues
using the PureLink Micro-to-Midi Total RNA Purification System kit (Invitrogen, Carlsbad, CA, USA).
Relative mRNA levels of host chemokines and viral SUD were analyzed using a SuperScript™ III
Platinum® Two-Step qRT-PCR Kit with SYBR® Green (Invitrogen, Carlsbad, CA, USA). After reverse
transcription by SuperScript III RT, the real-time PCR was performed with the cDNAs, specific primer
pairs, and Platinum® SYBR® Green qPCR SuperMix according to the amplification protocol consisting
of 1 cycle at 50 ◦C for 2 min, 1 cycle at 95 ◦C for 10 min, 45 cycles at 95 ◦C for 15 sec, and 60 ◦C for
1 min. Primer pairs for the detection mRNA levels of human and mouse chemokines (CXCL8, CXCL10,
CXCR3, CCL-2/MCP-1, CCL3/MIP-1α, and CCL5/RANTES) as well as SARS-CoV SUD, SUD-NM,
and SUD-MC are listed in Table 2. Relative mRNA levels of indicated genes were standardized by
humanβ-actin and mouse GAPDH and then calculated by the comparative CT method (∆∆CT method).
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Table 2. Primer list for real-time PCR.

Species Gene Forward Primer Sequences Reverse Primer Sequences

SARS-CoV
SUD-N TCAGAACATGCTTAGAGG TGGAGGGTATTACAACACAA

SUD-M CATGCTGAAGAGACAAGAAAAT AGTATAAAAGAAGAATCGGACACC

Human

IL-1β ATCACTGAACTGCACGCTCC TTGTTCTCCATATCCTGTCCC

CXCL8 CGATGTCAGTGGATAAAGACA TGAATTCTCAGCCCTCTTCAAAAA

CXCL9 CGTGGTAAAACACTTGCGGATATT CAATCATGCTTCCACTAACCGACT

CXCL10 CCAATTTTGTCCACGTGTTG TTCTTGATGGCCTTCGATTC

CCL3 AGCTGACTACTTTGAGACGAGCA CGGCTTCGCTTGGTTAGGA

CCL5 TCCCCATATTCCTCGGAC GTCTAGAGGAACCGGTGTTAC

β-actin AGGCCACCCCAGAGGACAAC CCAGAGGCGTACAGGGATA

Mouse

IL-1β CCAGCAGGTTATCATCATCATCC CTCGCAGCAGCACATCAAC

CXCL9 GCCATGAAGTCCGCTGTTCT GGGTTCCTCGAACTCCACACT

CXCL10 GACGGTCCGCTGCAACTG GCTTCCCTATGGCCCTCATT

CCL3 TGAAACCAGCAGCCTTTGCTC AGGCATTCAGTTCCAGGTCAGTG

CCL5 GATGGACATAGAGGACACAACT TGGGACGGCAGATCTGAGGG

GAPDH TGAGGCCGGTGCTGAGTATGTCG CCACAGTCTTCTGGGTGGCAGTG

4.5. Dual-Luciferase Reporter Assay

To examine the activation of IP-10 promoter by SARS-CoV SUD, mock and transfected cells
expressing SUD-FL, SUD-NM, and SUD-MC were co-transfected with CXCL10 promoter-driven firefly
luciferase reporter plasmids (IP-10GL3, tIP-10GL3, and IP-10mκB1) and an internal control Renilla
luciferase reporter pRluc-C1, as described in our prior report [37]. After a 1-day incubation, the cells
were harvested and then dissolved in the lysis buffer; the activity of firefly and Renilla luciferases in
the lysate was detected using Dual-Luciferase® Reporter (DLR™) Assay System (Promega, Waltham,
MA, USA) in Clarity™ Luminescence Microplate Reader (BioTek Instruments, Winooski, VT, USA).

4.6. Immunofluorescence Staining

To examine the SUD expression, stable cell lines transfected with pcDNA3.1/His C, pSUD-FL,
pSUD-NM, and pSUD-MC, respectively, were seeded on the sterilized coverslip placed in the well of
a 24-well plate. After 2-day incubation or treatment with the kinase inhibitors, the cells were fixed
by 3.7% paraformaldehyde in PBS for 1 h, permeabilized by 0.1% Triton X-100 in PBS for 10 min,
and then quenching by 15 mM NH4Cl. Blocking with 1–2% bovine serum albumin (BSA) buffer for 1 h
at room temperature. Subsequently, the cells were incubated with anti-E. coli synthesized SUD mouse
polyclonal antibody, mouse anti histidine tag antibody (MCA1396; Bio-Rad, Hercules, CA, USA),
anti-c-Jun (ab32137; Abcam), anti-IRF-1 (ab186384; Abcam, Cambridge, MA, USA) and anti-NF-κB p65
(ab32536; Abcam) mouse monoclonal antibodies at 4 ◦C overnight, reacted with secondary antibodies
conjugated with Alexa Fluor® 488 (ab150077; Abcam) or goat Anti-mouse IgG H&L FITC (ab6785;
Abcam) or goat anti-Rabbit IgG (H+L) Alexa Fluor 555 (A-21428; Invitrogen, ThermoFisher Scientific,
Waltham, MA, USA) in dark for 1h at room template. After washing cells for three times, the cells on
the coverslip were mounted using the Fluoromount-G mounting medium with DAPI (ThermoFisher
Scientific) under slides, and then photographed by Olympus, BX50 immunofluorescence microscopy
(Olympus, Tokyo, Japan) and Leica TCS SP8 X Confocal Spectral Microscope Imaging System with
White Light Laser.
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4.7. Direct Enzyme-Linked Immunosorbent Assay

100 µL BALF of each mouse was quadruple added into the 96-well plates, mixed with 100 µL
coating buffer, and then incubated at 4 ◦C overnight. After washing three times with 1x TBST,
the pre-coating plate was subsequently blocked with 5% fat-free in 1xTBST at room temperature for
1 h, washed with 1xTBST, incubated with rabbit anti-IL-1βmAb (ab9722; Abcam) for 1 h, and reacted
with HRP-conjugated goat anti-rabbit IgG antibody. Finally, the immune-reactive complexes were
reacted with KPL SureBlue™ TMB Microwell Peroxidase Substrate (SeraCare, West Bridgewater, MA,
USA) plus the stop buffer (1N HCl), and recorded by measuring the optical absorbance at 450 nm using
the ELISA plate reader SpectraMax iD3 (MOLECULAR DEVICES, Wals, Austria).

4.8. Western Blot and Dot Blot Assays

To determine the phosphorylation of c-Jun in at Serine63 in response to SUD-MC, transiently
transfected A549 cells with empty vector pcDNA3.1/His C or pSUD-MC were harvested 48 h post
transfection. The cell lysate was mixed with SDS-PAGE sample buffer for boiling 10 min, and then loaded
in 10% SDS-PAGE [37]. After running the gel electrophoresis, the proteins were electrophoretically
transferred onto the nitrocellulose membrane that was further blocked using the blocking solution
(5% fat-free milk) overnight and reacted with primary antibodies anti-Phospho-c-Jun (Ser63) mAb
(#2361; Cell Signaling), anti-IL-1β mAb (ab9722; Abcam), and anti-β-actin mAb (NB600-501; Novus).
The immune-reactive bands were probed with HRP-conjugated goat anti-mouse or rabbit IgG antibodies,
and then detected by enhanced chemiluminescent HRP substrate (Amersham Pharmacia Biotech, Little
Chalfont, United Kingdom). For dot blot assay, 15 µL of BALF was spotted onto the NC membrane for
air drying for 15 min, and then evaluated by following the procedure of Western blot assay.

4.9. Animal Model

The protocol of the mouse model was reviewed and approved by the Institutional Animal Care and
Use Committee (IACUC) at China Medical University on December 24th, 2015 (Animal Use Protocol
No. CMUIACUC-2016-049-2). Five 6-week-old female wild type or NLRP3 knockout (NLRP3−/−)
C57BL/6 mice were anesthetized via giving isoflurane under 2-3 cc/min air*100 flow rate by the Matrx
VMS® small animal anesthesia machine (Midmark, Tampa, FL, USA) for 5 to 10 minutes. 25 µg of the
plasmid (pcDNA3.1/His C, pSUD-FL, pSUD-NM or pSUD-MC) in 50 µl of the in vivo-jetPEI® agent
(Polyplus-transfection S.A, Illkirch, France) was loaded in a micro syringe (Hamilton®, Salt Lake City,
UT, USA), and intratracheally instilled into the mouse lungs. After 4 intratracheal instillations with
the plasmid every 2 days, the mice were sacrificed for harvesting the bronchoalveolar lavage fluid
(BALF) for total cell counting and flow cytometry assays, and collecting the lungs, which left lobe was
performed by Haemotoxylin and Eosin (H&E) and immunohistochemistry (IHC) staining assays and
right lobes were homogenized for qRT-PCR assay.

4.10. Flow Cytometry Assay

The immune cells in the BALFs of each mouse was directly counted using a hemocytometer,
and then collected after the centrifugation at 716 (×g) for 5 min. The cells were resuspended and
reacted with primary antibodies, including APC/Cy7 anti-mouse CD45 (biolegend, San Diego, CA),
APC anti-human/mouse CD11b (biolegend, San Diego, CA), FITC anti-mouse Ly 6G/Ly 6C (Gr-1)
(biolegend, San Diego, CA), PE anti-mouse F4/80 (biolegend, San Diego, CA), PE anti-mouse CD3ε
(biolegend, San Diego, CA), FITC anti-mouse CD4 (bio legend, San Diego, CA) and APC anti-mouse
CD8a (biolegend, San Diego, CA). After a 15-min incubation, the cells were washed with PBS twice,
fixed with 2% paraformaldehyde, and then detected using flow cytometry under a BD FACSCanto
system (Becton Dickinson FACS Calibur, Franklin Lakes, NJ, USA). 100,000 live-cell events per sample
were analyzed by BD FACS Canto Clinical and FACS Diva software (Becton Dickinson, Franklin
Lakes, NJ, USA), in which the Gr-1+/CD11b+/F4/80+ cells gated in Q2 were macrophages/monocytes,
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the Gr-1+/CD11b+/F4/80− cells gated Q2-1 from CD45+ cells were neutrophils, and the CD45+/CD3+

cells gated from P1 were lymphocytes.

4.11. Histopathology and Immunohistochemistry Assays

The mouse lung tissues were fixed in 10% neutral buffered formalin overnight, dehydrated in 70%
ethanol for 30 min, in 95% ethanol for 30 min, and in 100% ethanol for 30 min, and then embedded in
paraffin at 58 ◦C. The paraffin embedded sections at the thickness of 4-15 µm were obtained by the
rotary microtome, deparaffinized with xylene 3 times for 5 min, rehydrated from 100% ethanol to
80% ethanol, washed with distilled water for 5 min, and then stained with Hematoxylin Gill II (Leica
Surgipath, Buffalo Grove, IL, USA) for 8 min and counterstained with Eosin (Leica Surgipath) for 1 min.
Finally, the stained sections were dehydrated with 100% ethanol, cleared in xylene three times for 5 min,
dried at room temperature in air, and mounted by Micromount (Leica Surgipath). In the IHC staining
assay, the sections were deparaffinized, rehydrated, and then heated in the Tris-EDTA Buffer (pH 9.0)
at 100 ◦C for 20 min. Subsequently, the sections were blocked with the block solution (1–3% protein)
for 2 h, incubated with primary antibodies (anti-SARS-CoV SUD and anti-mouse CD11b (ab133357;
Abcam)) at 4 ◦C overnight, treated in 3% H2O2 for 10 min to quench the endogenous peroxidase activity,
and reacted with biotinylated universal antibodies from a VECTASTAIN® Elite® ABC Universal
Kit (Vector Laboratories, Burlingame, CA, USA) for 30 min. After incubating with VECTASTAIN
elite ABC reagent 30 min, the dark brown-black precipitate of the immune complexes in the sections
was developed using DAB Peroxidase Substrate Kit (Vector Laboratories). Finally, the sections were
counterstained with hematoxylin for 2-3 min, and then mounted by Micromount (Leica).

4.12. Inhibitor Treatment

For inhibitor treatment, vector control and SUD-MC-expressing cells were incubated with MCC950
(NLRP3 inflammasome inhibitor) (17510; Cayman Chemical, Ann Arbor, MI, USA) 1 µM, and then
harvested for dual-luciferase reporter, real-time RT-PCR, and Western blotting.

4.13. Statistical Analysis

All data were calculated from three independent experiments. One-way ANOVA followed by
Scheffe’s post-hoc test was used to analyze all data. Statistical significance was considered at the
p value of less than 0.05.
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