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The mutagenesis is an emerging strategy for screening microalgal candidates for CO2 biofixation and biomass production. In this
study, by 96-well microplates-UVmutagenesis, a mutant stemmed from Scenedesmus obliquus was screened and named as SDEC-
1M. To characterize SDEC-1M, it was cultivated under air and high level CO2 (15% v/v), and its parental strain (PS) was considered
as control. Growth characterizations showed that SDEC-1M grew best in high level CO2. It indicated that the mutant had high
CO2 tolerance (HCT) and growth potential under high level CO2. Richer total carbohydrate content (37.26%) and lipid content
(24.80%) demonstrated that, compared to its parental strain, SDEC-1M was apt to synthesize energy storage materials, especially
under high CO2 level.Meanwhile, the highest light conversion efficiency (approximately 18 %) was also obtained.Thus, the highest
overall biomass productivities were achieved in SDEC-1M under high level CO2, largely attributed to that the highest productivities
of total lipid, total carbohydrate, and crude protein were also achieved in the meantime. By modified UV, therefore, mutagenized
SDEC-1M was the better candidate for CO2 biofixation and biofuel production than its parental strain.

1. Introduction

Energy shortage and climatic change have been greatly
focused [1–3]. To solve the problems, the techniques of CO2
capture and sequestration and clean energy alternative to fos-
sil fuel have been widely applied, among which microalgae is
one of themost interesting strategies due to being sustainable,
environment-friendly, and noncompetitive with other edible
feedstocks [1, 4–10].

Microalgae cultivation via autotrophic system with high
level CO2 is considered as a more viable approach for
commercialization due to lower cultivation costs cut by
free sunlight and carbon source, high contents of lipid or
carbohydrate, acquiring high cell density and sequestrating
CO2 [1, 7, 8, 11]. However, the growth of microalgae can
also be inhibited by high level CO2, due to acidified medium
[12]. Thus, an ideal candidate should have tolerance for high

level CO2. In previous reports, in addition to the isolation
of microalgae from the region affected by atmospheric
pollution source [1] and acclimation by bubbled gas with
CO2 gradually increasing [13], screening microalgae with
high CO2 tolerance (HCT) by genetic strategy coupled to
high-throughput screening were emerging [3, 4, 13–17]. In
consideration of the economic and technological feasibility
of genetic manipulations [3, 13, 15], random mutagenesis
was more employed to provide microalgae candidates, rather
than targeted genetic manipulation [17]. For instance, some
mutants with HCT were obtained by chemical [4], nuclear
irradiation [13], plasmas [18], and UV mutagenesis [14, 15].
Following mutagenesis, general, surviving mutants should be
isolated [4, 15], which means enormous work and risks from
invasion of infectious bacteria and algae. According to novel
96-well microplates-UV mutagenesis, each cell was isolated
and then mutagenized in a well of 96-well microplates [14].
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Since each surviving colony in the closed well was pure
strain, luckily, invasion and reisolation were avoided. The
novel method can shorten operating time, simplify operation
process, and maintain purity of isolated strains [14].

Mutants can access some characteristics which their
parental strains do not have, for instance, high biomass
productivities [17], high abilities to capture CO2 [4], high
light conversion efficiencies (LCE) [14, 17, 19], high CO2
requiring (HCR) [14, 20], and high contents of lipid or
carbohydrate [14–16]. These genetic characteristics affecting
their ability to biofix CO2 and product biomass are key
to commercialize microalgae [16]. In view of randomicity
of mutagenesis, the above-mentioned characteristics might
synchronize. Therefore, it is necessary that the mutants are
characterized to test their commercialization potential of the
CO2 biofixation and biomass production.

In this study, we aimed to havemicroalgae strains for CO2
biofixation and biomass production; Scenedesmus obliquus
was mutagenized by 96-well microplates-UV mutagenesis.
One competitive potential mutant was screened out. To
characterize its growth, biochemical components, and LCE,
moreover, the mutant and its parental strain were cultivated
under air and high level CO2 (15% v/v). After continuous
subculture for five generations under 15% CO2, its genetic
stability was tested. According to the experimental results,
finally, the mutant’s suitability for CO2 fixation and applica-
tion of its biomass were evaluated.

2. Material and Methods

2.1.Microalgae Strains andCultureMedium. In this study, as a
parental strain (PS), one freshwater microalgae Scenedesmus
obliquus observed dominant in freshwater water systems
[27] was obtained from FACHB-Collection of Institute of
Hydrobiology, Chinese Academy of Sciences. By 96-well
microplates-UVmutagenesis [14], several S. obliquusmutants
survived in wells with low pH (4.5) BG11 culture medium,
and the survival ratio was approximately 3%. The growth
status and genetic stabilities of survivors cultivated under
15% (v/v) CO2 were compared and the best-growing and
good genetically stable mutant was selected and named as
SDEC-1M and employed in this study. The modified SE
media (Brostol’s solutions) with 1000 mg L-1 of NaNO3
nitrate concentrations [28] were used, which can supplymore
nitrogen source during the cultivation period. In addition
to NaNO3, there are 75 mg of K2HPO4⋅3H2O, 75 mg of
MgSO4⋅7H2O, 25 mg of CaCl2 ⋅2H2O, 175 mg of KH2PO4, 25
mg of NaCl, 5 mg of FeCl3⋅6H2O, 1mL of A5 solution, 1 mL of
Fe-EDTA, and 40 mL of soil extract in 958 mL of deionized
water. 1L A5 solution contained 2.86 g of H3BO3, 1.81 g of
MnC12⋅4H2O, 0.22 g of ZnSO4⋅4H2O, 79mg of CuSO4⋅5H2O,
and 39 mg of (NH)6Mo7O24⋅4H2O. 1L Fe-EDTA contained
10g of Na2EDTA, 0.81 g of FeCl3 ⋅6H2O, and 500 mL of 0.1 M
HCl.The soil extract was the filtered supernatant from boiled
soil solution.

2.2. Culture Conditions. The parental strain cells or mutant
cells were cultured in photobioreactors (inside diameter (ID),
120 mm; working height (Hw), 221 mm; working volume

(Vw, 2.5L)) [22] containing fresh medium. Then, they were
kept in a phytotron at 25 ± 1∘C. A continuous illumination
was provided by a row of fluorescent lamps which were
horizontally fixed on the wall at one side of the bottles.
The illumination intensities on the photobioreactor surface
toward and back to the light source were 47.25 and 2.7 𝜇mol
m-2s-1, respectively, read by a photometer. The initial OD686
(optical density at 686 nm) was 0.3 (approximately 73 mg
L-1 of biomass concentration). During cultivation, deionized
water was added to keep working volume. Aeration was
carried out by air or high level CO2. Simulating flue gas with
high level CO2 (up to 15%, v/v) [10], 15% (v/v) CO2 mixed
by air and pure CO2 that were prearranged in industrial
cylinders were employed. Using gas flow meters (Sevenstar,
Beijing, China), the flow rates were adjusted to 0.2 vvm
(volume gas per volume culture per min) of air and 0.04 vvm
of mixture, respectively.

2.3.MeasurementMethods. Between 680 and 690 nm, Chang
and Yang [29] and Akkerman [30] found absorption peaks
of microalgal broth and a linear correlation between the
biomass concentrations and the optical densities. Thus, the
indirect estimation of biomass concentration by optical den-
sity (OD) between 680 and 690 nm has been widely used in
themicroalgal research [2, 14, 28].The absorption peaks of PS
and SDEC-1M were located at 686nm by spectral scanning
with a UV-2450 spectrophotometer (SHIMADZU, Japan).
OD686 and the biomass concentration of PS and SDEC-
1M broth diluted in different proportions were determined
by a UV-2450 spectrophotometer (SHIMADZU, Japan) and
weighing the dry mass, respectively. Then, (1) relating OD686
to biomass concentrationwas established by the linear regres-
sion.

𝑋 = OD686 × 254.1 − 3.182 R2 = 0.9927 (1)

Sample was taken once every day. After proper dilution,
the biomass concentrations (X, mg L-1) of sample were
indirectly calculated via (1). pHof the sample was determined
using PHS-3C pH meter (Leici, Shanghai, China).

At the end of cultivation (day 7), the microalgae were
harvested and the contents of their primary biochemical
components were measured. Microalgal pellets were formed
by centrifuging microalgae culture at 4000 rpm at -3∘C for
10 min and were washed twice with 0.5 M of ammonium
formate to desalinate. Then, the microalgal pellets were dried
and ground into powder. Higher heating values (HHV)
of microalgal powder were determined by an isotherm
oxygen bomb calorimeter [31]. Lipids of the microalgae
were extracted by solvent, and the total lipid contents were
estimated gravimetrically using a modified method [27]. The
total carbohydrate contents of the microalgae were measured
by the phenol-sulfuric acid method [32]. The crude protein
content in the biomass was calculated via (2).

Protein content = Nitrogen content × 6.25 (2)

where nitrogen content was measured according to the
Kjeldahl method [33], and the factor 6.25 is the correlation
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Table 1: Maximum biomass concentrations (Xmax), maximum specific growth rates (𝜇max), and maximum biomass productivities for S.
obliquus parental strain (PS) and mutant (SDEC-1M) under air and 15% (v/v) CO2 for 7 days. Each data indicates the mean ± SD, which was
measured from three independent cultures. Each value in parentheses indicates the time (d) in which the maximum value of the parameter
occurs. Data in the same parameter followed by different letters are significantly different by Duncan’s test (p < 0.05).

Strains Xmax (mg L-1) 𝜇max(d-1) Poverall(mg L-1d-1)
Air 15% (v/v) CO2 Air 15% (v/v) CO2 Air 15% (v/v) CO2

PS 182.52 ± 5.85 (7)a 240.62 ± 10.2 (7)b 0.21 ± 0.05 (2)a 0.21 ± 0.02 (4)a 15.96 ± 1.29 (6)a 24.01 ± 3.2 (7)b

SDEC-1M 169.13 ± 10.74 (7)a 320.28 ± 13.9 (7)c 0.2 ± 0.02 (3)a 0.23 ± 0.03 (2)a 13.73 ± 1.89 (7)a 35.32 ± 1.81 (7)c

between protein content and nitrogen content reported by
previous studies [34, 35].

2.4. Calculations on Important Properties. The maximum
biomass concentration (mg L-1) was designated as Xmax.

The overall biomass productivity (Poverall , mg L-1d-1) was
calculated via (3).

𝑃𝑜V𝑒𝑟𝑎𝑙𝑙 =
(𝑋7-𝑋0)

7
(3)

where X7 is the biomass concentration on day 7; X0 is the
initial biomass concentration inmg L-1; 7 is the cultured time
(d).

Specific growth rate (𝜇t, d
-1) in a day was calculated via

(4). The maximum specific growth rate was designated as
𝜇max (d

-1).

𝜇𝑡 =
(ln𝑋𝑡 − ln𝑋𝑡-1)
1

(4)

where Xt and 𝑋𝑡-1 were the biomass concentration (mg L-1)
on day t and day t-1, respectively; 1 was the time (d) gone
through from day t-1 to day t.

The light conversion efficiency (LCE, %) based photosyn-
thetic active radiation was estimated via (5).

𝐿𝐶𝐸 =
(𝐻𝐻𝑉 × 𝑃𝑜V𝑒𝑟𝑎𝑙𝑙 × 𝑉𝑤 × 100)

[(𝐼+ + 𝐼-) × 𝑘 × PAR × 𝐴 × 𝑡]

= 2.08 × 10-2 × 𝐻𝐻𝑉 × 𝑃𝑜V𝑒𝑟𝑎𝑙𝑙

(5)

where the units of HHV, Poverall and Vw are J mg-1, mg
L-1d-1 and L; I+ and 𝐼- are illumination intensities (mol
m-2s-1) on the photobioreactor surface toward and back to
the light source, respectively; the constant k that converts
illumination intensity to light energy density (W m-2) is
218800 J mol-1 photons [36]; the coefficient of photosynthetic
active radiation (PAR) is 48% [37]; A is the irradiated area
(m2); t is 86400 seconds in a day.

Total lipid productivity (PL, mg L-1d-1), total carbo-
hydrate productivity (PC, mg L-1d-1), and crude protein
productivity (PP, mg L-1d-1) used to test potential of lipid,
carbohydrate, and protein productions were calculated via
(6), (7), and (8).

𝑃𝐿 = 𝑃𝑜V𝑒𝑟𝑎𝑙𝑙 × total lipid content (6)

𝑃𝐶 = 𝑃𝑜V𝑒𝑟𝑎𝑙𝑙 × total carbohydrate content (7)

𝑃𝑃 = 𝑃𝑜V𝑒𝑟𝑎𝑙𝑙 × crude protein content (8)
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Figure 1: Growth curves of S. obliquus parental strain (PS) and
mutant (SDEC-1M) under air and 15% (v/v) CO2 for 7 days. Each
data indicates the mean ± SD, which was measured from three
independent cultures.

2.5. Statistical Analysis. The differences between parameters
of PS and SDEC-1M determined under air and 15% CO2
were assessed using one-way analysis of variance (ANOVA).
A difference was considered statistically significant when p
< 0.05. Duncan’s test was performed to detect the statistical
significance of differences (p > 0.05).

3. Results and Discussion

3.1. Growth Characterizations

3.1.1. Growth Characterization under Air. As shown in Fig-
ure 1, PS grew slightly better than SDEC-1M under air. More
details were seen in Table 1; no significant differences on
Xmax, 𝜇max and Poverall were observed between PS and SDEC-
1M under air. Thus, there were no significant changes in
growth characteristics of SDEC-1Munder air bymutagenesis.
Due to randomicity of mutagenesis, obviously, SDEC-1M
did not attain the high CO2 requiring (HCR) characteristic
closely related to defectiveness in CO2 concentrating mech-
anisms (CCMs) [20]. Although it was confirmed that a UV
mutant, Chlorella vulgaris SDEC-3M obtained by 96-well
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Figure 2: Contents of total lipid, total carbohydrate, and crude protein in cell (a) and productivities (b, mg L-1d-1) of overall biomass, total
lipid, total carbohydrate, and crude protein in S. obliquus parental strain (PS) andmutant (SDEC-1M) under air and 15% (v/v) CO2 for 7 days.
Each data indicates the mean ± SD, which was measured from three independent cultures. Data of the same component followed by different
letters are significantly different by Duncan’s test (p < 0.05).

microplates-UV mutagenesis, was a HCR mutant [14], this
method is not an efficient method for screening HCR algae
strains.

3.1.2. Growth Characterization under High Level CO2. Some
species in Scenedesmus screened for CO2 fixation were
reported [1, 24, 25, 38]. These species generally have two
characteristics: survival in low pH medium caused by high
level CO2 (high CO2 tolerance) and high CO2 fixation
efficiency that exhibits good growing ability [7, 12, 13]. As
shown in Figure 1, PS and SDEC-1M both exhibited higher
growth rates under 15% (v/v) CO2, and the latter adapted to
high level CO2 faster and attained the linear growth phase
earlier. More details were seen in Table 1; thus, although
there was no significant difference in 𝜇max between SDEC-
1M and PS under 15% CO2, SDEC-1M maintained a longer
logarithmic phase (from day 1 to day 6), and its Xmax and
Poverall were significantly 33.10%and 47.09%higher than those
of PS, respectively. These results demonstrate that longer
logarithmic phase can increase the biomass productivity.

3.1.3. Growth Distinction under Air and High Level CO2. As
shown in Figure 1, PS or SDCE-1M grew better under 15%
CO2 than under air. More details were seen in Table 1; there
were no significant differences on their 𝜇max between under
air and under 15% CO2, while 𝜇max occurred at different
times. Comparing their performances under air, theXmax and
Poverall of PS and SDEC-1M were both significantly higher.
It implies that their growth potentials are similar, but the
performances under air are poorer. Insufficient carbon source
should be the main reason to decrease the metabolism of
microalgae under air [7].

3.2. Contents and Productivities of Biochemical Components.
Due to their plenty compounds as lipids, carbohydrates,

and protein, microalgae have enormous potential for the
sustainable production of food, fuels, and other biochemicals
[17]. Compounds contents and productivities are essential
parameters of evaluation on applied purposes of microalgae
biomass [23]. As shown in Figure 2(a), whether under air or
15%CO2, the protein contents in PSwere significantly higher
than their lipid and carbohydrate contents, which agreedwith
recent reports, representing 32-58% of protein contents in
Scenedesmus sp. [5, 23, 26, 39, 40]. However, inmutant SDEC-
1M, the contents of lipid and carbohydrate were significantly
higher than in PS, while the protein contents were just the
opposite. Thus, carbohydrates became the chief biochemical
component in SDEC-1M. Meanwhile, the lipid contents in PS
and SDEC-1M under 15 %CO2 were both significantly higher
than those under air. It agrees with the previous findings
that high CO2 stress enhanced lipid production [7, 41].These
results imply that compared to its parental strain, SDEC-
1M was apt to synthesize energy storage materials, especially
under high CO2 level.

Largely attributed to significant higher overall biomass
productivities, the highest productivities of total lipid (8.76
± 0.47mg L-1d-1), total carbohydrate (13.16 ± 0.82 mg L-1d-1),
and crude protein (10.14 ± 0.30 mg L-1d-1) all occurred in
SDEC-1M under 15 % CO2, even though crude protein con-
tent was lower. Considering that two strains were harvested
in logarithmic phase or linear growth phase, the results imply
that biomass productivity plays a leading role in the primary
biochemical components production until stationary phase,
which agreed with previous reports [2, 6, 42].

3.3. Genetic Stabilities under High Level CO2. In view of the
instability of mutagenized strains, especially in continuous
subculture, their genetic stability should be tested [18].
Thus, to confirm its stability of biomass product, SDEC-
1M, was continuously subcultured under 15% CO2 for five
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Table 2: Higher heating values (HHV) and light conversion efficiencies (LCE) for S. obliquus parental strain (PS) and mutant (SDEC-1M)
under air and 15% (v/v) CO2 for 7 days. Each data indicates the mean ± SD, which was measured from three independent cultures. Data in
the same parameter followed by different letters are significantly different by Duncan’s test (p < 0.05).

Strains HHV(kJ g-1) LEC(%)
Air 15% (v/v) CO2 Air 15% (v/v) CO2

PS 22.03 ± 0.47a 23.1 ± 0.26bc 7.2 ± 0.29a 11.54 ± 0.74b

SDEC-1M 22.53 ± 0.35ab 24.43 ± 0.59c 6.43 ± 0.62a 17.93 ± 0.6c
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Figure 3: Contents of total lipid, total carbohydrate, and crude protein in cell (a) and productivities (b, mg L-1d-1) of overall biomass, total
lipid, total carbohydrate, and crude protein in SDEC-1M of the first generation and the fifth generation under 15% (v/v) CO2 for 7 days. Each
data indicates the mean ± SD, which was measured from three independent cultures.

generations.The characterized results in SDEC-1Mof the first
generation and the fifth generation were shown in Figure 3.

As shown in Figure 3, no significant changes were
observed on parameters, such as contents of total lipid,
total carbohydrate, and crude protein and productivities of
overall biomass, total lipid, total carbohydrate, and crude
protein in SDEC-1Mbetween the first generation and the fifth
generation. The results suggest SDEC-1M is genetically stable
from the aspect of biomass production.

3.4. Light Conversion Efficiency (LEC). As shown in Table 2,
there was no significant difference in HHV between PS and
SDEC-1M under air, and similar results under 15% CO2.
Furthermore, HHV of SDEC-1M was significantly higher
than that of PS whether under 15% CO2 or under air. The
results were similar to their growth characterizations. Thus,
the highest overall biomass productivity (35.32 ± 1.99 mg
L-1d-1) (Figure 2) or the highest HHV (24.43 ± 0.59 KJ g−1)
were both obtained by SDEC-1M under 15%CO2. As a result,
the highest calculated value of LCE (17.93 ± 0.6 %) occurred
in SDEC-1M under 15% CO2.

The higher LCEmeans more light energy transferred into
biomass under same light conditions. Thus, the high overall
biomass productivity was obtained in SDEC-1M under 15%
CO2 (Section 3.2). Only photosynthetic active radiation
(PAR) is usable radiation fraction (400–700 nm) wavelengths
between 400 and 700 nm [43], accounting for 42.3%-45.8%
of the total energy from the solar spectrum [44, 45]. Based
on PAR, LCEs of most microalgae varied between 4-9% [45],

just in which LCEs of PS and SDEC-1M were under air. A
few recorded higher LCEs of 21.6% [19] and 14.52% [11] were
comparable with those under 15% CO2 in this study. This
result is close to the theoretical upper limit of conversion
efficiencies from solar energy to chemical energy (26.7%-
29.8%) previously estimated by Brennan and Owende [45]
and Robertson et al. [37]. Interestingly, the higher LCEs all
were obtained in the cases with additional CO2 aeration.
It shows that CO2 level is the crucial factor for enhancing
biomass production of algal strains with HCT characteristic.

3.5. Characteristics ComparisonwithOtherAlgae Strains. The
main characteristics represented the growth potential and
conversion efficiency of SDEC-1M and other algae strains
were shown in Table 3. By comparison, it is found that the
contents of lipid, carbohydrate, and protein of SDEC-1M
are all moderate, representing the normal level of primary
biochemical components in algae, especially Scenedesmus sp.
Optimization and stress aiming at production enhancement
of specific component, such as lipid [2, 22], carbohydrate [23],
and protein [1, 26] were not implemented, and the cultured
time is not long enough to attain the stable phase in this study.
It implies that SDEC-1M has yet great potential to enhance
production of lipid, carbohydrate, and protein.

4. Conclusions

S. obliquus SDEC-1M with genetic stability was obtained
after UV mutagenesis and was cultivated under air and
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Table 3: Comparison between characterizations of SDEC-1M and other algae strains.

Strain Lipid content
(%)

Carbohydrate
content (%)

Protein
content (%)

HHV
(kJ g-1)

LEC
(%) Reference

SDEC-1M 24.80 37.26 28.74 24.43 17.93 This study
Chlorella
protothecoides - - - 21.1 - [21]

Chlorella sp. 33.6 - - - - [22]
Chlorella vulgaris 32.7 - - - - [2]
Chlorella vulgaris
SDEC-3M 19.15 42.48 - 22.1 14.52 [14]

Cladophora fracta - - - 25.1 - [21]
Phaeodactylum
tricornutum UTEX
640

- -- - - 21.6 [19]

Scenedesmus
bajacalifornicus
BBKLP-07

25.81 26.19 32.89 - - [1]a

Scenedesmus
dimorphus 12 53.7 17.4 - - [23]

Scenedesmus obliquus 19.80 25.39 31.26 - - [2]
Scenedesmus obliquus 27.5 - - - - [24]
Scenedesmus obliquus - - - 22.9 - [25]
Scenedesmus sp. 21 38 23 - - [5]
Scenedesmus sp. 25.4 - 49.97 - - [26]a

a: the optimal value under different conditions.
b: unit is 106 cell/mL.

15% CO2, with its parental strain used as control. SDEC-
1M got the best growth performance and the highest LCE
(17.93 %) under 15% CO2, which confirms its high CO2
tolerance and high CO2 fixation efficiency. Meanwhile, the
highest total carbohydrate and lipid contents (37.26% and
24.80 %, respectively) and productivity (13.16 and 8.76 mg
L-1d-1, respectively) were obtained. These results confirmed
SDEC-1M’s ability to convertmore efficiently light into energy
storage materials. Compared to its parental strain, therefore,
SDEC-1M is a more suitable candidate for CO2 fixation and
biomass production, especially biofuel production, which
mitigates the global warming and energy shortage.
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