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Abstract: In this study, the hopping conduction distance and bipolar switching properties of the
Gd:SiOx thin film by (radio frequency, rf) rf sputtering technology for applications in RRAM devices
were calculated and investigated. To discuss and verify the electrical switching mechanism in various
different constant compliance currents, the typical current versus applied voltage (I-V) characteristics
of gadolinium oxide RRAM devices was transferred and fitted. Finally, the transmission electrons’
switching behavior between the TiN bottom electrode and Pt top electrode in the initial metallic
filament forming process of the gadolinium oxide thin film RRAM devices for low resistance
state (LRS)/high resistance state (HRS) was described and explained in a simulated physical
diagram model.
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1. Introduction

For smart memory cards and portable electrical device applications, many nonvolatile memory
devices such as the ferroelectric random access memory (FeRAM), magnetic random access memory
(MRAM) and phrase change memory (PCM) are widely discussed [1–8]. Because of the integrated
circuit (IC) compatibility processes, high operation speed, long retention time, low operation voltage,
non-destructive readout and simple metal-insulator-metal-metal (MIM) structure, the various metals
doped into silicon-based oxide thin films are widely discussed for applications in resistive random
access memory (RRAM) devices [9–13].

Typical resistive switching memory materials for metal doped into silicon-based oxide, complex
metal oxide and functional materials thin films were selected and considered. In the initial metallic
filament forming process in RRAM devices, the ohmic, Schottky emission, Poole-Frankel and hopping
conduction mechanism were simulated and established for the electrical transmission model for
low resistance state (LRS)/high resistance state (HRS). However, the hopping conduction distance,
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activation energy and barrier height of the important electrical conduction mechanism of bipolar
resistive switching RRAM devices were not widely investigated and discussed [14,15].

To further discuss the bipolar switching properties of gadolinium-doped SiO2 thin films
dominated by the interface of the TiN electrode and Gd:SiO2 film, the Pt/Gd:SiO2/TiN RRAM device
was fabricated by virtue of the inertia of the Pt electrode as the top electrode. Besides, the Schottky
emission distance trend and barrier height value properties of the electrical conduction mechanism,
analyses of the gadolinium-doped influence on Gd:SiO2 thin films’ resistive switching behaviors were
discussed and explained.

2. Material and Methods

For the RRAM device fabrication process, the Gd:SiO2 thin films deposited on the TiN/SiO2/Si
substrate were prepared by co-sputtering using pure silicon dioxide and gadolinium targets. To remove
the defects of the oxide target and obtain stable plasma during deposition time, the pre-sputtering
time of as-deposited thin film was maintained for 20 min under argon atmosphere. The Gd:SiO2 thin
film was about 10 nm in thickness. In addition, the sputtering power was the (radio frequency, rf) rf
power of 200 W and DC power of 10 W for gadolinium and silicon dioxide targets, respectively.

The platinum top electrode for the 200-nm thickness was deposited on gadolinium oxide to form
the RRAM devices with the Pt/Gd:SiO2/TiN structure. Figure 1b depicts the Gd:SiO2 RRAM devices’
structure. The typical current versus applied voltage (I-V) characteristics of Gd:SiO2 RRAM devices
are also measured by the Agilent B1500 semiconductor parameter analyzer (Agilent Technologies,
Morris County, NJ, USA). Each experimental parameter was considered and determined by the grey
entropy strategy of the situation analysis method. In addition, the I-V resistance switching relationship
between the Schottky emission distance trend and Schottky barrier height properties of Gd:SiO2 thin
film RRAM device were obtained and later discussed for different oxygen environments.
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Figure 1. Bipolar switching characteristics of Pt/Gd:SiO2/TiN RRAM devices for (a) initial forming
process and (b) MIM structure.

3. Results and Discussion

The typical I-V switching characteristics of the resistance random access memory (RRAM) devices
using the gadolinium-doped silicon oxide (Gd:SiO2) thin films was observed, and the bipolar behavior
was exhibited by applying a base on the TiN electrode and Pt top electrode. To avoid the device
burning and being broken due to the high operation current, the compliance current of the RRAM
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devices was limited to 1 mA. After the initial forming process at a negative applied voltage of 10 V,
the RRAM devices reached a low resistance state (LRS) and high resistance state (HRS) in Figure 1.
To define the set process, the operation current switching of the RRAM devices was gradual decreased
from HRS transferred to LRS by sweeping the negative bias over the set voltage. The RRAM devices
from LRS to HRS for applying a large positive bias over the reset voltage were referred to as the reset
process. Figure 1 depicts the inverted bipolar switching resistive behaviors of the Gd:SiO2 RRAM
devices because of its transmission electron in the metallic filament path captured early by the many
oxygen vacancies in the ITO top electrode [12].

Figures 2 and 3 present the I-V switching properties of the Gd:SiO2 RRAM devices for different
vacuum and oxygen environments. For the vacuum environments, the Gd:SiO2 thin film RRAM
devices for LRS/HRS states all exhibited ohmic conduction in a low electrical field and Schottky
emission conduction in a high electrical field. Additionally, the electrical conduction mechanism
behavior of Gd:SiO2 thin film RRAM devices for LRS/HRS in the oxygen environments was also
similar to the vacuum environments. However, different slope and intercept values of the straight
line equations of I-V switching curves in the vacuum, air and oxygen environments are observed in
Figures 2c and 3c. For the on state, the slope value of the Schottky emission conduction in the I-V
curves of RRAM devices was calculated as 3.11 and 1.95 for the vacuum and oxygen environments,
respectively. In addition, the slope value was 5.11 and 4 in the off state for the vacuum and
oxygen environments.
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kT ) is the slope value and ( qΦB

kT ) is the intercept of straight line equations. Therefore, the
reciprocal slope value was estimated for the Schottky emission distance trend, and the intercept was
around barrier height value for the Schottky conduction equation.

As presented in Figures 2c and 3c, the Schottky emission distance trend and barrier height value
properties of the Schottky emission conduction in the I-V curves of RRAM devices for the on/off state
were obviously changed for different vacuum, air and oxygen environments. For LRS in vacuum and
oxygen environments, the Schottky emission distance model of the RRAM devices is explained and
described in Figure 4a. Because of the transmission electrons of the metallic filament path captured early
by the many oxygen vacancies in the ITO top electrode for LRS, the Schottky emission distance trend
of RRAM devices for the on state was continuously increased for large depletion regions in oxygen
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environments. In addition, the barrier height value of the Schottky intercept of the RRAM devices in
LRS was slightly decreased from 8.84 to 7.95 eV for vacuum and oxygen environments, respectively.
In HRS, the Schottky emission distance trend and barrier height value variation were determined by
the excess oxygen ions in ITO recombined with the metallic filament paths and transmission to the TiN
electrode in vacuum and oxygen environments. In Figure 4b, the short Schottky distance trend of the
RRAM devices for the initial positive applied voltage was caused and recombined by less oxygen ions
in the metallic filament path oxidation process for vacuum environments. In addition, the Schottky
emission distance increases, and the chance for recombination in the metallic filament path by excess
oxygen ions in oxygen environments was calculated and observed. Finally, the barrier height value
was slightly decreased from 1.28 to 1.18 eV for vacuum and oxygen environments.
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4. Conclusions

In conclusion, the bipolar switching resistance properties of RRAM devices were fabricated and
achieved by doping gadolinium metal into SiO2 film in this study. For the different vacuum, air and
oxygen environments, the Schottky emission distance trend and barrier height value of the electrical
conduction mechanism analyses of Gd:SiO2 thin films’ resistive switching behaviors were discussed
and explained by the slope and intercept value of straight line equations.

For LRS, the Schottky emission distance trend was continuously increased and caused by large
depletion regions of transmission electrons in oxygen environments. In HRS, the Schottky distance
trend of the RRAM devices for positive applied voltage was also caused by and recombined in metallic
filament oxidation forming for different environments. The similar barrier height value trend of the
RRAM devices for different environments was calculated and observed from the Schottky intercept
of I-V switching curves. The different slope value was inversely proportional to the product of the
Schottky distance and material dielectric constant. In addition, the long Schottky emission distance
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trend was calculated and observed by the small slope value in I-V switching curves for high oxygen
concentration environments in this study.
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