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The Similarities and Distances of
Growth Rates Related to COVID-19
Between Different Countries Based
on Spectral Analysis
Ray-Ming Chen*

School of Mathematics and Statistics, Baise University, Baise, China

The COVID-19 pandemic has taken more than 1.78 million of lives across the globe.

Identifying the underlying evolutive patterns between different countries would help

us single out the mutated paths and behavior of this virus. I devise an orthonormal

basis which would serve as the features to relate the evolution of one country’s

cases and deaths to others another’s via coefficients from the inner product. Then I

rank the coefficients measured by the inner product via the featured frequencies. The

distances between these ranked vectors are evaluated by Manhattan metric. Afterwards,

I associate each country with its nearest neighbor which shares the evolutive pattern via

the distance matrix. Our research shows such patterns is are not random at all, i.e., the

underlying pattern could be contributed to by some factors. In the end, I perform the

typical cosine similarity on the time-series data. The comparison shows our mechanism

differs from the typical one, but is also related to each it in some way. These findings

reveal the underlying interaction between countries with respect to cases and deaths

of COVID-19.

Keywords: growth rate, COVID-19, Manhattan metric, similarity measures, spectral analysis

1. INTRODUCTION

COVID-19 is in full, the COVID-19 pandemic is still ongoing and is spreading across all the
continents (1, 2). The spread of this pandemic is has been studied by many researchers (3–6). There
are many ways to look into the behaviors of the viruses or the pandemic itself (7, 8) for the sake
of efficacy of travel bans or vaccines (9). Some researches have even have established the relations
between cases and deaths of COVID-19 from demographic, economic, and social perspectives (10).
In this article, I devise an orthonormal basis (11) BN which is motived by Fourier analysis (12)
and could thus take the underlying frequencies of data into consideration. I utilize the COVID-19
database (13) which records the weekly COVID-19 cases and deaths fromWeek 15 to 51 (37 weeks
in total). By filtering out some non-essential data (countries), I obtain 90 countries as our research
targets. By calculating the 36 (the number of intervals from Week 15 to 51) growth rates of the
cases and deaths for the 90 countries, I have an input vector. By transforming this vector into a
set of coefficients, which is the results of inner product via B36, I start to rank the coefficients by
positive integers,: from 1 to 36. The ranks indicate the strength (relation) between the input vector
and the underlying frequencies. A larger coefficient will be assigned a larger positive integer. By
doing so, I have a 90 × 36 coefficient matrix, where 90 is the number of the sampled countries
and 36 is the number of frequencies (or the length of the input vector). Then, I use Manhattan
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metric (14) to measure the distances between all the ranked
vectors and yield a 90 × 90 distance matrix. Afterwards, I
associate each country with its nearest neighbor via the minimal
distance in the distance matrix. In the end, I rerun our data
with another typical approach: cosine similarity, which could
be calculated either from the original time-series data or the
transformed frequency coefficients, i.e., both would produce
the identical results by the property of an inner product. The
interaction between these two approaches are also revealed
via Jaccard Index (15). Our research shows that the patterned
evolutive correlation between counties not random, i.e., there
are some fundamental factors that contribute to such relation.
The research also reveals that the correlated patterns for cases
and deaths between countries bears no similarity at all. This also
indicates that there is a strong discrepancy between evolution of
cases and the one of deaths.

2. METHODOLOGY AND PROCEDURES

I devise a class of orthogonal bases, which are serve as our feature
extractors. Then a complete set of procedures are is also described
in this section.

2.1. Orthogonal Basis
Motivated by the Fourier series and Fourier transform, I devise
an orthonormal basis which is easier and much more intuitive to
adopt and interpret the analysis of, since it involves only the real
numbers—not the complex numbers, which normally are harder
to use to interpret the analyzed results.

Let N denote the set of positive integers. Suppose Ev is a vector
whose elements are all non-negative integers. Evi is used to denote
its i’th element in the vector and |Ev| is used to denote its length.
Let us assume |Ev| = N + 1, where N stands for a natural
number in this article. I use 1Ev to denote its growth vector,

i.e., 1Ev = ( Ev2−Ev1
Ev1

, Ev3−Ev2
Ev2

, · · · , EvN+1−EvN
EvN

). Observe that |1Ev| = N.

This growth vector is our main research target, since I study the
(weekly) growth rates of cases and deaths regarding COVID-19.
Later on, I would tweet tweak the definition of growth vector
slightly to fit our analytical purpose. For any two vectors Ev and
Ew, I use < Ev, Ew > to denote their inner product. Define real

functions I(x) =
√

1
N and bm(x) :=

√

2
N · cos[( 2πN · m) · x] and

b̃m(x) :=
√

2
N · sin[( 2πN ·m) · x], where x ∈ {1, 2, · · · ,N}. Define

BN

:=







{I, b1, b̃1, b2, b̃2, · · · , bm, b̃m, · · · , b N
2 −1, b̃ N

2 −1,
√

1
2 · b N

2
} , if N is even;

{I, b1, b̃1, b2, b̃2, · · · , bm, b̃m, · · · , b N−1
2
, b̃ N−1

2
} , if N is odd.

By some manipulation of mathematical operations, BN is
provend to be an orthogonal basis for all natural number N.

2.2. Procedures
In this section, I describe a procedure to analyze (in the form of
a matrix) M × (N + 1) time-series data, where M is the number
of the sets and N + 1, which is the number of points of time.
The purpose for adding 1 is to simplify our further analysis which
utilizes its difference (or N intervals). The whole analytical steps
go as follows:

1. Specify theM researched subjects (for example, countries) and
N + 1 points of times (for example, weeks). Then collect the
sets of time-series data which could then be represented by
{Ev1, Ev2, · · · , EvM}, where each |Evk| = N + 1.

2. Calculate the growth vector for growth rate of each Evk by

1Evki =
Evki+1−Evki
1+Evki

, where 1 ≤ i ≤ N for all k ∈ {1, 2, · · · ,M}.

Here (for our analytical purpose) the denominator is
deliberately added by 1 to avoid the divisor being 0.

FIGURE 1 | Inner product of case and death growth rates and featured

frequencies, which is calculated in Table 1 for Afghanistan (AFG) and Algeria

(DZA). (A) Inner product of case growth rates and featured frequencies for

Afghanistan (AFG) and Algeria (DZA). (B) Inner product of death growth rates

and featured frequencies for Afghanistan (AFG) and Algeria (DZA).
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TABLE 1 | Numbers representing sampled countries.

1 2 3 4 5 6 7 8 9 10

AFG DZA AGO ARG AUS AZE BGD BEL BEN BOL

11 12 13 14 15 16 17 18 19 20

BRA BFA BDI KHM CMR CAN TCD CHL CHN COL

21 22 23 24 25 26 27 28 29 30

CIV CUB CZE COD DOM ECU EGY ETH FRA DEU

31 32 33 34 35 36 37 38 39 40

GHA GRC GTM GIN HTI IND IDN IRN IRQ ITA

41 42 43 44 45 46 47 48 49 50

JPN JOR KAZ KEN MDG MWI MYS MLI MEX MAR

51 52 53 54 55 56 57 58 59 60

MOZ MMR NPL NLD NER NGA PAK PER PHL POL

61 62 63 64 65 66 67 68 69 70

PRT ROU RUS RWA SAU SEN SOM ZAF KOR SSD

71 72 73 74 75 76 77 78 79 80

ESP LKA SDN SWE SYR CNG THA TUN TUR UGA

81 82 83 84 85 86 87 88 89 90

UKR GBR TZA USA UZB VEN VNM YEM ZMB ZWE

3. Calculate the inner products or coefficient vector for each

growth vector 1Evk by < 1Evk, Eb >, where Eb ∈ BN for all
k ∈ {1, 2, · · · ,M}. Let BN(1Evk) denote the corresponding
coefficient vector. These coefficients serve as the extracted
features of the growth rates, as shown in Figure 1.

4. Rank BN(1Evk) via positive numbers in which the higher
the value is among BN(1Evk), the higher the positive integer
assigned is assigned. Let us call this ranked vector RBN(1Evk).

5. Calculate the distances between all the ranked vectors via
Manhattanmetric d among all theM subjects that would result
in a distance matrix [d(RBN(1Evk),RBN(1Evh))]M

k,h=1
.

6. Find the minimal pairs (or nearest neighbors) for all the
subjects with least distance via the above distance matrix.

3. RESULTS

In correspondence to section 2, I embark on data analysis and
produce the results in this section. I download the historical
weekly data (up to Week 51, 2020) of the reported COVID-19
cases and deaths worldwide. In order to avoid biased sampling, I
filter the data according to the following criteria:

1. Among all the countries, only the populations with of more
than 10 millions are included;

2. Only data fromWeek 15 to 51, Year 2020 are taken as samples.

First of all, the global weekly data regarding COVID-19 are
read from its source file (13) and stored in a matrix DT whose
size is 9,152 by 10. After filtering out the non-essential samples
by the above criteria, I obtain 90 countries (with abbreviated
country codes and corresponding labels) as shown in Table 1—
each of which contains 37 weekly data (from Week 15 to 51).
Furthermore, each country is represented by a 37 by 2 matrix,
where 2 indicates the two columns chosen (cases weekly and

TABLE 2 | Weekly (from Week 15 to 51) COVID-19 cases (c) and deaths (d) for

Afghanistan, which is indicated by 1, and Algeria, which is indicated by 2.

Week 1c 2c 1d 2d Week 1c 2c 1d 2d

15 308 594 11 141 34 403 2,877 12 65

16 389 715 15 82 35 163 2,686 15 66

17 535 753 24 50 36 236 2,218 10 55

18 1,173 1,092 28 38 37 318 1,890 8 56

19 1,698 1,249 35 39 38 328 1,572 21 60

20 2,262 1,296 49 46 39 183 1,241 12 42

21 3,918 1,287 49 52 40 114 1,069 9 46

22 4,623 1,088 39 53 41 458 936 15 41

23 5,137 760 100 54 42 401 1,330 15 55

24 4,424 765 114 60 43 633 1,741 22 58

25 4,067 852 110 78 44 800 2,129 27 59

26 2,134 1,502 140 52 45 606 3,779 24 75

27 1,984 2,668 143 55 46 1,164 5,628 61 106

28 1,500 3,254 146 59 47 1,368 7,183 69 121

29 1,024 3,889 171 67 48 1,073 7,359 68 135

30 788 4,273 88 77 49 1,672 6,031 137 106

31 447 4,108 15 76 50 1,757 3,850 71 80

32 344 3,749 28 71 51 740 3,101 111 70

33 542 3,369 63 68

deaths weekly) out of the original ten columns. An example of
such matrices for Country AFG and DZA are listed in Table 2.
Data for other countries are omitted here for limited space. In
the table, “1c” denotes the cases of COVID-19 in AFG; “2c”
denotes the cases of COVID-19 in DZA; “1d” denotes the deaths
of COVID-19 in AFG and “2d” denotes the deaths of COVID-
19 in DZA. Based on this table, I start to calculate the weekly
growth rates for cases and deaths by the formula

1n =
Week(n+ 1)−Week(n)

1+Week(n)
,

where Week(n) denotes the growth rates for cases or deaths
at Week n. Observe that 1 is added to the denominator to
avoid the infinite growth rate. An example of cases and deaths
regarding the growth rates for AFG and DZA are presented
in Table 3.

Based on this table and the featured frequencies (vectors),
i.e., orthonormal basis BN (or B36 in our case), one could then
calculate (an example for AFG and DZA) their coefficients (or
inner product) as shown in Table 4, in which the meaning of bj is
explained in section 2.1.

Now I rank the coefficients. A higher positive integer is
assigned, if a coefficient is higher. The assignment for each
country (here I present only AFG and DZA) is shown in Table 5.
The distances of ranked vectors between different countries
could then be calculated by Manhattan metric. The results are
shown in Table 6. Based on these distance matrices, one
could associate each country with its nearest neighbor(s) with
respect to cases and deaths. The results are presented in Table 7.
In the table, “Cty” stands for Country. Since the death rate
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TABLE 3 | Weekly growth rates of cases and deaths for COVID-19 from Week 15 to 50 for Afghanistan (AFG) and Algeria (DZA).

Week 15 16 17 18 19 20

Weekly growth rate: AFG case 0.262 0.374 1.19 0.447 0.332 0.732

Weekly growth rate: DZA case 0.203 0.053 0.45 0.144 0.038 −0.007

Weekly growth rate: AFG death 0.013 0.023 0.007 0.006 0.008 0

Weekly growth rate: DZA death −0.099 −0.045 −0.016 0.001 0.006 0.005

Week 21 22 23 24 25 26

Weekly growth rate: AFG case 0.18 0.111 −0.139 −0.081 −0.475 −0.07

Weekly growth rate: DZA case −0.155 −0.301 0.007 0.114 0.762 0.776

Weekly growth rate: AFG death −0.003 0.013 0.003 −0.001 0.007 0.001

Weekly growth rate: DZA death 0.001 0.001 0.008 0.023 −0.03 0.002

Week 27 28 29 30 31 32

Weekly growth rate: AFG case −0.244 −0.317 −0.23 −0.432 −0.23 0.574

Weekly growth rate: DZA case 0.22 0.195 0.099 −0.039 −0.087 −0.101

Weekly growth rate: AFG death 0.002 0.017 −0.081 −0.093 0.029 0.101

Weekly growth rate: DZA death 0.001 0.002 0.003 0 −0.001 −0.001

Week 33 34 35 36 37 38

Weekly growth rate: AFG case −0.256 −0.594 0.445 0.346 0.031 −0.441

Weekly growth rate: DZA case −0.146 −0.066 −0.174 −0.148 −0.168 −0.21

Weekly growth rate: AFG death −0.094 0.007 −0.030 −0.008 0.041 −0.027

Weekly growth rate: DZA death −0.001 0 −0.004 0 0.002 −0.011

Week 39 40 41 42 43 44

Weekly growth rate: AFG case −0.375 2.991 −0.124 0.577 0.263 −0.242

Weekly growth rate: DZA case −0.138 −0.124 0.42 0.309 0.223 0.775

Weekly growth rate: AFG death −0.016 0.052 0 0.017 0.008 −0.004

Weekly growth rate: DZA death 0.003 −0.005 0.015 0.002 0.001 0.008

Week 45 46 47 48 49 50

weekly growth rate: AFG case 0.919 0.175 −0.215 0.558 0.051 −0.578

weekly growth rate: DZA case 0.489 0.276 0.024 −0.18 −0.362 −0.194

weekly growth rate: AFG death 0.061 0.007 −0.001 0.064 −0.039 0.023

weekly growth rate: DZA death 0.008 0.003 0.002 −0.004 −0.004 −0.003

for Country 14 is 0, the associated values are ignored when
it is involved. Some countries might associate with more than
one country.

4. DISCUSSION

4.1. Comparison
Here I utilize another typical approach, namely: cosine similarity,
to compare our method with others. Though the cosine similarity
is highly frequently used in many fields, it focuses less on the
some internal structures. For example, if Ep = (5, 4), Eq =
(−4, 5), Er = (1,− 5

4 ). Then cos(Ep, Eq) = cos(Ep, Er) = 0. But, with
our ranked Manhattan metric (or d) d(Ep, Eq) = 2 and d(Ep, Er) = 0.
Moreover, when the coefficients are ranked, they tend to reduce
the noise of the data—in particular, the cases and deaths are
affected by many factors. The results of the cosine similarities
for the 90 countries (except the for country 14, which is ignored
for the part of deaths, due to its death cases are being zero). The
results are presented in Table 8. Again, by linking each country
to its neighbor which has the maximal cosine similarities, one has
Table 9.

4.2. Optimal Pairings
In this section, I list and compare the optimal minimal and
maximal pairs from Tables 7, 9. The results are shown in
Table 10. I could apply Jaccard Index J(A,B) = |A∩B|

|A∪B| to analyze

their relation, where A,B are sets.

5. CONCLUSION AND FUTURE WORK

Based on our devised orthonormal basis, which is motivated by
Fourier analysis, I perform spectral analysis on 90 representative
90 countries. The main purpose for such an analysis is
to identify the patterns of evolution of COVID-19 across
the globe. To this end, the coefficients which measure the
relation between the growth rate of COVID-19 country and
the given features in the spectrum are utilized. Then I rank
the coefficients to reveal their internal structures and then
apply the Manhattan metric to compute the distances between
countries. This constructed distance matrix would reveal the
relations between the countries regarding the evolution of
COVID-19 cases and deaths. In addition, I also identify the
nearest neighbor with respect to minimal distance via the
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TABLE 4 | Coefficients, or inner product, for 36 frequencies (or features) with respect to weekly growth rates of cases and deaths for Afghanistan (AFG) and Algeria (DZA).

Frequency b0 b1 b̃1 b2 b̃2 b3

AFG cases −0.276 0.162 1.269 −0.422 0.782 0.306

DZA cases 0.205 0.198 0.2 −0.4 0.285 0.144

AFG deaths −0.043 0.006 0.043 0.027 −0.03 −0.003

DZA deaths −0.021 −0.036 −0.032 −0.029 −0.022 −0.019

Frequency b̃3 b4 b̃4 b5 b̃5 b6

AFG cases −0.707 1.259 −0.204 −0.588 1.255 −0.217

DZA cases 0.304 0.144 −0.07 0.234 −0.047 0.35

AFG deaths 0 0.07 −0.065 0.016 0.049 −0.021

DZA deaths −0.014 −0.027 −0.031 −0.021 −0.022 −0.007

Frequency b̃6 b7 b̃7 b8 b̃8 b9

AFG cases −0.438 −0.983 0.422 0.598 −0.116 1.057

DZA cases 0.882 −0.003 −0.568 0.027 −0.2 0.346

AFG deaths 0.005 0.006 −0.041 0.04 0.007 0.048

DZA deaths −0.021 −0.032 −0.036 −0.015 −0.021 −0.021

Frequency b̃9 b10 b̃10 b11 b̃11 b12

AFG cases 0.696 0.033 −0.191 0.229 0.545 −1.269

DZA cases −0.105 0.067 0.116 −0.022 0.297 0.075

AFG deaths −0.043 −0.009 0.04 0.006 −0.011 −0.068

DZA deaths −0.006 −0.003 −0.012 −0.02 −0.013 −0.014

Frequency b̃12 b13 b̃13 b14 b̃14 b15

AFG cases 0.513 0.513 −1.018 0.152 0.18 −0.607

DZA cases −0.125 −0.066 −0.201 0.062 0.251 0.179

AFG deaths 0.035 0.075 −0.027 −0.075 0.006 0.042

DZA deaths −0.006 0.01 0.002 −0.001 −0.008 −0.021

Frequency b̃15 b16 b̃16 b17 b̃17 b18

AFG cases 0.557 −0.778 0.038 −0.085 −0.786 −0.308

DZA cases 0.034 −0.292 −0.475 −0.73 0.41 −0.286

AFG deaths 0.039 −0.071 −0.001 0.017 0.007 0.001

DZA deaths −0.013 −0.009 −0.007 −0.007 −0.007 −0.033

TABLE 5 | Ranking the coefficients calculated in Table 4 for Afghanistan (AFG) and Algeria (DZA).

Frequency b0 b1 b̃1 b2 b̃2 b3 b̃3 b4 b̃4 b5 b̃5 b6

AFG cases 12 21 36 10 32 24 6 35 14 8 34 13

DZA cases 27 25 26 4 30 23 32 22 11 28 13 34

AFG deaths 5 19 32 26 8 13 15 35 4 24 34 10

DZA deaths 15 1 5 7 10 18 21 8 6 11 9 29

Frequency b̃6 b7 b̃7 b8 b̃8 b9 b̃9 b10 b̃10 b11 b̃11 b12

AFG cases 31 18 15 23 28 1 27 26 2 20 22 7

DZA cases 10 19 21 14 31 20 9 12 7 18 29 24

AFG deaths 6 12 30 18 11 3 27 36 9 1 21 31

DZA deaths 32 33 24 17 23 20 31 36 35 34 26 13

Frequency b̃12 b13 b̃13 b14 b̃14 b15 b̃15 b16 b̃16 b17 b̃17 b18

AFG cases 29 5 19 17 4 11 9 3 25 30 16 33

DZA cases 17 5 3 1 35 6 36 15 2 16 8 33

AFG deaths 28 2 14 25 23 16 17 20 7 29 22 33

DZA deaths 22 25 27 30 28 3 12 4 2 19 16 14

The higher the coefficients are, the higher the ranks are. The higher ranks also indicate the main features of weekly growth rates of COVID-19 in terms of the chosen 36 frequencies.
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TABLE 6 | Manhattan distance (or d(Ex, Ey) :=

n
∑

i=1

|Exi − Eyi |) matrix, which is calculated from table for 90 countries with respect to COVID-19 cases (top block) and COVID-19

deaths (bottom block).

Countries 1 2 3 4 · · · 87 88 89 90

1 0 428 444 416 · · · 450 340 432 400

2 428 0 428 386 · · · 390 350 400 402

3 444 428 0 316 · · · 416 394 388 430

4 416 386 316 0 · · · 370 462 400 422

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

87 450 390 416 370 · · · 0 404 332 418

88 340 350 394 462 · · · 404 0 408 462

89 432 400 388 400 · · · 332 408 0 374

90 400 402 430 422 · · · 418 462 374 0

Countries 1 2 3 4 · · · 87 88 89 90

1 0 468 416 484 · · · 424 494 412 426

2 468 0 410 470 · · · 434 462 472 426

3 416 410 0 366 · · · 444 468 406 396

4 484 470 366 0 · · · 446 336 446 408

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

87 424 434 444 446 · · · 0 486 426 402

88 494 462 468 336 · · · 486 0 430 500

89 412 472 406 446 · · · 426 430 0 438

90 426 426 396 408 · · · 402 500 438 0

This distance is derived directly from Table 5.

TABLE 7 | Minimal pairs, in term of Manhattan distances from Table 6, for COVID-19 cases and deaths for the 90 countries.

Cty 1 2 3 4 5 6 7 8 9 10 11 12

Cases 72 84 37 86 43 44 57 54 89 20 88 23

Deaths 14 19 78 9 9, 10, 27 15 37 82 4 25 17 8

Cty 13 14 15 16 17 18 19 20 21 22 23 24

Cases 53 28 24 8 70 10 77 10 39 41 8 27

Deaths 19 – 6 54 11 55 13 39 – 83 84 –

Cty 25 26 27 28 29 30 31 32 33 34 35 36

Cases 11 33,51 24 14 90 44,55 35 74 26 24 31 17,18

Deaths 10 53 5 35 76 54 72 41 86 – 28 11

Cty 37 38 39 40 41 42 43 44 45 46 47 48

Cases 3,4 74 57 60 43 35 5 90 66 90 85 67

Deaths 7 47 20 54 30,79 52 31 17 67 48 – 66

Cty 49 50 51 52 53 54 55 56 57 58 59 60

Cases 66 55 26 69 13 8 50 10 7 10 90 40

Deaths 70 80 16 42 26 30 89 17 11 80 76 62

Cty 61 62 63 64 65 66 67 68 69 70 71 72

Cases 40 60 70 69 57 7 48 88 64 17 8 1

Deaths 82 60 56 – 73 48 45 49 52 49 36 31

Cty 73 74 75 76 77 78 79 80 81 82 83 84

Cases 7 81 4 78 19 55,76 76 65 74 19 78 2

Deaths 65 15 89 29 78 77 30 58 62 8 22 13

Cty 85 86 87 88 89 90

Cases 47 4 14 11,70 28 46

Deaths 61 90 10 20 55 86
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TABLE 8 | Typical cosine similarities of COVID-19 cases (top block) and deaths (bottom block) for 90 countries (Cty).

Cty 1 2 3 4 · · · 87 88 89 90

1 1 0.032 0.099 0.112 · · · −0.081 0.3 0.014 0.082

2 0.032 1 0.134 0.089 · · · 0.141 0.168 0.228 0.024

3 0.099 0.134 1 0.503 · · · 0.05 0.202 0.146 -0.057

4 0.112 0.089 0.503 1 · · · 0.284 0.046 0.26 0.204

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

87 -0.081 0.141 0.05 0.284 · · · 1 0.079 0.342 0.061

88 0.3 0.168 0.202 0.046 · · · 0.079 1 0.087 0

89 0.014 0.228 0.146 0.26 · · · 0.342 0.087 1 0.176

90 0.082 0.024 −0.057 0.204 · · · 0.061 0 0.176 1

Cty 1 2 3 4 · · · 87 88 89 90

1 1 −0.078 −0.009 −0.173 · · · 0.022 −0.073 0.134 −0.072

2 −0.078 1 0.085 0.097 · · · 0.005 −0.07 −0.043 0.696

3 −0.009 0.085 1 0.225 · · · −0.012 0.039 0.005 0.011

4 −0.173 0.097 0.225 1 · · · −0.001 0.245 −0.079 0.243

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

87 0.022 0.005 −0.012 −0.001 · · · 1 −0.033 −0.038 0.051

88 −0.073 −0.07 0.039 0.245 · · · −0.033 1 −0.034 −0.081

89 0.134 −0.043 0.005 −0.079 · · · −0.038 −0.034 1 −0.073

90 −0.072 0.696 0.011 0.243 · · · 0.051 −0.081 −0.073 1

TABLE 9 | Maximal pairs, in terms of typical similarities, of COVID-19 cases and deaths for the 90 countries (Cty).

Cty 1 2 3 4 5 6 7 8 9 10 11 12

Cases 72 84 37 86 41 61 83 54 31 68 68 23

Deaths 58 86 78 9 10 13 15 82 4 87 56 8

Cty 13 14 15 16 17 18 19 20 21 22 23 24

Cases 90 28 57 82 70 11 77 10 39 32 8 27

Deaths 19 – 19 51 44 55 13 39 12 83 83 57

Cty 25 26 27 28 29 30 31 32 33 34 35 36

Cases 68 13 24 14 71 40 35 22 51 24 31 11

Deaths 86 53 9 35 30 54 72 60 35 7 28 11

Cty 37 38 39 40 41 42 43 44 45 46 47 48

Cases 4 6 20 30 5 35 5 90 66 90 82 73

Deaths 7 23 20 82 30 52 31 17 67 90 10 66

Cty 49 50 51 52 53 54 55 56 57 58 59 60

Cases 73 81 33 81 7 8 50 7 73 10 90 40

Deaths 11 86 16 42 26 30 18 11 63 80 76 62

Cty 61 62 63 64 65 66 67 68 69 70 71 72

Cases 40 60 7 69 7 56 48 10 64 88 8 1

Deaths 82 76 56 21 73 48 45 57 52 49 76 86

Cty 73 74 75 76 77 78 79 80 81 82 83 84

Cases 7 60 33 78 19 76 76 9 63 54 7 2

Deaths 88 82 19 29 78 77 30 58 34 8 22 19

Cty 85 86 87 88 89 90

Cases 78 4 28 70 36 46

Deaths 53 90 10 17 28 86
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TABLE 10 | Optimal pairings for the countries with respect to cases and deaths in

terms of minimal and maximal values.

Cases-min

{1, 72} {2, 84} {3, 37} {4, 86} {5, 43} {7, 57} {8, 54}

{10, 20} {11, 88} {13, 53} {14, 28} {17, 70} {19, 77} {24, 27}

{26, 33} {31, 35} {40, 60} {46, 90} {47, 85} {48, 67} {50, 55}

{26, 51} {64, 69} {74, 81} {76, 78}

Deaths-min

{4, 9} {5, 27} {6, 15} {7, 37} {8, 82} {10, 25} {11, 17}

{13, 19} {20, 39} {22, 83} {26, 53} {28, 35} {29, 76} {30, 54}

{31, 72} {42, 52} {45, 67} {48, 66} {49, 70} {55, 89} {58, 80}

{60, 62} {65, 73} {77, 78} {86, 90}

Cases-max

{1, 72} {2, 84} {4, 86} {5, 41} {7, 83} {8, 54} {10, 68}

{14, 28} {19, 77} {22, 32} {24, 27} {30, 40} {31, 35} {33, 51}

{46, 90} {64, 69} {70, 88} {76, 78}

Deaths-max

{4, 9} {8, 82} {10, 87} {11, 56} {13, 19} {16, 51} {17, 44}

{18, 55} {20, 39} {22, 83} {26, 53} {28, 35} {30, 54} {42, 52}

{45, 67} {46, 90} {48, 66} {58, 80} {77, 78} {86, 90}

TABLE 11 | Jaccard index (or J(A,B) = |A∩B|
|A∪B|

) for minimal and maximal pairings.

Cases-min Deaths-min Cases-max Deaths-max

Cases-min 1 0 11
32

1
44

Deaths-min 0 1 0 14
31

Cases-max 11
32 0 1 1

37

Deaths-max 1
44

14
31

1
37 1

distance matrix. By the end, I compare our mechanism with
the usual cosine similarity analysis. The result shows these
two approaches yield quite different results - this indicates our
approach provides another aspect to look into the evolution of

COVID-19. The comparison also reveals some points: first of all,
the evolutive pattern for cases and deaths are very different—
which is concluded from Table 11; secondly, regardless of the
cases or the deaths, our method and the typical one are highly
related to each other; and thirdly, the relation between the
paired countries—no matter which approach one adopts—is
not random, since the ratios of pairs formed are very high.
This indicates our research provides some insightful structure
of the evolution of COVID-19 between countries. However,
some of the results about causal relations in this study might
not comply with other researches (10). This is reasonable, since
the approach I adopt focuses more on feature detection, not
solely on causal relation finding. For the future research, one
could look into the pairs to identify the fundamental factors
that contribute to such correlated patterns between countries.
Furthermore, one could also delve into the shift of phrases
of the frequencies by lifting the constraint on weekly growth
rates. This might yield an even more dynamical pictures of
the evolutions.
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