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Abstract
Objectives Visualization of the bone distribution is an important prerequisite for MRI-guided high-intensity focused ultrasound
(MRI-HIFU) treatment planning of bonemetastases. In this context, we evaluatedMRI-based synthetic CT (sCT) imaging for the
visualization of cortical bone.
Methods MR and CT images of nine patients with pelvic and femoral metastases were retrospectively analyzed in this study. The
metastatic lesions were osteolytic, osteoblastic or mixed. sCT were generated from pre-treatment or treatmentMR images using a
UNet-like neural network. sCT was qualitatively and quantitatively compared to CT in the bone (pelvis or femur) containing the
metastasis and in a region of interest placed on the metastasis itself, through mean absolute difference (MAD), mean difference
(MD), Dice similarity coefficient (DSC), and root mean square surface distance (RMSD).
Results The dataset consisted of 3 osteolytic, 4 osteoblastic and 2mixedmetastases. Formost patients, the general morphology of
the bone was well represented in the sCT images and osteolytic, osteoblastic and mixed lesions could be discriminated. Despite
an average timespan betweenMR and CT acquisitions of 61 days, in bone, the average (± standard deviation)MADwas 116 ± 26
HU,MD − 14 ± 66HU, DSC 0.85 ± 0.05, and RMSD 2.05 ± 0.48mm and, in the lesion,MADwas 132 ± 62HU,MD − 31 ± 106
HU, DSC 0.75 ± 0.2, and RMSD 2.73 ± 2.28 mm.
Conclusions Synthetic CT images adequately depicted the cancellous and cortical bone distribution in the different lesion types,
which shows its potential for MRI-HIFU treatment planning.
Key Points
• Synthetic computed tomography was able to depict bone distribution in metastatic lesions.
• Synthetic computed tomography images intrinsically aligned with treatment MR images may have the potential to facilitate
MR-HIFU treatment planning of bone metastases, by combining visualization of soft tissues and cancellous and cortical bone.
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Abbreviations
DSC Dice similarity coefficient
HU Hounsfield unit
MAD Mean absolute difference
MD Mean difference
MRI-HIFU Magnetic resonance imaging–guided high-

intensity focused ultrasound
RMSD Root mean square distance
sCT Synthetic CT

Introduction

Magnetic resonance imaging–guided high-intensity fo-
cused ultrasound (MRI-HIFU) has shown promising re-
sults for therapy in bones and joints [1–4]. Particularly,
MRI-HIFU has shown potential for pain palliation in
patients with bone metastases [5], where the suspected
mechanism of action is the thermal ablation of the
nerves that produce the pain [6–8].

The treatment volume may be limited to the superficial
periosteum for palliative denervation, or it can also involve
ablation of the deeper tumor tissue [2]. During treatment plan-
ning for pain palliation, adequate depiction of the cancellous
and cortical bone in and around the lesion in treatment posi-
tion is required for choosing a treatment strategy appropriate
for the lesion type [9]. In case of tumor ablation, delineation of
the lesion is also required. MRI is suitable to characterize soft
tissues within or adjacent to the periosteum. However, com-
puted tomography (CT) is better suited to expose cortical bone
loss (in osteolytic lesions) or bone creation (in osteoblastic
lesions) [10], inherent to bone metastases.

Currently, patient eligibility assessment for HIFU treat-
ment and lesion characterization are done using CT scans,
and occasionally pre-treatment MRI scans, acquired prior to
HIFU treatment [2, 11]. These scans are also used on the
treatment day to choose a suitable treatment strategy ap-
proach, depending on the integrity of the bone cortex [9,
12]. However, patient positions in pre-treatment and treatment
images usually differ. In addition, pre-treatment images may
have been acquired up to months prior to the MRI-HIFU
treatment procedure, so clinically significant delay may exist
between the scans.

To provide information on the cancellous and cortical bone
distribution in and around the lesion in MRI-HIFU treatment
position, strategies to register pre-treatment CT to MR images
have been investigated. However, interscan registration was
reported to be a complex time-consuming process and patho-
logical changes over time were ignored [13].

In the last decade, the development of synthetic CT (sCT),
i.e., deriving CT-like images from MRI scans, has enabled an
MRI-based visualization of osseous tissues for radiotherapy
[14] and orthopedic care [15–18]. In the MRI-HIFU context,

such sCT images could be generated from MR images ac-
quired during the treatment session to depict the bone distri-
bution in the treatment position. Although sCT generation has
been used for orthopedic purposes [17–19] and HIFU treat-
ment planning [20], its ability to reconstruct bone blastic or
lytic lesions is unknown.

We implemented a fast and automated method for sCT
generation that enables the combined visualization of soft tis-
sue and cortical bone. By qualitatively and quantitatively
comparing sCT with CT, we investigated the potential of
sCT images for visualizing cancellous and cortical bone in
patients with bone metastases.

Methods

Patient data

Imaging data of nine patients were used retrospectively for
this study. The patients were screened for palliative MRI-
HIFU treatment of bone metastases at the radiology depart-
ment of Isala Hospital (Zwolle, The Netherlands), between
January 2019 and December 2019, and written informed con-
sent for the use of their data for scientific research was obtain-
ed. All patients underwent radiotherapy before theMRI-HIFU
treatment. For the purpose of this study, all data were
anonymized.

Acquisition parameters

All patients had a pre-treatment CT scan, available from ra-
diotherapy planning. Acquisition parameters are shown in
Table 1.

MRI scans were acquired on a 1.5-T scanner. Pre-treatment
MRI scans were acquired with a 16-element coil with the
patient in supine position. Treatment MRI scans were ac-
quired with an integrated 2-element coil inside the HIFU ta-
bletop (Sonalleve V2, Profound Medical) combined with an
external 3-element pelvic coil. Treatment position was chosen
to minimize the distance between the transducer and the le-
sion, with proper acoustic access to the lesion. In both MRI
sessions, the same sequence was included. Acquisition param-
eters are shown in Table 1.

The average time between acquisition of the pre-treatment
CT and the treatment MR was 61 days (range: [1; 165] days),
whereas the average time between pre-treatment CT and pre-
treatment MRI, which was available for four patients, was 31
days (range: [6; 104] days). If available, pre-treatment MR
images were used for training and evaluation to minimize
interscan positioning and pathophysiological differences. If
not, treatment MR images were used (n = 5/9).
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Table 1 Main imaging sequence
parameters for pre-treatment CT
and pre-treatment and treatment
MR scans

CT

CT scanner iCT 256, Brilliance Big Bore or Ingenuity CT, Philips Healthcare

In-plane reconstructed pixel size (range) [0.67–0.98] × [0.67–0.98] mm2

Slice spacing 3 mm

Tube voltage 120 kV

Exposure [69–253] mAs

MR

MR scanner Achieva, Philips Healthcare

Type Radiofrequency-spoiled T1-weighted multi-echo gradient-echo

Scan mode 3D

In-plane pixel size (range) [0.92–1] × [0.92–1] mm2

Partition thickness 2 mm

TE1/TE2/TR 2.1/4.2/7 ms

Flip angle 10°

Number of slices 150

Acquisition duration ≈ 3 min

Values between square brackets indicate a range

TE echo time, TR repetition time

Fig. 1 Schematic description of the approach. The bone containing the
lesion was segmented on MRI and CT and used to register the CT to the
MRI. Patches of 24 × 24 × 24 voxels were then extracted from the MRI
and registered CT to train a synthetic CT (sCT) generation model. Once

trained, the model was used to create a sCT of the bone of interest from a
patient not seen during the training. The sCT was then evaluated in the
bone of interest and the metastatic lesion
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Preprocessing

Segmentation

The pelvic and femoral bones were semi-automatically
segmented on the MR and CT images using image pro-
cessing software (Mimics Medical 21.0, Materialize).
Lesion masks were semi-automatically created on the
MR images by a radiologist, using segmentation software
(ITK-Snap v3.8.0 [21]).

Registration

CT images were registered to the MR images in two steps.
First, an iterative closest point algorithm [22] applied on the
MR– and CT–based bone segmentations combined with a
dual quaternion interpolation of the soft tissues initialized
the registration [23]. Then, an image-based deformable regis-
tration was applied on the entire body contour, using open
source registration software (Elastix [24]). Given the challeng-
ing registration task due to large differences in patients’ posi-
tioning between the scanning sessions (Fig. 1), this registra-
tion focused on matching the bones at the expense of the
surrounding soft tissues. During registration, CT images were
resampled to the MRI resolution using cubic B-spline inter-
polation. In the remainder of the paper, CT refers to the reg-
istered CT.

Normalization

MR intensities were clipped beyond the 95th percentile to
exclude the hyperintense signal from the fluid surrounding
the transducer inside the HIFU tabletop and then linearly
mapped to [− 1; 1]. CT intensities were linearly mapped from
the Hounsfield unit range [− 1024; 3071] to [− 1; 1].

Neural network

Synthetic CT images were generated by means of a 3D patch-
based UNet-like neural network [25, 26], using an architecture
and hyperparameters previously applied for sCT generation in
the hip [27]. The neural network took as inputs MR images at
two echo times and was trained to minimize the L1 distance
between the CT and sCT at a learning rate of 10−4 using an
Adam optimizer [28]. During the training, data were augment-
ed to artificially increase the training set. Random flipping of
the coronal and sagittal planes and random rotation between −
45 and 45° around the feet-head axis were applied to simulate
the unconventional patient positioning.

Because of the small amount of data, the network was
trained using leave-one-out cross-validation resulting in nine
models. For each model, seven data sets were used for train-
ing, one for validation, and one as an independent test set.
Training and testing were done on a GeForce RTX 2080 Ti
(NVIDIA) graphics processing unit.

Evaluation

To evaluate accuracy, sCT images were compared to CT im-
ages in the bone containing the metastasis and the metastasis
itself, using the masks as segmented on the MR images. The
metrics used for evaluation were the mean sCT-to-CT differ-
ence (MD), mean absolute difference (MAD), the Dice simi-
larity coefficient (DSC) [29] and the sCT-to-CT root mean
square surface distance (RMSD) [30]. For the analysis on
the bone and the lesion, cancellous and cortical bone were
extracted from the CT and sCT images, by means of a 150-
HU [31, 32] threshold applied within the bone and the lesion
masks, respectively. The DSC and the surface distance were
computed between CT and sCT on the extracted bones.
Particularly for the surface distance estimation, the lesion
masks included a 3-cm margin around them. These methodo-
logical steps are summarized in Fig. 1.

Table 2 Demographics and
clinical characteristics of the
patients

Patient Patient
sex

Primary
tumor

type

Metastasis

type

Location of the
metastasis

Days between CT scan and HIFU
treatment

P1 Male Bladder Mixed Pelvis 13

P2 Female Breast Mixed Pelvis 35

P3 Female Colon Osteoblastic Pelvis 157

P4 Male Lung Osteolytic Femur 165

P5 Female Bile duct Osteolytic Femur 10

P6 Male Prostate Osteoblastic Femur 1

P7 Male Prostate Osteoblastic Pelvis 1

P8 Male Liver Osteolytic Pelvis 126

P9 Male Prostate Osteoblastic Pelvis 3
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Results

The characteristics of the population are described in Table 2.
Synthetic CT images were generated in 66 s from an MR

image of matrix size 352 × 352 × 150. On average per patient,
sCT images were generated in 80 s from the T1-w gradient-
echo images.

Metrics for the quantitative comparison of CT and sCT for
all patients are reported in Table 3 for the bone containing the
lesion and in Table 4 for the lesion only. Average ± standard
deviation voxelwise differences were as follows: MAD 116 ±
26 HU and MD: − 14 ± 66 HU in the bone and MAD: 132 ±
62 HU and MD: − 31 ± 106 HU. The MD in the bone of
interest was overall negative, which indicates that bone inten-
sities in sCT images were on average underestimated.

Despite voxelwise differences, the bone distribution was
similar between the CT and sCT, as evidenced by an average
DSC among patients of 0.85 ± 0.05 in the bone and of 0.75 ±
0.2 in the lesion.

The surface of the bone and the osseous tissues inside the
lesion have been preserved in the sCT, as indicated by the
sCT-to-CT surface distance analysis. The largest errors have
been found close by and in the lesion: the average ± standard
deviation RMSD equals 2.73 ± 2.28 mm in and around the
lesion compared to 2.05 ± 0.48 mm in the entire bone. Three-
dimensional bone renderings with overlays of sCT-to-CT sur-
face distances obtained in the bone and in the lesion are avail-
able for all patients in Supplementary Material Figure S1.

Representative cases of sCT images were obtained for pa-
tients presenting osteoblastic (Fig. 2a), osteolytic (Fig. 2b),
and mixed (Fig. 2c) lesions along with sCT-to-CT difference
maps. The soft tissues around the lesions were well character-
ized in MR images. Most errors were located in dense and
sclerotic regions, although bone formation was identifiable.

Synthetic CT images were slightly blurred causing some of
the intensity underestimation seen in Tables 3 and 4.

Overall, a good sCT-CT correspondence has been observed
as shown Fig. 3 which displays the sCT images of all patients.
For three patients, significant differences between sCT and CT
were visible, but their cause, sCT generation errors or interscan
pathological changes, can hardly be determined given the long
timespan between the MRI and CT acquisitions. For one pa-
tient, the model largely underestimated the sclerotic region.

Figure 4 shows the potential use of sCT as a bone visual-
ization tool for planning of MR-HIFU treatment in the pelvis
and femur.

Discussion

In this study, we evaluated the potential of deep learning–based
synthetic CT generation for the visualization of cancellous and
cortical bone to support MR-HIFU treatment planning for me-
tastases in pelvic and femoral bones. Combining MRI and CT-
like imaging in a single reference frame would be useful to
better define the region of treatment and the bone cortex, during
treatment planning for pain palliation (and tumor ablation, if
attempted). The short sCT generation time (< 2 min) required
per patient makes this approach suitable for on-the-fly treatment
planning. Pretreatment CT and sCT images showed similar
cortical bone distribution in patients with bone metastases.

For treatment planning, qualitative visualization of the
bone distribution in the lesion and its vicinity is paramount.
Inadequate depiction of the lesion can result in over- or
undertreatment of the lesion and potential damage to the sur-
rounding tissue. CT could be used for bone cortex depiction,
but a recent CT is not always available and large differences in
patient positioning during pretreatment CT imaging and

Table 3 Mean absolute difference (MAD), mean difference (MD), Dice
similarity coefficient (DSC), and root mean square difference (RMSD)
obtained for each patient between the sCT and CT in the bone containing
the lesion. DSC and RMSD were obtained using a threshold of 150
Hounsfield units

P# MAD (HU) MD (HU) DSC (1) RMSD (mm)

P1 102 34 0.81 2.70

P2 146 23 0.86 2.54

P3 132 − 26 0.74 1.74

P4 96 − 47 0.85 1.38

P5 77 29 0.88 1.67

P6 154 119 0.90 1.90

P7 136 − 98 0.89 2.11

P8 109 87 0.9 1.76

P9 95 7 0.85 2.65

Table 4 Mean absolute difference (MAD), mean difference (MD), Dice
similarity coefficient (DSC), and root mean square difference (RMSD)
obtained for each patient between the sCT and CT in themetastatic lesion.
DSC and RMSD were obtained using a threshold of 150 Hounsfield
units. Patients are stratified per lesion type

Lesion type P# MAD (HU) MD (HU) DSC (1) RMSD (mm)

Osteolytic P4 188 100 0.74 1.42

P5 27 12 0.77 0.75

P8 108 − 51 0.60 3.87

Osteoblastic P3 166 101 0.82 2.08

P6 235 − 229 0.96 0.89

P7 81 29 0.99 2.08

P9 149 − 123 0.49 7.30

Mixed P1 94 − 64 0.56 4.93

P2 143 − 55 0.86 2.86
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Fig. 2 MR, CT, synthetic CT
(sCT), and sCT-to-CT difference
(Δ) obtained for three patients
presenting (a) osteoblastic, (b)
osteolytic, and (c) mixed lesions.
Red boxes on the MR images in-
dicate the region that was zoomed
in to compare CT and sCT images

Fig. 3 Comparison of single slices out of the MR, CT, and sCT datasets
of all patients, divided by their sCT-CT correspondence in the lesion. For
most patients, lesions could be correctly identified on sCT images. For
three patients, differences were observed between CT and sCT images,
but it is hard to judge whether they are due to pathological changes (e.g.,

calcium-enriched bone visible in CT but not MRI in P8) or error in sCT
reconstruction. For one patient, definite sCT reconstruction errors are
visible with sclerotic regions not well depicted. Stars indicate different
time spans between pretreatment CT and treatment MR: * < 10 days, **
10–35 days, *** > 100 days
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treatment MR imaging are often present. Synthetic CT offers
an easier interpretation of the bone distribution in treatment
position, facilitating physicians to perform the ablations [9].
The delineation and characterization of the lesion could be
performed on MRI. However, sometimes, it is unclear where
remaining parts of cortical bone are present, solely based on
(intraprocedural) MRI. Here, sCTmight have additional value
for characterization and/or delineation of the metastasis.
Moreover, sCT images could potentially be used for identifi-
cation of other bony structures along the US beam path and
serve as input for sonication simulations to facilitate treatment
cell positioning and optimization of sonication protocols for
energy deposition in the target lesion [33, 34]. This approach
of combined sCT and MR images could also be of value for
other fields of MR-HIFU applications in bones, such as

treatment of osteoid osteoma. However, the network will
probably need to be re-trained with osteoid osteoma data.

The quantitative metrics obtained in this study are compa-
rable to the results reported in literature, with MAD in the
bone larger than 125 HU reported in the lower arm and pelvis
for patients with no known orthopedic conditions [16, 27].
However, this observation on limited data does not allow
drawing general conclusions.

In its current implementation, the model was able to pro-
vide a rough estimation of the cortical bone distribution in and
around the lesion. The exact lesion contour was more approx-
imate, presumably because of its irregular geometry, which
might cause partial volume issues in images, and of the slight-
ly blurred sCT images.

Fig. 4 a Pretreatment CT images in the pelvis with conventional patient
positioning and MR and intrinsically aligned synthetic CT (sCT) images
with unconventional patient positioning for the HIFU treatment. Lesion is
indicated by *. Since sCT scans are intrinsically registered with MR, they
are able to provide bone cortex depiction with the patient in treatment
position. b MR and a fused visualization of MR and sCT images
depicting the cortical bone distribution, obtained for two patients with
osteolytic lesions in the femur (left) and in the pelvic iliac crest (right).

MR and sCT are inherently registered, allowing straightforward identifi-
cation of soft tissues and bone. cMR images from transverse slices of two
patients with lesions in the femur and pelvis and corresponding 3D bone
renderings that provide an overview of the bone with the lesion. The bone
renderings were obtained by thresholding the sCT at 150 Hounsfield units
within the bone mask (created in MeVisLab v3.2, MeVis Medical
Solutions AG). The red line identifies the same location in MR images
and 3D bone renderings
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Anatomical changes caused by tumor progression could
partially explain the lower DSC and higher RMSD of the
surface distance between CT and sCT in the lesion. For 6/9
patients, the timespan between the CT and MR was longer
than 10 days, the approximate time interval in which anatom-
ical changes would typically occur (Fig. 2 and example case in
Supplementary Materials, Figure S2). Motion artifacts could
also afflict the sCT generation and its comparison with CT
(see P1 in Supplementary Materials, Figure S3). For one pa-
tient, definite sCT reconstruction errors were observed, pre-
sumably because the metastasis was newly formed as evi-
denced by hyperintense signal in the almost opposed-phase
image and hypointense signal in the almost in-phase image
[35]. This hyperintense signal was observed only in this pa-
tient (Supplementary Materials, Figure S4), and the sCT error
could be solved either on the processing side, by adding more
newly formed osteoid cases to the training set, or on the ac-
quisition side, by acquiring MR data with more than 2 echoes,
to make the model less sensitive to the relaxation time T2*
(shorter in this lesion compared to other tissues).

We acknowledge several limitations to this study. First, the
presented results show the potential of MR-based synthetic CT
for a limited dataset and more data are required to assess the
robustness of the method across patients. However, the lesions
were all located in the hip region, which is the most commonly
treated region with MRI-HIFU [5]. To limit overfitting caused
by the small dataset, a patch-based method with a limited re-
ceptive field was used to facilitate the generalizability of the
model and data augmentation was applied to feed the network
with data corresponding to unconventional patient positioning.

In addition, only the metastatic bone and the lesion were
evaluated with sCT, as soft tissues can be better assessed on
MR images. Bone reconstruction was slightly blurry, partly
because of registration errors in the training set, mainly due to
positioning differences between pretreatment and treatment
scans [36]. In the future, by acquiring pre-treatment MR scans
in addition to the pre-treatment CT scans, the registration of the
training set would be improved and interscan differences would
be reduced, leading to the generation of sharper sCT images.

To conclude, this study demonstrated the potential of sCT
for visualizing cancellous and cortical bone distribution for
HIFU treatment procedures of bone metastases in the hip re-
gion. Osteolysis and ossification were visible on the sCT im-
ages with the bone distribution comparable between CT and
sCT within the bone of interest. Thus, synthetic CT images
could help in visualizing bone lesions with CT-like contrasts
for planning of palliative MRI-HIFU procedures, including
the targeting of the lesions and treatment planning.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-08568-y.
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