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Simple Summary: Molecular characterization of circulating tumor DNA (ctDNA) can offer a window
into tumor genetic heterogeneity, especially in metastatic cancers where different lesions may harbor
different mutations. The presence of multiple tumor clones may be reflected by dispersed variant
allele frequencies of mutations detected in a single ctDNA sample. We hypothesized that the
degree of dispersion of somatic mutations detected with a targeted next-generation sequencing assay
may correlate with clinical outcomes in metastatic colorectal cancer. We found that patients with
high ctDNA-based tumor heterogeneity after first-line bevacizumab and chemotherapy had shorter
progression-free survival and worse objective response. Plasma-based measurements of tumor
heterogeneity may have prognostic value in various cancer types and should be further explored for
assessing treatment response and other clinical applications.

Abstract: Sequencing circulating tumor DNA (ctDNA) from liquid biopsies may better assess tumor
heterogeneity than limited sampling of tumor tissue. Here, we explore ctDNA-based heterogeneity
and its correlation with treatment outcome in STEAM, which assessed efficacy and safety of con-
current and sequential FOLFOXIRI-bevacizumab (BEV) vs. FOLFOX-BEV for first-line treatment of
metastatic colorectal cancer. We sequenced 146 pre-induction and 89 post-induction patient plasmas
with a 198-kilobase capture-based assay, and applied Mutant-Allele Tumor Heterogeneity (MATH), a
traditionally tissue-based calculation of allele frequency distribution, on somatic mutations detected
in plasma. Higher levels of MATH, particularly in the post-induction sample, were associated with
shorter progression-free survival (PFS). Patients with high MATH vs. low MATH in post-induction
plasma had shorter PFS (7.2 vs. 11.7 months; hazard ratio, 3.23; 95% confidence interval, 1.85–5.63;
log-rank p < 0.0001). These results suggest ctDNA-based tumor heterogeneity may have potential
prognostic value in metastatic cancers.

Keywords: tumor heterogeneity; intratumor heterogeneity; ctDNA; circulating tumor DNA; liquid
biopsy; metastatic cancer; colorectal cancer; mCRC; CRC

1. Introduction

Colorectal cancer (CRC) is characterized by high molecular heterogeneity [1,2]. In
CRC and other cancer types, analysis of tumor tissue samples, with a single biopsy or
multiregional sequencing, can be limited by sampling and therefore not capture genetic
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heterogeneity within the same sample or between sites [3–6]. In the past few years, new
studies have demonstrated the use of next-generation sequencing (NGS) of circulating
tumor DNA (ctDNA) from plasma for molecular characterization of CRC [7,8]. ctDNA
sequencing has the potential to reveal more information than tissue sequencing, particularly
in the context of therapy resistance beyond the primary tumor [9,10]. Plasma sampling can
overcome limitations of tumor biopsy by providing a noninvasive alternative for tumor
genotyping and more fully capturing tumor heterogeneity [11].

Various methods have been developed to calculate tumor heterogeneity, though they
have been based on whole exome sequencing (WES) results of a single tissue sample
per patient and estimates can vary widely by method [12]. Here, we present exploratory
analyses of tumor heterogeneity measurements using ctDNA sequencing data from patients
with metastatic CRC receiving first-line chemotherapy and bevacizumab in the Sequencing
Triplet With Avastin and Maintenance (STEAM) trial. We assessed the potential prognostic
value of measuring ctDNA-based tumor heterogeneity with a single plasma sample before
and after induction chemotherapy.

2. Materials and Methods
2.1. Samples and Sequencing

The STEAM study (NCT01765582) was a Phase II trial evaluating bevacizumab
(BEV) with concurrent or sequential 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX) or 5-
fluorouracil/leucovorin/irinotecan (FOLFIRI) vs. FOLFOX-BEV for the first-line treatment
of patients with metastatic CRC. Patients received induction therapy for four months, with
an optional addition of two months. Study protocols for STEAM were approved by the
Institutional Review Boards at each participating study site and patients provided written
informed consent to participate in the biomarker program. Tissue biomarker analysis with
KRAS, NRAS, and BRAF as well as final clinical data were previously described [13]. For
this analysis, sequencing data were available for 146 pre-induction and 89 post-induction
plasma samples. Pre-induction samples were collected one day before or on the day of
induction therapy. Post-induction samples were collected 60 to 356 days (median 133 days)
after the start of induction therapy. All post-induction samples were collected prior to the
start of second line therapy. cfDNA was extracted from 4 mL of plasma and sequenced
using the hybrid-capture based AVENIO ctDNA Surveillance Kits (for research use only,
not for use in diagnostic procedures) on the Illumina HiSeq 4000. The 198-kilobase AVENIO
Surveillance panel covers regions of 197 genes that are recurrently mutated in CRC and
lung cancer. The input mass ranged from 0.52 to 208 ng (median 50 ng) and the median
deduplicated depth per sample ranged from 504 to 8101 (median 4495).

2.2. Variant Calling

Single nucleotide variants (SNVs) and insertion/deletions (indels) were called with
the AVENIO ctDNA Analysis Software (for research use only, not for use in diagnostic
procedures) [14]. The software includes bioinformatics methods based on CAPP-Seq
(cancer personalized profiling by deep sequencing) [15] and iDES (integrated digital error
suppression) [16], and reports AF and MMPM values for each detected variant. MMPM is
calculated as the AF multiplied by the extracted mass (ng) and adjustment factor of 330
haploid human genome equivalents per ng, then divided by plasma volume (mL). For each
sample, the mean AF or MMPM of detected somatic variants was calculated and used as
an estimate of tumor content or ctDNA quantity in the plasma.

We differentiated somatic cancer variants from germline variants using a machine
learning model [17] that takes into account the variation in allele fraction (AF) from the
same mutation found in multiple samples of the same patient. Germline mutations will
have stable AF levels over time, whereas somatic ctDNA mutations will have variable AF
levels, especially over the course of treatment. In cases where the tumor is not responding
to treatment, somatic mutations may also have stable AF levels; therefore, we applied
one modification to the method by re-classifying mutations as somatic if they were listed
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in the Loci of Interest in the AVENIO ctDNA Analysis Software. The Loci of Interest in-
cludes variants previously curated for clinical significance in the AVENIO ctDNA Analysis
Software [14], and covers cancer hotspots in the following genes in the AVENIO ctDNA
Surveillance panel: ALK, APC, BRAF, EGFR, ERBB2, KIT, KRAS, MET, NRAS, PDGFRA,
RET, and ROS1.

Given that not all patients had more than one plasma sample available for this analysis,
we also applied filters to further remove germline mutations by using public databases
of common germline variants. In particular, we classified variants as germline single
nucleotide polymorphisms (SNPs) if they were present in >0.001 population frequency
in subpopulations in ExAC release 0.3.1 or 1000 Genomes phase3v5b, or annotated as a
common SNP in dbSNP build 144.

2.3. Calculation of MATH

The formula for Mutant-Allele Tumor Heterogeneity (MATH) is: 100 × MAD/median(X),
where MAD is the median absolute deviation, or median(|Xi − median(X)|). MATH for
each sample was calculated on the VAFs of somatic variants (Xi) in the sample. For samples
with 0 or 1 somatic mutation, a MATH score of 0 was assigned, and these samples were
classified as low tumor heterogeneity. Sub-analyses were also performed to separate out
these samples as an “undefined” MATH group, as it is possible that additional tumor
mutations exist beyond the panel of genes sequenced.

2.4. Statistical Analysis

Distributions of patient characteristics were compared between the BEP and the
remaining ITT population in STEAM by Wilcoxon rank-sum test, Pearson’s chi-squared
test, and Fisher’s exact test as appropriate. Pre and post-induction BEPs were compared
with the remaining ITT separately.

PFS was defined as the time from randomization to the date of disease progression
or death from any cause in first-line treatment. Subjects without an event were censored
based on the last evaluable date of tumor assessment during first-line treatment.

The Kaplan–Meier method and log-rank tests were used to estimate the median
PFS and log-rank p-value. Unadjusted and adjusted Cox proportional hazards models
were used to assess the association between PFS and MATH, either as a continuous or a
categorical variable. Unadjusted Cox proportional hazards models were performed for
each clinical factor to assess its association with PFS. The clinical variables evaluated were:
age, sex, ECOG score at baseline (0 vs. 1), cancer type at diagnosis (colon vs. rectal),
location of primary tumor (left vs. right), prior cancer surgery, extent of metastatic disease
(liver limited vs. non-liver limited), treatment arm, and liver resection outcome in first
line (R0+R1 vs. no resection). Models were assessed separately for pre and post-induction
populations. Significant clinical variables (p < 0.05) were included in adjusted modeling
between MATH and PFS.

ORR was defined as the proportion of patients in first-line treatment with uncon-
firmed complete response or partial response, following RECIST version 1.1. To assess the
association between MATH groups and objective response (complete or partial), logistic
regression was used to calculate odds ratio and the associated 95% CI.

Correlations between ctDNA-based metrics such as MATH, mean AF, and number of
somatic mutations were assessed by Spearman’s correlation test.

The top 10 most frequently mutated genes, in addition to NRAS, BRAF, and combined
RAS status (KRAS or NRAS mutant), were included in the analysis of association between
mutated genes and MATH group (high vs. low). Two-sided Fisher exact tests were used
for each gene and corrected for multiple comparisons using the Bonferroni method.
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3. Results
3.1. Cohort Characteristics

STEAM (NCT01765582) evaluated bevacizumab (BEV) with concurrent or sequential
5-fluorouracil/leucovorin/oxaliplatin (FOLFOX) or 5-fluorouracil/leucovorin/irinotecan
(FOLFIRI) vs. FOLFOX-BEV for the first-line treatment of patients with metastatic CRC.
Final clinical data have been previously described [13]. Retrospective sequencing on
available plasma samples was performed with the AVENIO ctDNA Surveillance Kits
(for research use only, not for use in diagnostic procedures). Of the 280 patients in the
intent-to-treat (ITT) population in STEAM, 146 had a pre-induction plasma sample and 89
had a post-induction plasma sample available for analysis, which defined the biomarker-
evaluable populations (BEPs) (Figure A1). We examined whether patients with evaluable
plasma sequencing data had different baseline characteristics compared to the remaining
ITT population. Distributions of baseline characteristics were generally not significantly
different between the pre-induction or post-induction BEP and remaining ITT population
(Tables 1 and 2). Progression-free survival (PFS) was also not significantly different between
the pre/post-induction BEP and remaining ITT populations (Figure A2).

Table 1. Comparison of patient characteristics between pre-induction BEP and ITT.

Characteristic All Patients
(n = 280)

Pre-Induction BEP
(n = 146)

Remaining ITT
Population

(n = 134)
p

Age, years (median, range) 57.5 (23–75) 57.0 (23–74) 58.0 (25–75) 0.7534

Sex, n (%) 0.9091
Female 118 (42.1) 62 (42.5) 56 (41.8)
Male 162 (57.9) 84 (57.5) 78 (58.2)

ECOG performance status, n (%) 0.2274
0 165 (58.9) 91 (62.3) 74 (55.2)
1 115 (41.1) 55 (37.7) 60 (44.8)

Cancer type at initial diagnosis, n
(%) 0.9004

Colon cancer 208 (74.3) 108 (74.0) 100 (74.6)
Rectal cancer 72 (25.7) 38 (26.0) 34 (25.4)

Prior cancer surgery, n (%) 164 (58.6) 81 (55.5) 83 (61.9) 0.2729

Extent of metastatic disease, n (%) 0.8501
Liver-limited Disease 83 (29.6) 44 (30.1) 39 (29.1)
Non-Liver-limited Disease 197 (70.4) 102 (69.9) 95 (70.9)

Location of Primary Tumor, n (%) 0.6969
Left 158 (56.4) 84 (57.5) 74 (55.2)
Right 122 (43.6) 62 (42.5) 60 (44.8)

Treatment Arm, n (%) 0.8125
FOLFOXIRI/bevacizumab 93 (33.2) 50 (34.2) 43 (32.1)
Sequential

FOLFOXIRI/bevacizumab 92 (32.9) 49 (33.6) 43 (32.1)

FOLFOX/bevacizumab 95 (33.9) 47 (32.2) 48 (35.8)

Liver resection rate in 1 L, n (%) 18 (6.4) 13 (8.9) 5 (3.7) 0.0779
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Table 2. Comparison of patient characteristics between post-induction BEP and ITT.

Characteristic All Patients
(n = 280)

Post-Induction BEP
(n = 89)

Remaining ITT
Population

(n = 191)
p

Age, years (median, range) 57.5 (23–75) 58.0 (23–74) 57.0 (25–75) 0.5441

Sex, n (%) 0.2414
Female 118 (42.1) 33 (37.1) 85 (44.5)
Male 162 (57.9) 56 (62.9) 106 (55.5)

ECOG performance status, n (%) 0.0257
0 165 (58.9) 61 (68.5) 104 (54.5)
1 115 (41.1) 28 (31.5) 87 (45.5)

Cancer type at initial diagnosis, n (%) 0.2539
Colon cancer 208 (74.3) 70 (78.7) 138 (72.3)
Rectal cancer 72 (25.7) 19 (21.3) 53 (27.7)

Prior cancer surgery, n (%) 164 (58.6) 48 (53.9) 116 (60.7) 0.2821

Extent of metastatic disease, n (%) 0.6493
Liver-limited Disease 83 (29.6) 28 (31.5) 55 (28.8)
Non-Liver-limited Disease 197 (70.4) 61 (68.5) 136 (71.2)

Location of Primary Tumor, n (%) 0.4720
Left 158 (56.4) 53 (59.6) 105 (55.0)
Right 122 (43.6) 36 (40.4) 86 (45.0)

Treatment Arm, n (%) 0.9754
FOLFOXIRI/bevacizumab 93 (33.2) 29 (32.6) 64 (33.5)
Sequential

FOLFOXIRI/bevacizumab 92 (32.9) 29 (32.6) 63 (33.0)

FOLFOX/bevacizumab 95 (33.9) 31 (34.8) 64 (33.5)

Liver resection rate in 1 L, n (%) 18 (6.4) 8 (9.0) 10 (5.2) 0.2331

3.2. MATH in Pre-Induction Plasma

We assessed plasma-based tumor heterogeneity using Mutant-Allele Tumor Hetero-
geneity (MATH), a measure of variant allele frequency (VAF) variability divided by the
median, which was first applied to solid tumors using WES data on tissue samples with
matched normal [18]. To determine whether plasma-based MATH could be prognostic
of progression-free survival (PFS), we analyzed 146 pre-induction plasma, which were
collected either one day prior to or on the day of starting induction therapy. With the
AVENIO Surveillance panel, a median of seven somatic mutations (range 0 to 25) were
detected per sample. No somatic mutations were detected in two samples, and only one
somatic mutation was detected in 11 samples. Figure 1a,b shows the MATH score and
respective AF distribution of variants for each sample.

As a continuous variable, an increase in pre-induction MATH was associated with
shorter PFS (p = 0.0128) (Table 3). Given that tumor content in plasma could influence
the number of mutations detected and calculations of tumor heterogeneity, the following
ctDNA metrics were explored in correlations with MATH and potential adjustment factors:
number of somatic mutations detected, mean AF, and mean mutant molecules per milliliter
(MMPM). There was moderate correlation between MATH and mean AF (Spearman rho =
0.542, p < 0.0001), mean MMPM (Spearman rho = 0.595, p < 0.0001), and number of somatic
mutations (Spearman rho = 0.536, p < 0.0001) (Figure A3a–c). Slight significant association
of MATH with PFS was still seen in adjusted models with mean MMPM or number of
somatic mutations but not mean AF (Table 3). The association between pre-induction
MATH and PFS was also no longer statistically significant (p = 0.1341) when adjusting
for clinical factors, specifically ECOG, treatment arm, and liver resection during first-line
treatment. This was also seen when adjusting for clinical factors with mean MMPM or
number of somatic mutations.
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(blue); (b) allele frequency (AF) of detected somatic variants for each sample (top panel). Each open 
circle represents a somatic variant. The sample’s corresponding MATH score is in the bottom panel. 
Samples have been ranked in order of increasing MATH score; (c,d) similar plots shown for post-induc-
tion plasma samples. The order of post-induction plasma samples in d matches that of the pre-induc-
tion plasma in b for the 87 patients with both time points available for analysis. For all plots, a horizon-
tal line marking the top quartile in pre-induction and post-induction MATH scores is included. 

As a continuous variable, an increase in pre-induction MATH was associated with 
shorter PFS (p = 0.0128) (Table 3). Given that tumor content in plasma could influence the 
number of mutations detected and calculations of tumor heterogeneity, the following ctDNA 
metrics were explored in correlations with MATH and potential adjustment factors: number 
of somatic mutations detected, mean AF, and mean mutant molecules per milliliter (MMPM). 
There was moderate correlation between MATH and mean AF (Spearman rho = 0.542, p < 
0.0001), mean MMPM (Spearman rho = 0.595, p < 0.0001), and number of somatic mutations 
(Spearman rho = 0.536, p < 0.0001) (Figure A3a–c). Slight significant association of MATH with 
PFS was still seen in adjusted models with mean MMPM or number of somatic mutations but 
not mean AF (Table 3). The association between pre-induction MATH and PFS was also no 
longer statistically significant (p = 0.1341) when adjusting for clinical factors, specifically 
ECOG, treatment arm, and liver resection during first-line treatment. This was also seen when 
adjusting for clinical factors with mean MMPM or number of somatic mutations. 

Table 3. Association of pre-induction MATH with PFS. 

Variable Unadjusted for Clinical Factors Adjusted for Clinical Factors 
 HR (95% CI) p HR (95% CI) p 

MATH (unit of 5) 1.03 (1.01, 1.05) 0.0128 1.02 (1.00, 1.04) 0.1341 
MATH (unit of 5),     
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Figure 1. Distribution of plasma-based MATH scores. (a) Dot plot and boxplot of MATH measure-
ments for pre-induction plasma samples. Each dot represents a sample. Pre-induction MATH values
are not significantly different (p-value = 0.2283, Wilcoxon rank-sum test) between patients with only
the pre-induction time point (red) and patients with both pre-induction and post-induction time
points (blue); (b) allele frequency (AF) of detected somatic variants for each sample (top panel). Each
open circle represents a somatic variant. The sample’s corresponding MATH score is in the bottom
panel. Samples have been ranked in order of increasing MATH score; (c,d) similar plots shown for
post-induction plasma samples. The order of post-induction plasma samples in d matches that of
the pre-induction plasma in b for the 87 patients with both time points available for analysis. For all
plots, a horizontal line marking the top quartile in pre-induction and post-induction MATH scores is
included.

Table 3. Association of pre-induction MATH with PFS.

Variable
Unadjusted for Clinical Factors Adjusted for Clinical Factors

HR (95% CI) p HR (95% CI) p

MATH (unit of 5) 1.03 (1.01, 1.05) 0.0128 1.02 (1.00, 1.04) 0.1341

MATH (unit of 5),
adjusted for mean AF 1.02 (0.99,1.04) 0.1329 1.01 (0.98, 1.03) 0.6691

adjusted for mean MMPM 1.02 (1.00, 1.05) 0.0297 1.02 (0.99, 1.04) 0.0785
adjusted for number of somatic mutations 1.02 (1.00, 1.04) 0.0474 1.02 (0.99, 1.04) 0.1742

Model with MATH with or without adjustment. Clinical factors included were ECOG, treatment arm, and liver
resection during first-line treatment.

Next, we explored MATH as a categorical variable by classifying the top quartile
(MATH greater than or equal to 123.9) as high tumor heterogeneity. High tumor hetero-
geneity was correlated with shorter PFS (median 9.30 vs. 11.70 months; log-rank p = 0.0301)
(Figure 2a). When samples with 0 or 1 somatic mutation were separated out as an “unde-
fined” MATH group, the difference in PFS was still statistically significant (high vs. low
vs. undefined: median 9.30 vs. 11.53 vs. 13.04 months; log-rank p = 0.0333) (Figure 2b).
However, MATH as a categorical variable (high vs. low) was not significant (hazard ratio
(HR), 1.41; 95% confidence interval (CI), 0.91–2.19) when adjusting for ECOG, treatment
arm, and liver resection in a multivariable Cox regression model for PFS.



Cancers 2022, 14, 2240 7 of 16

Cancers 2022, 14, x 7 of 17 
 

 

Next, we explored MATH as a categorical variable by classifying the top quartile 
(MATH greater than or equal to 123.9) as high tumor heterogeneity. High tumor hetero-
geneity was correlated with shorter PFS (median 9.30 vs. 11.70 months; log-rank p = 
0.0301) (Figure 2a). When samples with 0 or 1 somatic mutation were separated out as an 
“undefined” MATH group, the difference in PFS was still statistically significant (high vs. 
low vs. undefined: median 9.30 vs. 11.53 vs. 13.04 months; log-rank p = 0.0333) (Figure 2b). 
However, MATH as a categorical variable (high vs. low) was not significant (hazard ratio 
(HR), 1.41; 95% confidence interval (CI), 0.91–2.19) when adjusting for ECOG, treatment 
arm, and liver resection in a multivariable Cox regression model for PFS. 

 
Figure 2. Shorter PFS in high pre-induction MATH. (a) Kaplan–Meier curves showing shorter PFS 
with high tumor heterogeneity, defined as MATH in the top quartile in pre-induction plasma; (b) 
longer PFS with MATH below the top quartile or undefined, i.e., samples with 0 or 1 somatic mu-
tations detected. 

Categorical MATH (low vs. high) was also not significantly associated with an objec-
tive response in both unadjusted (p = 0.8691) and adjusted (p = 0.6835) logistic regression 
models. Of the most frequently mutated genes (Figure A4a), none were significantly en-
riched in high vs. low MATH groups. KRAS or NRAS were mutated in 54.1% of patients 
with high MATH and 48.6% of patients with low MATH. BRAF was mutated in 5.4% of 
patients with high MATH and 4.6% of patients with low MATH. The distributions of RAS 
and BRAF between MATH low and high groups were not statistically significant (p = 
0.5681 and p = 1.0000, respectively). BRAF mutation in pre-induction plasma was not sig-
nificantly associated with PFS (HR, 1.44; 95% CI, 0.63–3.31). High vs. low MATH, adjust-
ing for BRAF, was significantly associated with PFS (HR, 1.58; 95% CI, 1.03–2.44). Similar 
associations were seen for RAS mutation in pre-induction plasma. RAS mutation was not 
significantly associated with PFS, and high vs. low MATH, adjusting for RAS, was still 
significantly associated with PFS (HR, 1.61; 95% CI, 1.05–2.47). 

3.3. MATH in Post-Induction Plasma 
We then examined MATH in plasma collected after the start of induction therapy; 

collection ranged from 60 to 356 days after treatment start date. Eighty-nine patients had 
a post-induction plasma sample with evaluable sequencing data using the AVENIO Sur-
veillance panel. A median of three somatic mutations (range 0 to 23) per sample were 
detected. No somatic mutations were detected in six samples, and one somatic mutation 
was detected in 20 samples. MATH scores and the corresponding distribution of variant 
AF for each post-induction sample are shown in Figure 1c,d. 

Increase in post-induction MATH was associated with shorter PFS (estimated 6% in-
crease in hazard for every five-unit increase in MATH: HR, 1.06; 95% CI, 1.03–1.09) (Table 
4). Post-induction MATH was moderately correlated with mean AF (Spearman rho = 
0.493, p < 0.0001) and mean MMPM (Spearman rho = 0.489, p < 0.0001) but strongly corre-
lated with number of somatic mutations (Spearman rho = 0.809, p < 0.0001) (Figure A3d–

Figure 2. Shorter PFS in high pre-induction MATH. (a) Kaplan–Meier curves showing shorter PFS
with high tumor heterogeneity, defined as MATH in the top quartile in pre-induction plasma; (b)
longer PFS with MATH below the top quartile or undefined, i.e., samples with 0 or 1 somatic
mutations detected.

Categorical MATH (low vs. high) was also not significantly associated with an objec-
tive response in both unadjusted (p = 0.8691) and adjusted (p = 0.6835) logistic regression
models. Of the most frequently mutated genes (Figure A4a), none were significantly en-
riched in high vs. low MATH groups. KRAS or NRAS were mutated in 54.1% of patients
with high MATH and 48.6% of patients with low MATH. BRAF was mutated in 5.4% of
patients with high MATH and 4.6% of patients with low MATH. The distributions of RAS
and BRAF between MATH low and high groups were not statistically significant (p = 0.5681
and p = 1.0000, respectively). BRAF mutation in pre-induction plasma was not significantly
associated with PFS (HR, 1.44; 95% CI, 0.63–3.31). High vs. low MATH, adjusting for BRAF,
was significantly associated with PFS (HR, 1.58; 95% CI, 1.03–2.44). Similar associations
were seen for RAS mutation in pre-induction plasma. RAS mutation was not significantly
associated with PFS, and high vs. low MATH, adjusting for RAS, was still significantly
associated with PFS (HR, 1.61; 95% CI, 1.05–2.47).

3.3. MATH in Post-Induction Plasma

We then examined MATH in plasma collected after the start of induction therapy;
collection ranged from 60 to 356 days after treatment start date. Eighty-nine patients
had a post-induction plasma sample with evaluable sequencing data using the AVENIO
Surveillance panel. A median of three somatic mutations (range 0 to 23) per sample were
detected. No somatic mutations were detected in six samples, and one somatic mutation
was detected in 20 samples. MATH scores and the corresponding distribution of variant
AF for each post-induction sample are shown in Figure 1c,d.

Increase in post-induction MATH was associated with shorter PFS (estimated 6% in-
crease in hazard for every five-unit increase in MATH: HR, 1.06; 95% CI, 1.03–1.09) (Table 4).
Post-induction MATH was moderately correlated with mean AF (Spearman rho = 0.493,
p < 0.0001) and mean MMPM (Spearman rho = 0.489, p < 0.0001) but strongly correlated
with number of somatic mutations (Spearman rho = 0.809, p < 0.0001) (Figure A3d–f).
However, when including mean AF, mean MMPM, or number of somatic mutations in
an adjusted model with MATH, MATH remained significantly associated with PFS (Ta-
ble 4). The association between post-induction MATH and PFS also remained statistically
significant after adjusting for treatment arm and liver resection during first-line (5 unit
increase in MATH: HR, 1.05; 95% CI, 1.02–1.08). Association of MATH with PFS was still
significant after adjusting for clinical factors with mean AF, mean MMPM, or number of
somatic mutations.
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Table 4. Association of post-induction MATH with PFS. Global p-values presented for MATH
categories with more than two levels (low vs. high. vs. undefined). Clinical factors for adjustment
were treatment arm and liver resection during first line.

Model with MATH
Unadjusted Adjusted for Clinical Factors

MATH Variable HR (95% CI) p HR (95% CI) p

unit of 5 1.06 (1.03, 1.09) <0.0001 1.05 (1.02,1.08) 0.0008

High vs. Low 3.23 (1.85, 5.63) <0.0001 3.34 (1.90, 5.86) <0.0001

Low vs. Undefined 1.50 (0.79, 2.85) 0.0001 1.24 (0.65, 2.40) 0.0001
High vs. Undefined 4.14 (2.06, 8.35) 3.83 (1.89, 7.76)

Model with MATH and Mean AF
Adjusted for Mean AF Adjusted for Mean AF and Clinical Factors

MATH Variable HR (95% CI) p HR (95% CI) p

unit of 5 1.06 (1.03, 1.09) < 0.0001 1.05 (1.02, 1.09) 0.0009

High vs. Low 3.51 (1.93, 6.39) < 0.0001 3.69 (2.02, 6.73) <0.0001

Low vs. Undefined 1.46 (0.76, 2.78) 0.0002 1.18 (0.61, 2.29) 0.0001
High vs. Undefined 4.38 (2.12, 9.08) 4.09 (1.96, 8.50)

Model with MATH and Mean MMPM
Adjusted for Mean MMPM Adjusted for Mean MMPM and Clinical Factors

MATH Variable HR (95% CI) p HR (95% CI) p

unit of 5 1.06 (1.03, 1.10) <0.0001 1.06 (1.02, 1.09) 0.0005

High vs. Low 3.54 (1.93, 6.47) <0.0001 4.25 (2.27, 7.94) <0.0001

Low vs. Undefined 1.49 (0.78, 2.83) 0.0001 1.19 (0.62, 2.30) <0.0001
High vs. Undefined 4.50 (2.15, 9.40) 4.72 (2.23, 9.98)

Model with MATH and Number of Somatic Mutations
Adjusted for Number of

Somatic Mutations
Adjusted for Number of

Somatic Mutations and Clinical Factors

MATH Variable HR (95% CI) p HR (95% CI) p

unit of 5 1.05 (1.02, 1.08) 0.0023 1.04 (1.01, 1.08) 0.0110

High vs. Low 2.78 (1.48, 5.23) 0.0016 3.21 (1.66, 6.20) 0.0005

Low vs. Undefined 1.39 (0.71, 2.74) 0.0037 1.24 (0.63, 2.42) 0.0018
High vs. Undefined 3.58 (1.58, 8.10) 3.76 (1.65, 8.57)

To assess MATH as a categorical variable, we classified post-induction samples in the
top quartile (MATH greater than or equal to 67.7) as high tumor heterogeneity. High tumor
heterogeneity was associated with shorter PFS (median 7.16 vs. 11.70 months; log-rank
p < 0.0001) (Figure 3a). When samples with 0 or 1 somatic mutation were designated as
a third “undefined” MATH group, the difference in PFS was also statistically significant
(median 7.16 vs. 10.74 vs. 17.68 months; log-rank p < 0.0001) (Figure 3b). Patients classified
in the high MATH category in post-induction plasma had shorter PFS compared to patients
classified in the low MATH category (HR, 3.23; 95% CI, 1.85–5.63). MATH (high vs. low)
was still significantly associated with PFS after adjusting for mean AF, mean MMPM, or
number of somatic mutations (Table 4). The significant association was still observed after
adjusting for clinical factors only (HR, 3.34; 95% CI, 1.90–5.86), or in combination with
mean AF, mean MMPM, or number of somatic mutations (Table 4).
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Objective response rate (ORR) was significantly higher for patients with low MATH
compared to high MATH (87.9% vs. 56.5%; p = 0.0026) (Table 5). Odds ratio for objective
response (complete response or partial response) favored patients with low tumor hetero-
geneity (OR, 5.58; 95% CI, 1.84–16.88); this was still observed after adjusting for treatment
arm and liver resection during the first line (OR, 5.94; 95% CI,1.87–18.90) (Table 5).

Table 5. Objective response rate by post-induction MATH category. Clinical factors for adjustment
included treatment arm and liver resection during first line.

Assessment Low MATH
(n = 66)

High MATH
(n = 23)

ORR (CR or PR)
n (%) 58 (87.9) 13 (56.5)

p-value 0.0026 -

Odds Ratio, unadjusted
Low vs. High (95% CI) 5.58 (1.84, 16.88) -

p-value 0.0023 -

Odds Ratio, adjusted
Low vs. High (95% CI) 5.94 (1.87, 18.90) -

p-value 0.0026 -

Amongst the most frequently mutated genes in post-induction plasma (Figure A4b),
KRAS or NRAS were mutated in 43.5% of patients with high MATH and 12.1% of patients
with low MATH; this difference was statistically significant after Bonferroni correction
(adjusted p = 0.033). While patients with RAS mutations in the post-induction plasma had
shorter PFS (median difference: 4.3 months; HR, 2.53; 95% CI, 1.42–4.53)), high vs. low
MATH status was still significantly associated with PFS in an adjusted model with RAS
mutation status (HR, 2.81; 95% CI, 1.58–4.99).

3.4. Change in MATH from Pre-Induction to Post-Induction

There were 87 patients who had both pre-induction and post-induction plasma sam-
ples available for analysis. Out of the 87 patients, four patients had MATH scores equal
to 0 at both time points. For these patients, the change in number of somatic mutations
was used to determine the MATH classifier. One patient had no change in the number
of somatic mutations and was excluded from this analysis. We assessed the change in
MATH in the remaining 86 paired plasma samples and found that patients with at least a
10-fold decrease in MATH had longer PFS (log-rank p = 0.0078; HR, 2.18; 95% CI, 1.21–3.91)
(Figure 4). All three patients with pre and post-induction MATH scores equal to 0 had a
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decrease of variant count from 1 to 0. These patients were classified in the >/= 10-fold
decrease group. The association was no longer significant after adjusting for treatment
arm and liver resection during first-line treatment (HR, 1.65; 95% CI, 0.90–3.05) (Table 6).
Figure A5 presents examples of changes in VAF in a patient with a greater than 10-fold
drop in MATH and another patient with an increase in MATH.
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Table 6. Association between PFS and decrease in MATH in Cox proportional hazard models. Clinical
factors for adjustment included treatment arm and liver resection during the first line.

Model
MATH (<10 Fold vs. >/= 10 Fold Drop)

HR (95% CI) p

Unadjusted 2.18 (1.21, 3.91) 0.0093
Adjusted 1.65 (0.90, 3.05) 0.1064

4. Discussion

Since sequencing of solid tumor tissue samples may underestimate overall tumor
heterogeneity, we hypothesized that heterogeneity could be measured using the distribution
of allele frequencies of detected variants from plasma. Using plasma samples collected
before and after induction during the STEAM trial, we explored the association of tumor
heterogeneity measurements with PFS and ORR. We found that high tumor heterogeneity
in post-induction plasma correlated with shorter PFS and worse objective response.

To our knowledge, this is the first application of MATH to ctDNA NGS results, and
the first description of plasma-based MATH correlating with clinical outcome. MATH
was originally presented as a potential prognostic biomarker in head and neck squamous
cell carcinoma [18,19]. Other studies have reported a correlation between MATH and
survival in various cancer types, including breast cancer [20], lung adenocarcinoma [21],
FGFR3-mutated muscle-invasive bladder cancer [22], melanoma [23], and uterine corpus
endometrial carcinoma [24]. Our findings are consistent with studies in CRC that show
association of higher MATH scores with poorer outcomes or other clinical and biological
factors. For example, higher MATH correlated with a greater number of subclones, which
was associated with shorter PFS in CRC Stages I–IV [25]. Higher MATH in male patients
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in TCGA data was an independent risk factor for shorter OS [26]. MATH correlated with
the risk of metastases in stage II CRC [27], and low MATH could predict better response to
neoadjuvant chemoradiotherapy in locally advanced rectal cancer [28].

All previous studies with MATH were based on WES of tumor tissue samples. Our
work demonstrates feasibility in targeted sequencing of plasma samples, which offers two
advantages. First, even though costs of sequencing are declining, WES poses computational
and variant interpretation challenges. The 198-kilobase Surveillance panel used in this
work was optimized by panel design to maximize the number of mutations that can be
detected in CRC and lung cancer. The median number of somatic mutations per patient
was 7 and 3 in the pre and post-induction plasma, respectively. Second, liquid biopsy is
a non-invasive alternative to tissue biopsy, and can also reflect the genetic heterogeneity
of multiple tumor sites that may be undersampled and biased with the sequencing of a
single tumor tissue biopsy [29]. Other methods to infer clone phylogeny require collecting
multiple tissue samples and face their own analytical challenges [30]. Further studies will
be needed to explore plasma-based MATH in other cancer types and treatment regimens.

As for the biological basis underlying the association between plasma-based MATH
and response to chemotherapy regimens, more work is required to uncover possible
mechanisms. Chemotherapy remains the standard of care for metastatic CRC for patients
without targetable mutations even though drug resistance often develops. Chemotherapy
is known to apply selective pressure on tumor clones, and ctDNA levels drop during
48-h application of FOLFOX in patients with stable disease or partial response [31]. We
observed longer PFS in patients with a greater decrease, such as more than a 10-fold drop,
in tumor heterogeneity after the four to six-month induction period. Patients with a smaller
decrease, or even stable or increased tumor heterogeneity, may have tumors that have
developed resistance to chemotherapy or bevacizumab. Preclinical data show that chronic
exposure of CRC cells to bevacizumab leads to increased tumor cell migration, invasion,
and metastatic potential [32]. Perhaps tumor cells migrate to other sites and continue to
proliferate and evolve new clones, resulting in similar or higher plasma MATH values.
Other mechanisms of resistance to bevacizumab treatment are possible. One example is
amplification of POLR1D, which may increase expression of VEGFA [33], though we were
unable to test this as this region was not sequenced in the panel we used. There may also
be tumor evolution through crosstalk with the surrounding microenvironment, where
chemotherapeutic agents may upregulate expression of inhibitory immune checkpoints [34,
35]. Future studies that incorporate other data types, such as protein or gene expression
analysis of immunoregulatory molecules and image-based morphological characterization
of tumor heterogeneity [36], could help elucidate these findings.

5. Conclusions

Analyses with a 198-kilobase ctDNA NGS assay on the STEAM study enabled the
first demonstration of a plasma-based MATH assessment. We found that lower tumor
heterogeneity was associated with longer PFS and higher ORR in metastatic CRC treated
with first-line chemotherapy and bevacizumab. ctDNA-based tumor heterogeneity may
have potential prognostic value in other metastatic cancers and treatment settings.
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presented. “Other” refers to other genes or no mutations for samples with 0 variants.
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