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ABSTRACT

Predators induce stress in prey and can have beneficial effects in ecosystems, but can
also have negative effects on biodiversity if they are overabundant or have been
introduced. The growth of human populations is, at the same time, causing
degradation of natural habitats and increasing interaction rates of humans with
wildlife, such that conservation management routinely considers the effects of
human disturbance as tantamount to or surpassing those of predators. The need to
simultaneously manage both of these threats is particularly acute in urban areas that
are, increasingly, being recognized as global hotspots of wildlife activity. Pressures
from altered predator—prey interactions and human activity may each initiate fear
responses in prey species above those that are triggered by natural stressors in
ecosystems. If fear responses are experienced by prey at elevated levels, on top of
responses to multiple environmental stressors, chronic stress impacts may occur.
Despite common knowledge of the negative effects of stress, however, it is rare that
stress management is considered in conservation, except in intensive ex situ
situations such as in captive breeding facilities or zoos. We propose that mitigation of
stress impacts on wildlife is crucial for preserving biodiversity, especially as the value
of habitats within urban areas increases. As such, we highlight the need for future
studies to consider fear and stress in predator-prey ecology to preserve both
biodiversity and ecosystem functioning, especially in areas where human disturbance
occurs. We suggest, in particular, that non-invasive in situ investigations of
endocrinology and ethology be partnered in conservation planning with surveys of
habitat resources to incorporate and reduce the effects of fear and stress on wildlife.

Subjects Animal Behavior, Conservation Biology, Ecology, Coupled Natural and Human Systems,
Environmental Impacts

Keywords Fear, Stress, Anthropogenic, Urban, Endocrinology, Ethology, Landscape of fear,
Cumulative, CEA, Predator

INTRODUCTION

Predators in many systems positively influence the local distribution and abundance of
their prey (Polis et al., 1998; Ayal, 2007; Estes et al., 2011; Weissburg, Smee & Ferner, 2014),
and indirectly but positively influence the functioning of whole ecosystems via trophic
cascades (Prugh et al., 2009; Ritchie ¢ Johnson, 2009; Estes et al., 2011; Ripple et al., 2014).
Predators often elicit fear responses in prey that affect prey behaviour, energy budgets
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and the way they interact with the environment (Brown & Kotler, 2004; Clinchy et al., 2004;
Romero, 2004). For example, the fear response of an individual of a prey species to a
predator may be to change the locations or times in which they forage, which can have
positive impacts on the structure of the environment (Laundré, Herndndez ¢ Ripple,
2010). Such fear responses can in turn influence ecosystem function (Schmitz, Krivan ¢
Ovadia, 2004, Schmitz, Beckerman ¢ O’Brien, 1997, Hawlena et al., 2012). These effects
arise due to the ‘landscape of fear’ that prey individuals perceive—that is the spatial
distribution of perceived predation risk that influences prey movement and behaviour as
prey individuals attempt to mitigate risk and obtain essential resources (Laundré,
Herndndez & Altendorf, 2001; Laundré, Herndndez & Ripple, 2010).

Recent studies suggest that the effects of predators are being altered, and often
amplified, by human activities. For example, the demise of top predators in many parts of
the world has ‘released’ populations of smaller predators, or mesopredators that have since
become overabundant and now exert strong pressure on smaller species (Prugh et al.,
2009). Predators that have been introduced to new areas also exert much stronger pressure
on prey populations than do native predators (Salo et al., 2007). Climate change and
associated shifts in primary productivity can also have bottom-up impacts on
predator—prey interactions (Laws, 2017). Such novel alterations to predator-prey
dynamics can depress prey populations and disrupt community structure, and as such
require novel approaches to recognize and manage their effects (Carthey ¢ Blumstein,
2018; Fleming & Bateman, 2018; Guiden et al., 2019).

Altered predator—prey interactions may contribute to declines in biodiversity, but a
primary cause of biodiversity loss is the rapid global increase in human populations,
driving agricultural, industrial, and urban expansions that change or destroy natural
habitats (Madsen, Carroll & Moore Brands, 2010). Such expansions are resulting in novel
human-wildlife interactions and secondary impacts that arise from human activities in
close proximity to natural environments, and thus increasingly are becoming an additional
stressor that influences ecosystem function. Pressures exerted both directly and indirectly
by human activities have been likened to the pressures exerted by the presence of a
top predator on prey (Frid ¢ Dill, 2002; Rehnus, Wehrle & Palme, 2014; Patten ¢» Burger,
2018). Natural predation pressures coupled with human-imposed predation-like pressures
and/or additional exogenous stressors, such as pollution, arising from anthropogenic
activities are likely to negatively affect prey species by increasing their levels or frequency
of stress. Current research is developing a more nuanced understanding of the effects
of human activity and predator presence on the stress of prey (Arlettaz et al., 2015;
Jaatinen, Seltmann & Ost, 2014, respectively). However, few studies in terrestrial
ecosystems have considered both of these pressures simultaneously or have linked
behavioural responses with endocrinological evidence of stress. In one instructive recent
study, human activity was shown to be positively correlated with physiological stress in
ungulates, whilst in areas occupied by large predators stress was found to be lower and less
variable (Zbyryt et al., 2017).

Conservation management and associated scientific research is often viewed from the
perspective of a single discipline. However, ecological changes arising from anthropogenic
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disturbances, including the alteration of predator—prey encounter rates, creation of novel
species interactions (including between people and wildlife), introduction of novel species,
and the alteration of natural habitats, call for multidisciplinary solutions. This is
particularly pertinent as urban edge habitats are becoming increasingly valuable global
hotspots of wildlife activity (Ives et al., 2016), and human influences are spreading further
into natural habitats (Otto, 2018). There is growing evidence that multiple introduced
stressors (e.g. altered predator—prey interactions and disturbance from humans) can have
compounding impacts on wildlife, especially when interacting with natural stressors in
ecosystems (Geary et al., 2019). For these reasons, it is timely to review relevant
information from the broad knowledge bases of conservation physiology, ethology, and
ecology to communicate the urgent need for wildlife managers and urban planners to
routinely consider how fear and stress effects from multiple sources, particularly novel
predator interactions and human activities, can affect prey species and ecosystem
functioning in increasingly altered systems. Our focus in this review is on mammals
because of the wealth of information on this group, but we note relevant studies from other
groups where appropriate. We begin our review by describing physiological responses
of mammals to fear and stress, then we consider the behavioural responses of mammals to
these factors, and argue that human activity should be considered as part of the ecosystem
so that overall stress impacts can be managed accordingly. We then demonstrate how
fear and stress can influence habitat use, how vegetation and microhabitat management
potentially may be used to alleviate stress, and how to monitor for fear and stress to
then create management change. Finally, we use Australia as an example to show the
benefits of considering cumulative fear and stress impacts to mitigate the effects of
introduced eutherian predators, increased human activity, and the possible interactive
effects of the two.

REVIEW METHOD

This is not a systematic review, but rather a novel synthesis of existing knowledge. It seeks
to extend ideas on the physiological impacts of fear and stress, behavioural ecology,
predator-prey dynamics, and conservation management to explore the influence of
humans and altered predator-prey interactions in the urban environment. To ensure that
all key topic areas were thoroughly covered we conducted literature searches via: Google
Scholar©, Web of Science©, JSTORO and Wiley Interscience Online Library©.
Manuscripts were mined for information relevant to wildlife fear and stress in terms of
ecological management under anthropogenic pressures, including introduced predators
and altered predator—prey interactions. The literature searches were undertaken using
the following key terms as part of their title, keywords, and/or within the abstract: ‘acute
stress,’ ‘chronic stress,” ‘homeostasis,” ‘cumulative stress,” ‘multiple stressors,” ‘multiple
threats,” ‘allostatic load,” ‘allostatic overload,” ‘acclimitisation,” ‘glucocorticoid response,’
‘hypothalamic pituitary adrenal axis,” ‘fear arousal,” ‘fear evolution,” ‘fear predation,’
‘amygdala’ ‘fear,” ‘Pavlovian fear conditioning,” ‘glucocorticoid assay,” ‘f(a)ecal
glucocorticoid,” ‘non-invasive glucocorticoid assay,” ‘reactive scope model,” landscape(s) of
fear,” ‘risk allocation hypothesis,” ‘olfaction” + ‘fear’ + ‘mammal,” ‘post-traumatic stress
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disorder,” ‘predator’ + ‘odo(u)r’ + ‘fear,’ ‘predator cue(s),” ‘predation stress hypothesis,
‘predator-sensitive food hypothesis,” ‘human activity’ + ‘stress’ + ‘wildlife,” human
disturbance,” ‘interactive stress,” ‘multiple stress(ors),” ‘additive stress impacts,” ‘synergistic
stress impacts,” ‘antagonistic stress impacts,” human’ + ‘wildlife’ + ‘resource subsidies,’
‘predator trophic cascade,” ‘wildlife urban adaptation,” “‘urban ecology’ + ‘wildlife,’
‘Australian mammal extinction,” ‘critical weight range mammal,” ‘diet’ + ‘change’ +
‘Australian’ + ‘predator,” ‘red fox’ + ‘Australia,” ‘domestic cat’ + ‘Australia,” ‘human
activity’ + ‘wildlife’ + ‘Australia,” “‘Australia’ + ‘biodiversity’ + ‘conservation policy’ +
‘urban hotspot,” ‘Australian environment protection and biodiversity conservation act’ +
‘cumulative stress,” ‘Australia’ + ‘conservation’ + ‘glucocorticoids,” ‘introduced predator
control,” ‘habitat structural complexity,” ‘habitat structural diversity,” ‘vegetation diversity,’
‘vegetation heterogeneity,” ‘habitat heterogeneity hypothesis,” ‘cumulative effects
assessments.” Supplementary articles supporting the review narrative, suggested by
reviewers on earlier versions of the manuscript, have also been included.

MAMMALIAN PHYSIOLOGICAL RESPONSES TO FEAR
AND STRESS

Physiological stress can be broadly defined as a change in the physiological well-being of an
individual following exposure to an aversive extrinsic stimulus—frequently referred to as
a stressor (Selye, 1936). The physiological stress response that follows aims to restore
internal homeostasis (Cannon, 1932). An individual animal experiences stress in response
to conditions that threaten its survival or compromise its ability to maintain homeostasis.
Examples include acute or chronic encounters with predators, inclement weather,
significant natural disturbances including fire and flood, reduced oxygen availability and
depleted food resources (Lima, 1998; King ¢ Bradshaw, 2010; Malcolm et al., 2014;
Santos et al., 2014; Crocker, Khudyakov & Champagne, 2016).

In mammals, activation of the hypothalamic-pituitary-adrenal (HPA) axis is a common
stress response, but this may vary depending on the nature of the stressor (Mason, 1971);
it is important to consider this when assessing stress impacts. Changes in abiotic
conditions, such as in food availability, or the introduction of toxins or diseases can be
stressful, but such changes do not arouse fear. However, a stress response involving
peripheral autonomic and neuroendocrine changes (Yates, Russell ¢» Maran, 1971,
Sapolsky, Romero ¢ Munck, 2000; McEwen ¢ Wingfield, 2003), can be initiated by fear
arousal (LeDoux, 2003; Labar & Ledoux, 2011). Animals with sophisticated nervous
systems, such as mammals, exhibit a central motive state between threat stimulus and
response that is driven by the amygdala (Pitkanen, 2000) and can be identified as ‘fear’
(Mineka, 1979; Ohman, 2000). Fear has been defined as a psychological state that triggers
physiological responses to avoid or escape from a stressor (Epstein, 1972; LeDoux, 1996).
The development of successful defense mechanisms to fear-inducing stressors has clear
survival benefits for animals, and thus fear can be seen as a driver of evolutionary
adaptations (Tooby ¢ Cosmides, 1990). Common strategies of escape and avoidance allow
animals to cope with recurrent stressors, such as the fear-inducing threat of predation
(Lima & Dill, 1990).
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The sections of the mammalian amygdala associated with fear behaviour serve as an
interface between sensory input and information transport and processing, endocrine
response, and motor output (Davis & Whalen, 2001). These interactions are associated
with learning and memory via the involvement of the lateral and basal nuclei, as
demonstrated on captive rodents using neurotoxic lesions on the basal and lateral nuclei of
the amygdala (Wallace ¢ Rosen, 2001), and are evident in Pavlovian fear conditioning
paradigms (Davis, 1992; Maren, 2001). Activation of hormones, specifically
glucocorticoids and norepinephrine in stress responses initiated by fear arousal provides
feedback to the brain that influences emotion control and cognition, which contributes to
fear conditioning (Rodrigues, LeDoux ¢ Sapolsky, 2009). Fear responses may, therefore,
be both conditioned as aversive learnt behaviours (Fanselow ¢ Poulos, 2005), and
unconditioned as innate freezing responses (e.g. Schulkin, Thompson & Rosen, 2003).

Given that fear motivates a stress response—initiating the freeze, and fight or flight
actions—quantifying glucocorticoid outputs from the autonomic nervous and HPA
systems should yield a measurable indication of fear from predation as a stressor.
Minimally invasive techniques are available that assay glucocorticoid levels in faeces, fur,
or feathers (Sheriff et al., 2011; Cook, 2012; Palme, 2019). Using minimally invasive
methods to measure glucocorticoid levels in the wild does not necessarily yield an isolated
‘output’ of a fear or predator/human-induced stress response (Rosen ¢ Schulkin, 2004).
This situation results from glucocorticoids not being a molecule of fear per se but having a
fundamental role in maintaining energy balance (Rosen ¢ Schulkin, 2004). As such,
glucocorticoids may change not just because of fear but also in response to other
exogenous stressors, like food shortage (McEwen ¢ Wingfield, 2003). Nevertheless, such
methods could usefully compare longer-term stress responses among habitats or along
disturbance gradients with variable exposure to predators, by following experimental
designs that are considerate of additional stressors that may be present (MacDougall-
Shackleton et al., 2019).

If two or more stressors are present, the resultant combined stress may present severe
challenges to an individual’s physiological systems (Johnstone, Lill ¢ Reina, 2012; Brearley
et al., 2013; Malcolm et al., 2014; Arlettaz et al., 2015; Geary et al., 2019; Legge et al.,
2019). Interactive fear and stress effects are context-dependent (Belarde ¢» Railsback,
2016). They can be additive and combine the multiple impacts, synergistic whereby the
presence of one threat amplifies another (Doherty et al., 2015), or antagonistic whereby one
threat cancels the effects of the other. A reduction in the activity of mesopredators in
the presence of humans provides an example of antagonism (Clinchy et al., 2016).
Additive, synergistic, and antagonistic reactions have each been observed in mammalian
prey in natural systems in response to exposure to multiple stressors (Crain, Kroeker ¢
Halpern, 2008; Coté, Darling & Brown, 2016; Gunderson, Armstrong & Stillman, 2016;
Jackson et al., 2016; Geary et al., 2019; Legge et al., 2019).

Exposure to a stressor(s) that is prolonged, constant, or recurring can have chronic
impacts, as recovery from a stressor cannot occur whilst the threat remains (Sapolsky,
Romero & Munck, 2000). Acute stress occurs as the initial response to a threat to sustain
fitness in the short term; it subsides once the responding action—be it freezing, fighting, or
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fleeing—diminishes the threat (Wingfield ¢» Kitaysky, 2002). Activation of the HPA axis in
an acute stress response has rapid effects that increase immune system function, energise
muscles via enhanced cardiovascular tone, and heighten cognition, including memory
(Sapolsky, Romero & Munck, 2000). These responses occur via increased cerebral perfusion
rates and use of glucose, all of which come at the cost of decreased appetite and
reproductive behaviours (Sapolsky, Romero & Munck, 2000). Effectively, the acute stress
response suspends non-essential behaviours in favour of altered behaviours that minimize
the threat (Wingfield ¢ Kitaysky, 2002).

Continued exposure to a stressor, or stressors, creates a state of chronic stress, which is
classically described as allostatic overload (Dantzer et al., 2014). Allostatic load describes
the body’s ability to maintain homeostasis in response to a stressor (Sterling ¢ Eyer,
1988; McEwen ¢ Stellar, 1993; McEwen & Wingfield, 2003). Allostatic overload, by
extension, refers to the inability to maintain homeostasis and thus an organism’s increased
susceptibility to external stressors (Sterling ¢» Eyer, 1988; McEwen ¢ Stellar, 1993;
McEwen ¢ Wingfield, 2003). Chronic stress reduces an organism’s resilience to future
stressors by inducing extended behavioural changes in feeding, fighting, and mating
(Mineur, Belzung ¢ Crusio, 2006). Chronic stress also affects an organism’s physiological
state by suppressing or impairing the reproductive system and decreasing physiological
resistance to pathogens and toxins through the suppression of immune function
(Dhabhar & McEwen, 1999; McEwen ¢ Wingfield, 2003; Romero, 2004; Travers et al., 2010
Feng et al., 2012). Repeated exposure to a stressor can have population and community
level consequences as homeostasis is compromised, and it increases susceptibility to
additional stressors and can have flow-on effects. For example chronic risk of predation,
which facilitates changes in nutrient demand for prey species and thus changes in the
elemental composition of their excreta, can alter nutrient cycling in the community and
ecosystem (Hawlena & Schmitz, 2010).

Cases of acclimatisation to chronic or repeated acute stressors have been observed,
although the process often results in enhanced activation of the HPA axis to novel
stressors, and thus may not be beneficial to fitness (Romero, 2004). Instead of acclimatising
to a chronic or repeated stressor, glucocorticoid levels can remain the same, or become
chronically elevated, or the HPA axis can shut down completely and render an animal
vulnerable to future threats (Romero, 2004). Physiological impairment of the neurological,
cardiovascular and musculoskeletal systems may also result from chronic stress: neurons
of the brain can atrophy and impair memory, or grow and enhance fearfulness with
extensive releases of adrenaline and cortisol (Roozendaal, 2000; McEwen, 2004);
atherosclerotic plaques also may form and impede blood flow from repeated elevation of
blood pressure (Manuck et al., 1988), and skeletal muscle can suffer severe protein loss
(Wingfield & Kitaysky, 2002).

Although chronic and acute stress responses have been well defined for mammals in
laboratory studies, results from in situ studies show that reactions vary with the stressor
type that animals are exposed to, as well as habituation potential, food availability,
social interactions, and density (Dickens ¢» Romero, 2013). In situ mammalian endocrine
responses to a consistent stressor, such as human activity, have not been studied
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sufficiently to be able to determine if there is a particular pattern of response. Avian
endocrine responses to such stressors have been more extensively studied and they reveal
that urban habitats, perceived as a consistent stressor, can shape endocrine responses

in birds. However, a consistent stress response pattern has yet to be observed in birds
(Bonier, 2012). Inconsistent behavioural responses of mammals and other animals to
human activities that are often observed can perhaps be linked to modulating factors such
as the level of human activity, the species and condition of the animal being observed, and
the spatio-temporal context (Tablado ¢ Jenni, 2017).

MAMMALIAN BEHAVIOURAL RESPONSES TO FEAR AND
STRESS: THE LANDSCAPE OF FEAR CONCEPT

The landscape of fear concept (Laundré, Herndndez & Altendorf, 2001) postulates that
prey are aware of microhabitat patches associated with high and low predation risk, where
predators are either active and ubiquitous, or scarce (Laundré, Herndndez ¢ Altendorf,
2001; Shrader et al., 2008; Van Der Merwe ¢ Brown, 2008; Laundré, Herndndez ¢
Ripple, 2010). Theoretically, landscape of fear effects should increase with landscape
heterogeneity, since the differences between high and low risk sites become more
pronounced and prey can more easily avoid high-risk sites (Bleicher, 2017; Gaynor et al.,
2019). However, this relationship can depend on the species and condition of the
habitat and, for some species, simple habitats can be the safest (Hammerschlag et al., 2015;
Schmidt & Kuijper, 2015; Atuo ¢ O’Connell, 2017). Landscape of fear effects will also be
more pronounced in systems where interactions between predators and prey are less
frequent (Schmitz, 2008), as is evident in findings from Pavlovian fear conditioning, and
the ‘risk allocation hypothesis’—which states that animals exposed to constant high
predation risk will increase their foraging risks over time (Lirma ¢ Bednekoff, 1999;

Van Buskirk et al., 2002). Fear arousal in a landscape of fear results in two predictable
outcomes: either avoidance of high risk areas, or modulation of behaviour (e.g. increased
vigilance) to reduce predation risk when foraging in such areas (Gaynor et al., 2019).
These outcomes indicate the potential positive benefits to conservation management of
considering fear arousal and stress levels, and the direct and indirect cues that may trigger
these effects (Atkins et al., 2017).

The likelihood of survival of a prey species is improved by having a well-developed
perception of high predation risk, as it allows adaptive behavioural responses to be
established (Bdkony et al., 2009). Habitat shifts, temporal shift, grouping, vigilance and
freeze, fly and fight responses are the most studied such responses to the non-consumptive
effects of predators (Say-Sallaz et al., 2019). These often develop due to increased
interaction rates between predators and prey. However, chronic stress impacts that are
sufficient to affect reproduction and long-term survival can be experienced by prey species
perceiving recurring predation risks (Thomson et al., 2010; Clinchy et al., 2011).

Chronic perceived predation risk may also result in altered foraging activity driven by fear.
This can affect where and what prey eat (Schmitz, Krivan ¢ Ovadia, 2004), causing them
to move from risky to sheltered microhabitats (Trussell, Ewanchuk ¢ Matassa, 2006),
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in turn altering the distribution and availability of resources. Fear-based adaptive
behavioural responses such as these underlie the landscape of fear concept.

For mammals, fear arousal can be triggered both by a predator’s presence or by a
predator cue, such as an associated scent. Olfaction can be a key driver of fear arousal
(Soso et al., 2014; Banks, Daly ¢ Bytheway, 2016; Jones et al., 2016; Parsons et al., 2017).
The mechanics of this are best understood in mammals: odours are detected by the
accessory olfactory bulb that transmits information directly to the amygdala and
hypothalamus, where fight or flight responses are developed (Fogaca et al., 2012; Canteras,
Pavesi ¢ Carobrez, 2015). Laboratory studies exploring the effects of post-traumatic
stress disorder have exposed small mammals to predators or their cues to induce stress,
and in doing so revealed that exposure to predator cues alone can affect the neural circuitry
associated with fear (Rosen ¢ Schulkin, 1998, 2004).

Subtle cues such as predator odours may precede threats and allow for a mammalian
prey animal’s fear state to be conditioned to a cue that occurs before, or in correlation with,
a previously encountered predation threat (Rescorla ¢» Solomon, 1967; Rosen, 2004).
Predation risk may, therefore, be perceived by prey species eavesdropping on predator
scent marks, such as urine, faeces, or fur in the environment (Banks, Daly ¢ Bytheway,
2016; Jones et al., 2016). Such odours have been observed experimentally to induce fear-like
responses of freezing (Wallace ¢» Rosen, 2000), vigilance (Nersesian, Banks ¢ McArthur,
2012), fleeing (Anson & Dickman, 2013) and avoidance (Hayes, Nahrung ¢» Wilson,
2006), across a wide range of species in both field and laboratory experiments (Apfelbach
et al., 2005, 2015). Consequently, landscape of fear topography, where predators indirectly
influence prey behaviour across a range of microhabitats, can arise from the influence
of predator olfactory cues on mammalian prey foraging behaviours as much as it can from
the direct threat of predation (Brown ¢» Kotler, 2004; Parsons ¢ Blumstein, 2010; Cremona,
Crowther & Webb, 2014; Mella, Banks ¢» McArthur, 2014; Hoffman, Sitvarin &

Rypstra, 2016). It is worth noting, however, that whilst predator olfactory cues can elicit a
fear or stress response, they do not always do so (Apfelbach et al., 2005). This may be
because predators often leave the site after depositing a cue, and the cue intensity
diminishes. Predator cues elicit responses that are modulated according to the differential
intensity of the perceived threat, prior experience, or pending further information
gathering, and thus can be perceived as a low risk by prey (Bedoya-Pérez et al., 2019).

Fear arousal due to predator presence or cues can deplete a prey individual’s energy
budget, resulting in poor reproduction and health either via energy exhaustion from stress
(i.e. the predation stress hypothesis: Boonstra et al., 1998; Clinchy et al., 2004; Romero,
2004; Stoen et al., 2015), or reduced nutrition from foraging compromises (Brown ¢
Kotler, 2004; Clinchy et al., 2016). As food resources become limited, additionally, prey
may take greater risks to meet nutritional needs (i.e. the predation-sensitive food
hypothesis: Sinclair ¢ Arcese, 1995), but at a possible cost of additional stress. In areas of
high human activity, this may result in wildlife increasing the stressors they are exposed
to as they seek human-based food sources, such as waste or pet food, and in doing so
increase their exposure to domestic pets, altered light, increased sound, and vehicles
(Navara & Nelson, 2007; Morgan et al., 2009; Riley et al., 2014; Shannon et al., 2016;
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Doherty et al., 2017). For managers mitigating fear arousal, mapping landscapes of fear
(Van Der Merwe ¢ Brown, 2008; Kauffman, Brodie & Jules, 2010; Iribarren ¢ Kotler, 2012;
Smith et al., 2019) to identify, protect and extend safe foraging areas, could assist in the
conservation of wildlife subject to human activity or multiple stressors such as human
activity and predators.

HUMAN ACTIVITY AS A FEAR-INDUCING STRESSOR

Human activity can influence wildlife in a wide variety of ways (Albert ¢ Bowyer, 1991;
Bowyer et al., 1999). Pressure from increased proximity to human activity or development
that encroaches upon animal home ranges results in wildlife becoming either: (1) ‘urban
avoiders’ that move away from human activity; (2) ‘urban adapters’ that make some

use of anthropogenic resources but still rely largely upon those found naturally; or

(3) ‘urban exploiters’ that are synanthropic and make full use of anthropogenic resources
(McKinney, 2006). The effects of human activity can therefore differ between species
and trophic levels, and even within the same species, depending on personality.
Furthermore, the negative effects of a disturbance on one species may result in flow-on
responses of positive consequences for its prey, predators, or competing species (Gill,
Sutherland & Watkinson, 1996; Crooks & Soulé, 1999; Leighton, Horrocks ¢ Kramer,
2010). These effects, however, depend strongly on the availability of necessary resources
within the human occupied/disturbed areas, and will often differ between systems.

It has been postulated that humans may impose widespread effects on ecosystem
function if they induce greater fear responses in ubiquitous small predators than in top
predators (Clinchy et al., 2016), or by increasing physiological stress in large ungulates
through antagonistic behaviours (Vijayakrishnan et al., 2018). Indeed, human activity can
be comparable to the above-mentioned impacts of predation, creating landscapes of
fear (Hofer ¢ East, 1998; Frid ¢ Dill, 2002; Rehnus, Wehrle & Palme, 2014; Patten &
Burger, 2018), and disrupting foraging (Ciuti et al., 2012; Clinchy et al., 2016). Humans can
also act as ‘super-predators’ that disproportionately kill carnivores and drive trophic
cascades (Darimont et al., 2015). Trophic cascades can also arise when human activity has
non-consumptive effects on the ecological roles of large predators (Smith et al., 2017).
For example large predators may increase their hunting efforts in urban areas: if their own
fear response to human activity results in less time spent consuming a kill, this in turn
may increase their kill rate of prey in urban areas to meet their energy needs (Smith et al.,
2017). When large predators avoid human activity, and/or meso-predators reduce their
foraging around human activity, prey species may respond by increasing their own
foraging activity (Suraci et al., 2019), effectively taking refuge behind the ‘human shield’
that is reducing predation pressure for them (Berger, 2007; Leighton, Horrocks ¢ Kramer,
2010; Kuijper et al., 2015).

Human activity can affect the trophic structure of communities not only via top-down
pressure, but also by exerting bottom-up pressure through the constant provision of
alternative resources (Fischer et al., 2012), such as subsidies of shelter, water and food with
year-round primary production. These resources can outweigh the stresses of human
disturbance and influence population and community behaviours (Parris, 2016), resulting
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in urban colonisation by wildlife (Shochat, Lerman ¢ Ferndandez-Juricic, 2010; Jokimdki
et al., 2011). As such, human activity does not always result in fear responses, particularly
for prey species that benefit from the human shield and access to food, water or shelter
subsidies (Lyons et al., 2017). It is possible that, given these conditions, and provided
that resource subsidies are nutritionally rich and accessing them does not increase
pathogen transmission risk (Murray et al., 2016), prey species like small mammals would
experience fitness benefits in urban areas. Resource subsidies can also be exploited by
predators, resulting in increased predator activity in urban areas but also in altered
foraging behaviours that either decrease or increase predation on small prey (lossa et al,
2010; Bateman & Fleming, 2012; Fischer et al., 2012; Newsome et al., 2014, 2015).

Despite such positive effects of human activity on wildlife, negative impacts are more
pervasive for many species. The negative effects of high levels of disturbance, for example
from roads and vehicles, or of active interference from recreational activities conducted
in designated conservation areas, can lead to physiological stress or displacement,
countervailing any positive effects of humans on wildlife (Kloppers, St. Clair ¢ Hurd, 2005;
Banks & Bryant, 2007; Berger, 2007; Ciuti et al., 2012; Rehnus, Wehrle & Palme, 2014;
Arlettaz et al., 2015; Patten ¢ Burger, 2018; Vijayakrishnan et al., 2018).

A common response in mammals to increased exposure to human activity is a temporal
shift in activity patterns, from diurnal to crepuscular or nocturnal, to avoid interaction
with humans (McClennen et al., 2001; Tigas, Van Vuren & Sauvajot, 2002; Riley et al.,
2003; Ditchkoff, Saalfeld & Gibson, 2006; Gaynor et al., 2018); the same or reverse may
occur too, to reduce interactions with predators (Brown, 2000; Laundré, Herndndez ¢
Altendorf, 2001; Kohl et al., 2018; Smith et al., 2019). Temporal shifts can have strongly
negative effects if they limit a forager’s ability to locate and capture prey (Ditchkoff,
Saalfeld ¢» Gibson, 2006). Regardless of the response, it is evident that human activity
can have profound indirect effects on community interactions through altering individual
behaviour, particularly foraging, through either fear arousal or a stress response
(Frid & Dill, 2002; Werner ¢ Peacor, 2003).

The ability of wildlife to cope with urban environments can occur through either plastic
or evolved shifts in behaviour, foraging, food preferences, or predator avoidance, and
in shifts in the timing of breeding (Ditchkoff, Saalfeld & Gibson, 2006; Moller, 2009;
Shochat, Lerman & Ferndndez-Juricic, 2010; Rodriguez, Hausberger & Clergeau, 2010;
Alberti, 2015; McDonnell ¢ Hahs, 2015; Otto, 2018; Santini et al., 2019). It is most common
for urban-occupying species to plastically adjust to human imposed stressors (Donihue ¢
Lambert, 2015), with some ultimately evolving tolerance to urban environments.
Human activity can therefore impose pressures that are strong enough to influence
changes in behaviour and in physiology—endocrinology in particular (Bonier, 2012; Snell-
Rood & Wick, 2013; Otto, 2018). Bolder individuals are most likely to exploit novel
opportunities and have reduced stress responses to human activity (Atwell et al., 2012).
Animals that routinely encounter human activity, typically provide parental care, and are
capable of reproducing multiple times across their life span may produce offspring that
are acclimated to human activity and accordingly show lower fear/stress responses
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(Schell et al., 2018). Habituation of groups of animals to human activity is being
increasingly observed, often as a result of bold individuals spending significant amounts of
time around human-disturbed areas and displaying reduced fear responses (Stillfried et al.,
2017). This counters the idea that human activity always imposes landscapes of fear,

but may reflect the combination of reduced resource availability and bold personalities that
allow for urban habituation (Lowry, Lill & Wong, 2013). In some instances this may be
problematic for humans if increased interactions with habituated animals increase
vehicle accidents and/or transfer of zoonotic diseases; this highlights the potential need to
manage some mammalian prey species in urban areas (Honda et al., 2018).

Fear and acute/chronic stress may be constant hurdles faced by wildlife, but adding the
effects of anthropogenic disturbance could result in the elevation of acute stress responses
to prolonged and widespread chronic stress, and upscale the possible impacts from
individuals to populations (Rehnus, Wehrle ¢» Palme, 2014). As we have outlined, human
activity can both indirectly and directly create landscapes of fear, influencing and
amplifying existing landscapes of fear through interactive effects. Predator presence and
human activity can also interact to alter ecosystem structure and modify the predation
risk perceived by prey species, with either positive or negative impacts dependent upon
the circumstances. The combination of stress resulting from the pressures of altered
predator-prey interactions and human activities is yet to be investigated extensively.
Understanding the cumulative effects that both may impose is critical for effective
conservation of wildlife in an increasingly human-influenced world.

ALLEVIATING FEAR AND STRESS FOR WILDLIFE
CONSERVATION

As we have illustrated, fear can produce stress and simultaneous multiple stressors can
have chronic effects that negatively influence both predator and prey species populations
(Allan et al., 2013). To synthesize these impacts, we note that in modern urban situations
both habitat stressors and introduced stressors now collide (Fig. 1). Habitat stressors
result from naturally occurring environmental factors such as native predator presence
(especially for prey), social and reproductive pressures, limited access to refuges/nests
and/or food and water, and disease and parasite prevalence, all of which produce predictive
homeostasis responses by prey species (Fig. 1). Introduced stressors, by contrast, are
additional stressors that are imposed by human actions that result in reactive homeostasis
responses. These introduced anthropogenic stressors include structural developments that
change landscapes, human recreational activities in natural habitats (including use of
vehicles), introduced pollutants and toxins that alter landscapes and resource quality, and
introduced predators and altered predator-prey interactions (Fig. 1). The combination of
impacts from both naturally occurring and introduced anthropogenic stressors has the
potential to cause a cumulative stress response that can result in homeostatic overload or
failure, as defined by Romero, Dickens ¢ Cyr (2009), and may result in population collapses
due to increased susceptibility of individuals to the additional stressors (as we have
demonstrated above, and Fig. 1). Cumulative stress may be additive or synergistic, and is
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Figure 1 A Venn diagram showing two main categories of stressor. On the left are stressors that occur
naturally in ecosystems, such as native predators, social and breeding interactions, availability of refuge
and burrow/den microhabitats, disease/parasite prevalence, and availability of food and water. On the
right are introduced stressors, primarily those arising from anthropogenic disturbances, such as urban
developments, human activity, introduced toxins and introduced predators. Where both categories of
stressor occur together simultaneously, as in many urban environments, cumulative stress impacts can
result in homeostatic overload or failure (as defined by Romero, Dickens ¢ Cyr (2009)). In these situations
populations may be at particular risk of collapse and conservation action will be most urgent.

Full-size K4l DOI: 10.7717/peerj.9104/fig-1

likely to be particularly detrimental for prey species. For example, if prey species face
multiple stressors they may take greater foraging risks, or be less able to allocate energy to
vigilance or flight behaviours, and thus become more susceptible to predation or additional
stressors. In the case of population-impacting stressors, the local population may be
impacted to a high degree such that it becomes threatened (Sweitzer, 1996; Doherty et al.,
2015). As such, conservation action in areas where simultaneous introduced stressors
occur in addition to natural ecosystem pressures, like in urban and peri-urban habitats,
may be urgently needed.

The most direct way to alleviate stress in wildlife is to remove or reduce the key
stressors. This may be difficult if the stressors are anthropogenic, as the needs of the
expanding human population often usurp those of wildlife; alternative solutions then need
to be considered. A suite of activities related to managing vegetation structure, density,
and/or heterogeneity may well provide such an alternative solution. These activities result
in increased availability of potential refuge sites and may be readily achieved through
ongoing habitat engineering that, for example supports the growth of structurally complex
plants or adds logs/rock piles to reduce areas of open space. In order to mitigate introduced
fear and stress effects, it is important that future studies investigate whether vegetation
management and other habitat components can alleviate some of the pressures associated
with multiple introduced stressors for target species.
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MANAGING HABITAT TO ALLEVIATE WILDLIFE FEAR
AND STRESS

The impact of predators (or human activity) can be mitigated by changing the configuration
of risky areas within a habitat (Hopcraft, Sinclair & Packer, 2005; Lone et al., 2014).

Food availability often drives habitat selection (Sherman, 1984; Johnson & Sherry, 2001), but
predation risk and human activity affect a suite of correlated factors such as movement
decisions (Turcotte ¢ Desrochers, 2003), foraging patterns (Gil, Zill ¢» Ponciano, 2017), social
organisation (Rodriguez, Andrén ¢ Jansson, 2001) and reproductive success (Zanette et al.,
2011). Supplementation of essential resources including refuges, nests or roosts, food and
water to wildlife is a growing conservation method due to its ease of implementation,
immediate results, and favourable portrayal in the media. One example of positive results
includes increased parasite resistance in nestling birds after supplementation with
high-quality food during the stressful young-rearing stage (Knutie, 2020). Another example
is the reduction in impact from introduced predators on small desert mammals following the
addition of artificial refuge structures (Bleicher ¢» Dickman, 2020). Despite these successes,
negative impacts can also ensue following supplementation. Built-up refuges may be
primarily investigated by invasive species, such as the black rat (Rattus rattus), which could
potentially deter commensal native species and support the population growth of invasive
species (Price ¢ Banks, 2018). Artificial nests or roosts can support increased predation rates
owing to the structure supporting a sit-and-wait predator at the exit (McComb et al., 2019).
Food and water subsidies can increase pathogen transmission, reduce movement and
migratory behaviours, increase predator—prey interaction rates, and competitor aggression
interactions (Murray et al., 2016). However, owing to the benefits of supplementation,
especially during times of stress, it may be used as a tool to mitigate the negative impacts of
stress on wildlife if conducted in a targeted, monitored and well-considered manner
(Freeman et al., 2020).

Considering the existing knowledge base on food and water supplementation,
meta-analyses have suggested that the associated disease risk may be managed by
focusing on specific natural food sources and pathogen groups subject to the target
ecosystem and by increasing the spatial extent of feeding stations across potential linked
habitats, which also limits microparasite host aggregations (Becker, Streicker & Altizer,
2015; Becker et al., 2018). In considering the specific needs of target animals and
ecosystems, chainsaw-carved cavities have more favourable thermodynamic properties
for small mammals and birds than do artificial next boxes (Griffiths et al., 2018).

As they mimic natural hollows they are also less likely to increase rates of

predation. Supplementation projects are therefore moving forward using this growing
knowledge base to adaptively tailor methods to specific conditions, and to orchestrate
pre- and post-monitoring that ensures successful stress mitigation (Civitello et al,
2018).

Survivorship of prey, in the face of predation stressors, is often positively correlated with
increased structural complexity of the habitat (Hopcraft, Sinclair ¢» Packer, 2005; Lone
et al., 2014; Leahy et al., 2016). This has been demonstrated in many studies to be a

Fardell et al. (2020), PeerJ, DOI 10.7717/peerj.9104 13/35


http://dx.doi.org/10.7717/peerj.9104
https://peerj.com/

Peer/

consequence of the increased opportunities for prey to escape and hide, thereby mediating
predator—prey dynamics by reducing encounter rates, as only a proportion of the total prey
population remains available to predators (Holt, 1984; Kotler ¢» Brown, 1988; Bianchi,
Schellhorn & Van der Werf, 2009; Rieucau, Vickery & Doucet, 2009; Klecka & Boukal, 2014;
Laundré et al., 2014). The extensive research on the benefits to prey of habitat structural
complexity builds on the ‘habitat heterogeneity hypothesis,” which postulates that
structurally complex habitats support increased species diversity by offering a wide range
of niches and diverse ways of exploiting resources (Bazzaz, 1975). Habitat complexity,
by extension, has been generalized to be a primary driver of biodiversity (Pianka, 2011).
The landscape of fear concept accepts this principle too, in that a wide range of
microhabitat types offers multiple foraging and shelter conditions with varied predation
risks for species. For example northern quolls (Dasyurus hallucatus) of the semi-arid
Pilbara region in Western Australia utilise complex rocky habitats in preference to

open grasslands where the threat of predation from feral cats (Felis catus) is greater
(Hernandez-Santin, Goldizen ¢ Fisher, 2016).

Animals in habitats with high predation pressure may display foraging preferences
for microhabitats or times that they perceive to be safe (Brown, 2000; Laundré,
Herndndez & Altendorf, 2001; Laundré, Herndndez ¢ Ripple, 2010). Some small
mammals seek structurally complex vegetation owing to the reduced risk of predation and
increased reward of foraging they find there (Lima ¢ Dill, 1990; Andruskiw et al., 2008).
Others, such as the Australian hopping mouse (Notomys alexis) that exhibit bursts of
speed in open habitat, are less adept at moving through complex vegetation (Spencer,
Crowther & Dickman, 2014). No matter the species, in landscapes of fear a prey
species’ use of the topography, refuges, and escape substrates can indicate its perceived
risk of predation (Brown ¢ Kotler, 2004; Van Der Merwe ¢ Brown, 2008; Shrader et al.,
2008), and the associated fear and stress that may arise or be alleviated due to
habitat structure. The same principle should be relevant to reducing stress in proximity to
human activity, considering that prey responses to human activity and predators are
similar.

Human activity and disturbance can quickly reduce habitat complexity (Western, 2001).
However, enhancing habitat complexity and heterogeneity is being incorporated
increasingly into restoration and management efforts, with some success (Brown, 2003;
Bernhardt ¢» Palmer, 2007; Palmer, Menninger ¢ Bernhardt, 2010). To balance the needs
of people and biodiversity, local planning procedures are at times now incorporating
green spaces and greening initiatives into urban areas. As habitat complexity and diversity
are of particular importance in supporting biodiversity and population sustainability, it is
important that habitat structure underpins the engineering of wildlife habitats in urban
and urban-adjacent areas (Threlfall et al., 2016). The effectiveness of any management
regime depends on recognising the direct and indirect impacts that occur across
sustainable ecosystems. Consequently, habitat complexity as a management objective
requires that urban landscapes are approached on a case by case basis, with full assessment
before the habitat is ecologically engineered (Tews et al., 2004).
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MANAGEMENT TOOLS TO OBSERVE AND ALLEVIATE
FEAR AND STRESS FOR WILDLIFE CONSERVATION

Cumulative stress maps of human activity and stressors that occur naturally in ecosystems
have allowed returns on restoration investments to be maximized by indicating key
areas that will or do need intervention to mitigate the effects of severe stress on wildlife,
as opposed to unsuccessful piecemeal management that focuses on one or two stressors
broadly (Allan et al., 2013). Physiological and behavioural stress in wildlife may be
cost-effectively and straightforwardly observed by comparing the outcomes of
simultaneous measurements taken across a disturbance gradient where multiple stressors
are both abundant and low, using several well-established methods. Specifically, assays of
faecal/urine/fur/feather glucocorticoid metabolites can provide insight into the level of
physiological stress an animal is experiencing under comparative circumstances (Cook,
2012; Cooke et al., 2013; Sheriff et al., 2011; Palme, 2019). Pairing such results for each
location with those of giving-up density surveys (Brown, 1988) that can also be filmed by
infrared motion sensor cameras to observe foraging behavioural responses (Leo, Reading ¢
Letnic, 2015), yields an understanding of both physiological stress responses and
foraging responses. Comparing these results may further indicate if behavioural responses
are changing to moderate physiological stress impacts (Carlstead, Brown ¢ Seidensticker,
1993; Carlstead, Brown ¢ Strawn, 1993). Simultaneous measurements of habitat

quality that include vegetation cover, refuges, distance to food/water source, and
distance to disturbances (e.g. human activity or predator sighting based on spotlighting
or in-field camera traps) will build a dataset for spatial correlation analyses that can
geographically map the landscape of fear. Such measurements should also identify what
factors influence the landscape, such as by use of behavioural data (Willems & Hill, 2009)
and/or giving-up density data (Van Der Merwe ¢ Brown, 2008).

Spatial mapping of the physiological stress response, based on the collection locations of
samples, could be overlaid and compared to these results also. Such spatially mapped
results may clarify important areas that are in need of protection or the habitat types that
could be extended to mitigate stress impacts. It is worth noting that several authors
have emphasized that these methods need to be used correctly to ensure that stress and
habitat factors are linked (e.g. McMahon et al., 2018; Bleicher, 2017; Bedoya-Perez et al.,
2013; MacDougall-Shackleton et al., 2019). For example collection of fresh faecal
samples of a target species along a gradient of high to low human activity would allow
glucocorticoid metabolites to be assayed, providing insight into potential stress induced
by human activity along the gradient (Rehnus, Wehrle ¢ Palme, 2014). A similar approach
could be used to assay stress perceived by prey species in areas of high and low predator
activity, and sex hormones also could be assayed to explore sex-related effects of stress.
By allowing pathways of fear and stress to be mapped, including sites where stressors
from predators and human activity occur simultaneously, such methods should allow
managers to reliably identify where best to intervene to preserve at-risk populations and
maintain community stability. We consider potential interventions in more detail below.
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Figure 2 A conservation management approach that outlines the key steps for assessing if
cumulative stress impacts are occurring between stressors that occur naturally in ecosystems and
those that are introduced. The circled areas indicate where conservation management initiatives may
be used to mitigate these effects through management of vegetation complexity or supplementation
materials such as water stations or carved ‘tree-hollow’ cavities.

Full-size K&l DOT: 10.7717/peerj.9104/fig-2

If cumulative stressors occur and are suspected to have detrimental effects on target
wildlife populations or communities, we suggest that a potentially powerful mitigation
approach could be developed based on Cumulative Effects Assessments (CEA). Devised in
the 1990s amid growing concerns that Environmental Impact Assessments (EIA) did not
consider all the effects of urban and peri-urban developments (Smit ¢ Spaling, 1995),
CEAs have been advocated as an effective tool for use by on-ground practitioners (Duinker
et al., 2013). Numerous countries have mandated that CEAs be incorporated into EIAs,
namely: the United States of America, Canada, Europe, New Zealand, and Australia each
advocate some level of CEAs (Therivel ¢ Ross, 2007). Despite this legal requirement,
and the CEA concept being widely known in scientific literature, it is rarely applied in
practice (Ma, Becker & Kilgore, 2009; Foley et al., 2017).

We propose further that the principles of the ‘reactive scope model’ be used to develop
CEAs, to identify where cumulative stressors occur, and thus better inform conservation
management initiatives in areas where wildlife is subject to homeostasis overload or
failure (Fig. 2). The results from the above mentioned methods and/or other applicable
established methods may be used to answer our suggested CEA questions. The reactive
scope model (Romero, Dickens ¢» Cyr, 2009) provides useful insight into the range of
physiological mediators available in response to a stressor. It maps the homeostasis range
of a given species in four stages: (1) predictive—change occurs in response to routine
environmental change, such as seasons or day to night; (2) reactive—change occurs in
response to an unpredictable change, allowing survival via classic stress responses;
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(3) overload—consistent changes occur in response to a stressor, and chronic stress
impacts start to occur; and (4) failure—the species shows inability to sustain homeostasis,
and is very susceptible to additional stressors and death (Romero, Dickens & Cyr, 2009).
If our proposed CEA approach (Fig. 2), based on the reactive scope model, were
applied to small mammals in urban, urban adjacent, and peri-urban ecosystems, for
example then areas of conservation concern could be identified where the additive or
synergistic impacts of human disturbance and introduced predators combine with
stressors that occur naturally. Appropriate management, such as increasing habitat
complexity or reducing human activity in conservation areas (Bleicher ¢ Dickman, 2020),
could then be implemented to alleviate these stressors.

FEAR AND STRESSING IN SMALL MAMMAL ECOLOGY

IN AUSTRALIA; THE NEED TO CONSIDER THE TWIN
STRESSORS OF INTRODUCED PREDATORS AND PEOPLE
IN WILDLIFE MANAGEMENT

Small mammals are often somewhat resilient to threatening processes owing to their high
population growth rates (Cardillo et al., 2005, 2006). However, in Australia small mammal
populations are declining quickly, and due to causes dissimilar to those driving global
declines (Woinarski, Burbidge ¢» Harrison, 2015). Declines in Australia have been
attributed to a wide range of habitat stressors: habitat loss, altered fire regimes, disease,
increasing temperatures, decreasing water availability, depleted soil quality and salinity
(Woinarski, Burbidge ¢ Harrison, 2015). However, mammals within a ‘critical weight
range’ (CWR: 35-5,550 g) are particularly vulnerable (Chisholm ¢ Taylor, 2007;
Woinarski, Burbidge ¢ Harrison, 2015) owing to the effects of predation by two introduced
carnivores, the red fox (Vulpes vulpes) and domestic house cat (Felis catus) that arrived in
Australia over 150 years ago (Johnson, 2006). If predators are introduced, their impacts
on prey are likely to be exacerbated owing to prey naiveté (Doherty et al., 2016). Such
impacts have been particularly acute on wildlife in Australia, where eutherian carnivores
are recent arrivals (Salo et al., 2007). However, the question of Australian native animal
stress responses and the extent of their naiveté to these introduced eutherian predators
is debatable (Banks ¢ Dickman, 2007; Carthey ¢ Banks, 2016). Although CWR mammals
are of high conservation concern, predation from introduced predators poses a threat also
to all native predators by reducing their food resources, which in turn may increase
predation and predation-associated stress on alternative food sources such as smaller
(<35 g) or larger (>5,550 g) mammal species. For example a study examining the diet
of a nocturnal, avian predator, the sooty owl (Tyto tenebricosa) before and after red fox
introduction, revealed a dietary shift post introduction, with owls consuming more
arboreal than terrestrial prey species after fox arrival (Bilney, Cooke & White, 2006).
This shift to consuming arboreal prey increased dietary overlap with the sympatric
powerful owl (Ninox strenua), providing disproportionate predation pressure on prey in
the ecosystems of East Gippsland, Victoria.

Predation by red foxes and cats is prevalent not only in natural habitats but also in
agricultural and urban habitats (Dickman, 1996; Morgan et al., 2009; Bino et al., 2010).
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The paths and roads that fragment urban and agricultural habitats are used frequently by
these predators, which exacerbates their predation pressure on prey species by combining
with impacts imposed by human activities (Latham et al., 2011, Cervinka et al., 2013).
Consequently, this can result in increased abundances of red foxes and cats in
human-modified landscapes that border or include natural habitats (Towerton et al., 2011;
Graham, Maron ¢» McAlpine, 2012). Urban and agricultural habitats present many threats
to wildlife, but they may also offer food and shelter opportunities (Pickett et al., 2001;
Gaston et al., 2005; Hobbs, Higgs ¢ Harris, 2009). As reported by Ives et al. (2016),

46 percent of threatened Australian animals occur in or near Australian cities. Thus, the
fate of many species could depend on accommodating their needs in urban and
agricultural habitats (Ives et al., 2016). A recent assessment of data collected at the Wildlife
Rehabilitation Centre in Queensland Zoo, Australia, revealed that pet cat or dog attack, car
strike, and entanglement in human-placed objects represented 56.4% of the causes of
submission of injured wildlife; mortality rates associated with these traumas were also
high, with 61.3% of admitted animals dying from their injuries (Taylor-Brown et al., 2019).
These threats may contribute to landscapes of fear, through fear arousal, altered foraging
behaviour, post-traumatic stress reactions, and cumulative stress exposures resulting in
chronic stress responses.

Despite growing knowledge of anthropogenic impacts on threatened species, Australian
conservation planning continues to exclude urban and agricultural habitats from
consideration (Dales, 2011). There is recognition of the scope of this issue in Australia
(Hill, Carbery & Deane, 2007; Carthey ¢ Banks, 2012; Threlfall, Law & Banks, 2012;
McCauley, Jenkins ¢ Quintana-Ascencio, 2013; Banks ¢ Smith, 2015; Ives et al., 2016),
but few studies have explored the interactive effects of introduced predators and human
activity on the survival of prey species. Despite the development of glucocorticoid analysis
techniques to determine stress in animals dating to the 1960s (Jones et al., 1964), only
six of the 60 extant small mammals of conservation concern in Australia have been subject
to studies seeking to better understand their glucocorticoid response to stressors
(Hing et al., 2014), such as predation by introduced species or human activity.

There is a need for alternative management regimes to mitigate the additional stressors
of human-imposed impacts on wildlife, and the situation we have outlined in Australia
underlines the urgency of this need. As there are difficulties with the current control of
introduced predators in Australia (Glen ¢ Dickman, 2005; Rayner et al., 2007; Bergstrom
et al., 2009; Norton, 2009; Warburton & Norton, 2009; Carroll, 2011; Newsome et al., 2017),
there is also an urgent need for alternative management regimes to mitigate the additional
stressors of introduced predator-imposed impacts. As we have argued throughout this
review, it is logical that biodiversity conservation managers consider stress from the
combined impacts of introduced predators, altered predator interactions, human activity,
and stressors that occur naturally in ecosystems. Using the example methods to
conduct our proposed CEA, based on the reactive scope model, to draft appropriate
management plans, such as increasing habitat complexity or reducing human interaction
in areas, would be a progressive response towards preserving many species of Australian
small mammals and their constituent communities.
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CONCLUSION

Considering ongoing global urbanization and the acknowledged importance of urban
areas to biodiversity conservation, there is a great need for increased focus on the
management of urban biodiversity. Management decisions require information about
fear and stress impacts on wildlife, including impacts from both human activities and
predators, especially if they are novel or introduced. Understanding the impacts of human
activities is a research priority for modern science. There are many gaps in our current
understanding of fear and stress impacts on wildlife, and of associated impacts of altered
predation pressures and the persistence of target populations. To sustain biodiversity in
urban and urban-adjacent green space habitats, reserves and conservation areas, it is vital
that we establish better understanding and management of the multiple stressors that
operate in these systems.
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