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Rapid responses to acute stresses are essential for stress survival and are criti-

cal to the ability of fungal pathogens to adapt to new environments or hosts.

The rapid emergence of drug resistance is used as a model for how fungi

adapt and survive stress conditions that inhibit the growth of progenitor

cells. Aneuploidy and loss of heterozygosity (LOH), which are large-scale

genome shifts involving whole chromosomes or chromosome arms, occur at

higher frequency than point mutations and have the potential to mediate

stress survival. Furthermore, the stress of exposure to an antifungal drug

can induce elevated levels of LOH and can promote the formation of aneu-

ploids. This occurs via mitotic defects that first produce tetraploid progeny

with extra spindles, followed by chromosome mis-segregation. Thus, drug

exposure induces elevated levels of aneuploidy, which can alter the copy

number of genes that improve survival in a given stress or drug. Selection

then acts to increase the proportion of adaptive aneuploids in the population.

Because aneuploidy is a common property of many pathogenic fungi, includ-

ing those posing emerging threats to plants, animals and humans, we propose

that aneuploid formation and LOH often accompanying it contribute to the

rapid generation of diversity that can facilitate the emergence of fungal patho-

gens to new environmental niches and/or new hosts, as well as promote

antifungal drug resistance that makes emerging fungal infections ever more

difficult to contain.

This article is part of the themed issue ‘Tackling emerging fungal threats

to animal health, food security and ecosystem resilience’.
1. Introduction
Emerging fungal infections continue to pose significant threats to animals,

plants and humans, causing disease outbreaks and even posing a threat to

food security [1]. The emergence of new fungal threats appears to require the

rapid adaptation of fungal pathogens to changes in environmental conditions.

Some of these environmental changes, for example changes in ambient temp-

eratures or levels of humidity, make host animals and plants more vulnerable

to fungal infection (reviewed in [1,2]). In addition, fungi appear able to rapidly

adapt in a manner that involves complex and heterogeneous genome dynamics.

These often result in a high level of aneuploidy and loss of heterozygosity

(LOH) [3], which can lead to clinical consequences such as changes in virulence

or response to antifungal drugs [4]. This genomic diversity may contribute

to the emergence of new fungal threats by providing a selective advantage in

certain conditions.

Understanding the mechanisms underpinning large and rapid genome

changes that affect virulence and other fungal properties requires investigation at

the molecular, genetic and cell biological level coupled with experimental evol-

ution of known isolates both in vitro and in vivo. Recent work suggests that

aneuploidy is a common property of pathogenic and environmental isolates of uni-

cellular fungi, ranging from basidiomycetes such as Cryptococcus neoformans, to

ascomycete yeasts, including wild isolates of baker’s yeast Saccharomyces cerevisiae
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and Candida albicans, a common commensal of humans and the

most prevalent cause of fungal infections of humans [1,5–9].

The appearance of drug resistance in a population of

susceptible cells can only be understood, as Theodosius

Dobzhansky argued, ‘. . .in the light of evolution’ [10]. In most

cases, microbes that evolve resistance must cope with exposure

to drug concentrations well above their ‘minimal inhibitory

concentration’ (MIC). The overriding strategy for long-term sur-

vival and adaptation is to alter either genome sequence and/or

genome organization. This is especially true for fungi and other

eukaryotes that, unlike bacteria, do not participate in active,

high-frequency lateral gene transfer. Accordingly, changes to

the existing genome must appear rapidly and must provide

some selective benefit in the presence of the drug. This first

rapid adaptation step may be suboptimal, allowing the organ-

ism either to avoid or to neutralize the stress. Critically, it

must facilitate the subsequent acquisition of additional

mutations that provide more refined solutions [11].

Fitness, a key factor in the emergence of new fungal threats,

is a relative feature of genotype, phenotype, environmental

conditions and the fitness of other organisms occupying the

same environment. A useful concept for considering popu-

lation dynamics, which are critical for understanding the

emergence of new variants, is the fitness landscape. First pro-

posed by Sewall Wright as the multidimensional distribution

of possible genotypes as a function of their fitness [12], fitness

landscapes have been described as a function of genotype or

phenotype [13] and also as a function of the environmental

challenges facing an organism [14]. We assume that emerging

fungal pathogens have attained a higher position in the land-

scape because of changes in either their genotype/phenotype

or environmental factors, including the host niche and the

presence of microbial competitors [15].

With respect to genotypes and resulting phenotypes, wild

isolates of pathogens often differ from each other and from

laboratory strains at tens of thousands of single nucleotide

polymorphisms (SNPs) that potentially modify phenotypes

via a myriad of mechanisms. Similarly, different pathogenic

isolates exhibit different levels of resistance and tolerance to

drugs. By contrast, laboratory studies often use refined strains

that have been engineered to facilitate experimental pro-

cedures. For example, laboratory strains of the model yeast

S. cerevisiae carry mutations in FLO8, which activates other

genes that promote cell aggregation and clumping, a pheno-

type critical for life in the ‘wild’ and inconvenient for

laboratory work [16]. Importantly, wild and laboratory strains

may exhibit different responses to genome changes such as

aneuploidy [17]. Thus, for laboratory experiments to be gener-

alized to the situation in the patient or the field, it is important

to ask if the phenotypes measured can be observed in a range

of strain backgrounds.

In terms of environmental conditions, laboratory growth

conditions strive to optimize rapid log phase growth and

the attainment of high biomass levels. Organisms adapted to

these laboratory conditions occupy a high-altitude position in

a landscape. In contrast, addition of an antimicrobial drug to

which a population is susceptible will shift the population

to a lower position on the landscape. In vivo, fungal pathogens

usually experience nutrient limitations, which likely reflect an

intermediate position on the fitness landscape. Even within

a single host, environmental niches for fungal growth can

vary considerably in temperature, pH, oxygen concentration

and nutrient availability. Furthermore, these conditions can
fluctuate (e.g. diurnal and seasonal temperature shifts; oxi-

dative stress from immune cell invasion) and cells can transit

from one extreme niche to another (e.g. pH and oxygen avail-

ability levels from the oral cavity to the stomach and colon).

It appears that organisms have evolved mechanisms facilitat-

ing adaptation to these routine environmental shifts [18]. By

contrast, abrupt and severe environmental shifts, such as

sudden exposure to an antifungal drug, may demand different

adaptive strategies.

This review focuses on the role of aneuploidy, whole

genome ploidy and LOH in the rapid emergence of new pheno-

types. Aneuploidy is a karyotypic state in which chromosome

copy numbers are not balanced. For normally diploid organ-

isms, this can include monosomy (one copy), trisomy (three

copies) or even higher numbers (e.g. tetrasomy (four copies of

a single chromosome)) of one or more different chromosomes.

Aneuploidy is often owing to chromosome mis-segregation; it

also can arise via reduplication of a whole chromosome or chro-

mosomal segment to yield whole chromosome or segmental

aneuploidy, respectively. Aneuploidy has long been known to

occur in C. albicans [7,19], including in many early laboratory

isolates, such as CAI-4 [20] and WO-1 [21,22], as well as

in many isolates taken directly from patients (reviewed in

[7,23]) or isolated following passage through a mouse ([24];

A. Forche 2016, personal communication).

LOH is readily detectable in heterozygous diploid genomes

as a contiguous homozygous genome region. There are three

major types of LOH: short range, involving one or a few

genes and thought to occur via gene conversion or double

crossover events; chromosome arm LOH, thought to occur via

a single crossover followed by co-segregation of homologous

alleles or by break-induced replication and whole chromosome

LOH, in which one homologue is lost, and the other is dupli-

cated (either before or after the loss event, via re-replication

or chromosome non-disjunction). Whole chromosome LOH

is generally a downstream consequence of aneuploidy

(either trisomy followed by chromosome loss or monosomy

followed by gain of a copy of the remaining chromosome).

Indeed, aneuploidy and LOH often occur together, as discussed

further below.

This review focuses primarily on C. albicans and C. neofor-
mans, a human commensal and an environmental saprophyte,

respectively, that have become two of the most important

human fungal pathogens worldwide in terms of incidence,

morbidity and mortality. C. albicans is the most prevalent

human fungal pathogen isolated from patients in hospitals

in the developed world [25,26]. Candida infections are increas-

ing in prevalence as a result of ever increasing numbers

of profoundly immune-suppressed patients, either because of

medical interventions such as cancer chemotherapy, solid

organ or haematopoietic stem cell transplantations, as well as

increased use of indwelling medical devices [27]. C. neoformans
causes a meningoencephalitis in immunosuppressed patients

and its incidence increased dramatically with the advent of

the HIV epidemic since the 1980s, and currently is thought to

cause over half a million deaths per year [28].

The role of aneuploidy is being increasingly understood

as playing a role in both establishment of human infection

and tolerance to antifungal drugs in fungal pathogens.

These pathogens remain globally important, especially in

the light of the persistence of the HIV epidemic and the grow-

ing prevalence of fungal infections in immunosuppressed

patients. Importantly, ploidy change is one important
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mechanism by which these fungi adapt to environmental and

host changes; it is likely that similar mechanisms provide

adaptive responses in newly emerging fungal pathogens.
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2. Ploidy change as a driver of increased
diversity

A major take-home lesson from studies of C. albicans is that

ploidy shifts are more frequent than previously assumed

based on studies of model organisms under laboratory con-

ditions. C. albicans was generally considered to be an ‘obligate

diploid’. However, non-diploid isolates, including whole

chromosome and segmental aneuploids, haploids, triploids,

tetraploids and some with higher than tetraploid DNA content

have been reported ([29–32] and reviewed in [7,23]).

The association of an acquired phenotype with a specific

aneuploidy was first shown for monosomy of Chr5, which

facilitates improved growth on sorbose [19,33]. This is thought

to be owing to the presence of two or more unidentified genes

on the right arm of Chr5 that inhibit the expression of the

SOU1 gene (located on Chr4). Other aneuploidies were

found in isolates treated with antifungal drugs [34,35], with

growth at elevated temperature [11] or with unconventional

colony morphologies [36]. Aneuploidy arises through rare

non-disjunction events, with up to 5% of drug-susceptible

C. albicans isolates carrying at least one aneuploid chromosome

or chromosome fragment [23,29–31,37]. In addition, some

meiotic divisions yield aneuploidy: for example, up to 15% of

the meiotic progeny of Candida lusitaniae are aneuploid [38].
Presumably aneuploidy is maintained in a strain if it provides

a selective advantage under a given growth environment. This

is not restricted to C. albicans. S. cerevisiae is used as a model

in fungal evolution studies and can also cause infections in

immunocompromised humans. Importantly, aneuploidy was

recently reported to be a property of approximately one-third

of S. cerevisiae clinical isolates. Whether these strains had

been exposed to antifungal drugs or were drug-resistant was

not reported [8]. Similarly, two of 19 C. neoformans clinical

environmental isolates were aneuploid, although again,

whether they had been exposed to antifungal drug or not is

not specified [39].

Given that a characteristic of a given species is its stereoty-

pical karyotype (number of chromosomes and chromosome

organization), it follows that aneuploidy should be a transient

state of altered chromosome copy number. Furthermore, it

appears likely that within any large population a small

number of cells will include aneuploid chromosomes owing

to rare chromosome mis-segregation events. Most aneuploidies

are likely to return to the basal ploidy level via chromosome

mis-segregation and a fitness cost incurred by the aneuploid

chromosome. However, under specific selective conditions,

some specific aneuploid chromosomes appear to provide an

advantage that promotes their selection. Furthermore, not all

aneuploid chromosomes incur a high fitness cost and thus

can be maintained for quite a while in the absence of selection.

One selective advantage that aneuploidy can provide in

pathogenic fungi is drug resistance. A survey of clinical and

laboratory isolates using comparative genome hybridization

detected aneuploidy in half of all fluconazole-resistant isolates

of C. albicans tested [40]. Most of these conferred resistance to

other azole antifungals as well. Since that time, additional

drug-resistant isolates have been analysed, and aneuploidy
remains a prevalent property of many, although not all,

drug-resistant or drug-tolerant isolates (e.g. [34,37,41], Feng

Yang 2016, personal communication).

One specific aneuploidy, an isochromosome containing

two extra copies of the left arm of Chr5 (isochromosome

(5 L)), was associated with resistance to fluconazole in 20%

of fluconazole-resistant isolates [19,40,42] (figure 1a). Two

genes on Chr5 L (figure 1b,c) were responsible for the

majority of the resistance of these strains: ERG11, which

encodes the target of fluconazole, and TAC1, which encodes

a transcriptional regulator of ABC-transporter drug efflux

pumps Cdr1 and Cdr2 that reduce intracellular azole concen-

tration. Thus, the acquisition of a single aneuploidy can

confer resistance via two general strategies of drug resistance:

increasing the levels of the drug target and decreasing the

intracellular drug concentration. Furthermore, extra copies

of these two genes were sufficient to reduce the extra resist-

ance attributable to isochromosome (5 L) in a gene-dosage-

dependent manner, supporting the idea that aneuploidy

can confer drug resistance owing to the presence of

additional copies of specific genes, rather than owing to the

aneuploid state per se [34].

Similarly, in C. neoformans, the role of aneuploidy in phe-

notypic resistance to fluconazole is being increasingly

observed. Under selective fluconazole pressure in a mouse

model of cryptococcal meningitis, fluconazole-resistant colo-

nies recovered from the mouse brain were found to be

disomic for Chr1 [44].

Many other examples of new phenotypes caused by

specific imbalances in specific genes on aneuploid chromo-

somes have been reported. For example, in S. cerevisiae, an

extra copy of AQY1 confers resistance to freeze–thaw cycles

in environmental S. cerevisiae oak isolates [14], extra copies of

RLM1 increased the expression of cell wall components and

facilitate the survival of cells lacking MYO1, which is con-

sidered essential for cytokinesis and cell separation [45].

Many more examples of aneuploidies that rescued the lethal

phenotypes of deletions of essential genes were recently ident-

ified in a genome-wide screen [46]. Similarly, cells resistant to

the Hsp90 inhibitor radicicol emerged from an extra copy of

ChrXV, owing to elevated expression of two genes (STI1 and

PDR5) on that chromosome [47]; and resistance to 4-nitroqui-

noline-N-oxide (4NQO) is conferred by an extra copy of

chromosome ChrXIII, and therefore an extra copy of ATR1
[48,49]. Improved survival on caspofungin is seen in cells

with Chr5 monosomy [50]. Thus, aneuploidy can confer drug

resistance by increasing the copy number of genes involved

in drug resistance or by changing the stoichiometry of gene

products produced from the aneuploid chromosomes.

A major question in the field is whether ploidy state

(diploid versus haploid) is sufficient to explain rates of adap-

tation. In a classic study, isogenic S. cerevisiae haploids and

diploids were evolved in different concentrations of flucona-

zole [51], a drug that inhibits ergosterol biosynthesis. The

timing of responses, as well as the mechanisms of resistance

(altered ergosterol biosynthesis versus drug efflux) differed

between haploids and diploids [51]. Theoretically, diploids

contain increased numbers of target genes per cell, and

thus should more rapidly acquire dominant mutations that

exert a phenotypic effect with a single mutation than hap-

loids. Yet despite this idea, haploids sometimes generated

more mutants than diploids [52]. Consistent with this,

Candida glabrata, a naturally haploid pathogenic yeast, is
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Figure 1. Some aneuploidies and LOH events enable drug resistance. (a) Isochromosome (5 L) was detected in 12 fluconazole-resistant isolates from a survey of 90
clinical and laboratory isolates. Shown is comparative genome analysis performed with in-house produced microarrays [40] with the data displayed along the eight
C. albicans chromosomes as log2 ratios converted to ploidy levels (one, two, three or four gene copies) [40]. (b) Interpretation of i(5 L) geometry. CEN5 (magenta
circle) maps to the breakpoint where extra copies of Chr5 L begin. Chr5 L includes ERG11, which encodes lanosterol 14-a-demethylase, the target of azole anti-
fungals and TAC1, which encodes a transcription factor that positively regulates expression of efflux pump genes (CDR1 and CDR2). (c) The number of copies of
ERG11 and TAC1-7 (a hyperactive allele of TAC1 [43]) correlate well with the level of resistance (MIC) of the strain as determined by deletion analysis of isogenic
strains derived from parent strain carrying isochromosome (5 L) [34]. FLC, fluconazole.
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rising in prevalence, largely because of its higher levels of

intrinsic drug resistance [53]. Yet, the most common resist-

ance mechanism in haploid C. glabrata is activation of drug

efflux via dominant mutations [54]. Thus, despite the idea

that recessive mutations have a greater impact in haploids

than in diploids, dominant mutations also play an important

role in the acquisition of drug resistance by haploid as well as

diploid pathogens.

With respect to ploidy, it is not clear that there is a simple

rule that applies to all species, stresses and ploidy states.

A ‘ploidy drive’ clearly brings most organisms back to their

‘base ploidy level’ [55]. Yet, S. cerevisiae tetraploids adapted

to carbon limitation more rapidly than isogenic diploids

and haploids; these tetraploids also acquired beneficial

mutations with stronger fitness effects faster [56]. Analysis

of many different stresses select for isogenic haploid or

diploid S. cerevisiae isolates in different ways that clearly do

not conform to a simple rule [57]. Much remains to be under-

stood about the effect of ploidy on the degree of mutation.

Nonetheless, it is clear that aneuploids and polyploids tend

to undergo changes in chromosome number much more

rapidly than do cells at their ‘base ploidy level’ [30,56].
3. Effects of ploidy shifts and aneuploidy on
fitness

The role of ploidy and ploidy shifts in the emergence of patho-

genic fungi is now beginning to be appreciated. The degree to

which such ploidy changes drive the emergence of new

fungal threats is not yet certain; however, it is clear that

ploidy shifts and aneuploidy can promote the acquisition of

altitude on the fitness landscape, even if the aneuploid state

is transient. An example is C. neoformans, which has emerged

from an environmental saprophyte to a pathogen of global

importance [58]. Very large and polyploid (4n, 8n and 16n)

cryptococcal cells, termed ‘titan cells’, were recently discovered

and shown to be better able to tolerate oxidative and nitrosative

stress [59], to prevent phagocytosis and contribute to dissemi-

nation to the central nervous system (CNS). In addition, the

large size of titan cells protects them from phagocytosis by

immune cells. Titan cells have been proposed to promote per-

sistence in the host based on their prevalence in chronic lung

infections [60]. Titan cells give rise to much smaller haploid or

near-haploid cells, as well as diploids [61]. Interestingly, follow-

ing exposure to fluconazole, a single titan mother cell can give
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rise to successive daughter cells that carry different aneuploid

chromosomes [61], suggesting that titan cells promote the

rapid production of diverse daughter cells. It appears, therefore,

that aneuploid titan cells play a major role in the transition from

environmental exposure to disseminated human infection.

Similar adaptive chromosome-wide responses may contribute

to the emergence of other emerging fungal threats.

One classical assumption of evolutionary theory is that

when genetic changes confer increased fitness in a stress con-

dition, the same changes are likely to incur a high fitness cost

in the absence of the stress. Many aneuploids have been iso-

lated from patients, suggesting that they were fit enough to

compete successfully in the host (reviewed in [7,37]), yet

they are less fit than laboratory strains when grown in vitro.

Despite classic evolutionary theories, aneuploidies that

confer drug resistance do not necessarily have a high fitness

cost in C. albicans. For example, isochromosome (5 L) confers

a high fitness benefit in the presence of fluconazole (reviewed

in [23]). Yet, in the absence of drug, strains carrying isochromo-

some (5 L) do not incur a large fitness cost. The isochromosome

is not entirely stable and is lost at low frequency, especially

following the heat shock treatment used for molecular trans-

formations [34,62]. i(5 L) is not unique: there are a number of

examples of resistant C. albicans strains that do not incur a fitness

cost in the absence of drug [63–65]. Indeed, some isolates that

are resistant to azoles owing to efflux pump activity are also

more virulent, even in the absence of the drug [66,67].

Laboratory strains can also be aneuploid and, indeed,

many early laboratory strains of C. albicans have one or more

trisomic chromosomes without any obvious effect on fitness

[20,32,68,69]. The consequences of these changes for different

phenotypes continue to be discovered at the level of RNA

and/or protein expression [70]. Studies performed with this

strain and its derivatives need to take into consideration

these LOH events: for example, the LOH on Chr3 in CAI-4 con-

fers increased sensitivity to DNA damaging agents relative to

the wild-type parent [71]. Thus, changes in ploidy affect labora-

tory as well as wild fungal isolates and these changes can cause

broadly pleiotropic effects [72].

This ability to tolerate aneuploidy, and to maintain it in the

absence of strong selection, was initially thought to be a quirky

feature of C. albicans, especially because aneuploidies selected in

a S. cerevisiae laboratory strain were highly unstable [73]. Yet

aneuploidy is frequently detected in wild and clinical isolates

of S. cerevisiae (reviewed in [74]), as well as in many other

eukaryotic microbes including those responsible for emerging

infections such as Leishmania spp. [75,76] and Microsporidium
spp. [77]. Unstable aneuploidy was also found in chytrid iso-

lates [78]. Additionally, it appears that aneuploidy may have

a much stronger negative effect on the fitness of S. cerevisiae
laboratory strains relative to wild isolates [17,49,73,79].

In addition, fitness may be fine-tuned to a specific host

niche and/or may change with time in a given niche. For

example, a C. albicans strain isolated from a blood stream infec-

tion (P94015) carried several complex segmental aneuploidies

and exhibited an unusual morphology phenotype and gene

expression pattern, drug resistance and surprisingly low

virulence in a murine blood stream infection model [37]. None-

theless, this strain exhibited better fitness when tested in a

commensal mouse model of infection [37], consistent with it

carrying a truncated copy of EFG1, which is involved in mor-

phogenesis [80–84] and inhibits commensalism [69,85]. How

is it that P94015 was isolated from the blood stream of a patient
with a systemic infection, yet was only virulent in a commensal

model? The authors proposed that the barriers to infection may

have been very low in the immune-compromised host [37].

Alternatively, the isolate may have undergone microevolution

in the host, consistent with the observation that successive

bloodstream isolates from a chemotherapy patient exhibited

reduced virulence over time in the patient [66]. In either case,

measurements of virulence and fitness in the laboratory

cannot recreate the situation in vivo perfectly.
A similar theme is evident for C. neoformans, where series

of isolates from an infected individual were analysed follow-

ing a relapsed infection [86]. In this case, the relapse isolate,

F2, had two extra copies of the left arm of Chr12, grew

faster at higher temperatures (378C and 398C), yet was

unable to disseminate from infected lungs. The authors

suggested that strain F2 underwent microevolution in the

CNS, once dissemination was no longer required [86].

Again, we see that measurements of virulence and fitness

may not always reflect the phenotypic adaptations of a

specific isolate. Similarly, clinical strains of C. neoformans
recovered from the CSF of an HIV patient were disomic for

Chr13, and were correlated with reduced melanin production

and consequently reduced virulence in mice [39]. The differ-

ence between growth conditions in the laboratory and in the

wild (in patients) is likely to be different and is suggested to

be the reason that many initially aneuploid Saccharomyces and

Candida isolates often undergo changes in chromosome (Chr)

copy numbers during propagation in vitro [7,16,78].

Reversion to the euploid state can mitigate the fitness

costs incurred by aneuploidy and this often is detected when

aneuploid cells are propagated in the absence of the environ-

mental conditions that selected for the aneuploidy. Transient

aneuploidy clearly has a critical role in the appearance of het-

eroresistance to fluconazole in C. neoformans, which also is

associated with virulence [87]. As previously discussed, the

appearance of resistance is associated with the disomy particu-

larly of Chr1, and Chr 4 following exposure to the drug [5]. As

well as being able to tolerate supra-MIC concentrations of flu-

conazole, the disomic clones were associated with virulence in

a mouse model, with a significant increase in mortality in mice

observed in those infected with strains with a higher frequency

of disomy [87]. Importantly, when grown in the absence of

drug selection, the aneuploid chromosomes are eventually

lost, presumably as the disomy of Chr1 provided a selective

advantage only when the drug was present.

Cryptococcus gattii is an emerging pathogen responsible for

a major outbreak of cryptococcal meningitis in immune-

competent patients. The C. gattii outbreak was first detected

on Vancouver Island in 2004 and spread along the Pacific

Northwest of the USA [88]. Interestingly, C. gattii also displays

heteroresistance to fluconazole in vitro, although the role of

aneuploidy as a driver for this has yet to be investigated.

Additionally, polyploid progeny of cryptococcal ‘titan’

cells, which as discussed above, play a key role in human

pathogenesis, appear rapidly and are also transient [43,61].

Therefore, ploidy shifts in C. neoformans appear to be a tran-

sient phenomenon that can provide fitness costs or benefits in

a specific host or niche [89].

Transient aneuploidy also may play an important role

in other emerging fungal pathogens in the animal world.

Batrachochytrium dendrobatidis (Bd) is a chytrid pathogen that is

causing worldwide declines in frog populations. Isolates from

infected frogs exhibited fewer aneuploidies following laboratory
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passaging for over 6 years [78]. This suggests that propagation

in vitro exerted a selective pressure against aneuploidies found

in earlier isolates. Thus, shift from the natural habitat to the lab-

oratory appears to have altered chromosome copy number in

many different fungi including Bd, with reductions in chromo-

some number associated with reduced virulence in laboratory

studies [78].

There are little data regarding the role of aneuploidy in

the spread of emerging plant pathogens. However, a vari-

ation on the theme, the presence of accessory chromosomes,

is often seen in plant pathogens such as Fusarium spp. [6].

These accessory chromosomes appear to be critical for the

host specificity of a given isolate [90]. However, isolates of

the oomycete Phytophthora infestans [91], an emerging patho-

gen causing sudden oak death, recovered from the active site

of infection in artificially inoculated oak trees, were found to

display partial aneuploidy and LOH when compared with

wild-type isolates. It remains unclear whether this aneu-

ploidy incurs a fitness cost or if it provides a selective

advantage in causing infection in the host.

Taken together, it appears that alterations in chromosome

copy number are common events across the fungal kingdom

in fungal pathogens, in laboratory isolates as well as in clini-

cally important fungal pathogens. This highlights the idea

that chromosome non-disjunction, which causes aneuploidy

in a single cell division, occurs at relatively high frequency

and has the potential to provide a fitness benefit that may

facilitate adaptation to the stresses found within environ-

ments such as host niches. Nonetheless, it is a transient

mechanism, as extra chromosomes can be lost and cells can

return to the baseline karyotype.
4. Loss of heterozygosity as a long-term
mechanism of rapid genome change

LOH is a common feature of C. albicans clinical isolates with a

broad range of evolutionary diversity [37]. LOH events also can

drive the acquisition of drug resistance [43,65]. Frequencies of

LOH are much higher than the frequencies of point mutations

(reviewed in [92]). In C. albicans, a specific LOH is detected at a

frequency of approximately 1024, and this frequency can

increase 10- to 100-fold following exposure to stress [24]. The

stress of growth in vivo also plays a role in altering LOH fre-

quencies (A. Forche 2016, personal communication). All C.
albicans isolates exhibit some degree of telomere-proximal

LOH [37] as do many Bd isolates [78].

LOH events can become prevalent in a population over

a relatively short timeframe. In series of clinical isolates from

patients treated with an antifungal, novel driver point

mutations acquired on a single homologue also undergo homo-

zygosis in patients [93,94]. Another classic example is the ‘FH

series’ of isolates from a single bone marrow transplant patient

[95]. LOH of a hyperactive TAC1 allele conferred increased

resistance [43] in an early sample (FH3) and then persisted in

the isolates with increased resistance levels (those that also car-

ried i(5 L) [23,96]). It remains to be determined if the FH

progenitor strain is highly prone to chromosome mis-segre-

gation, recombination and/or mutagenesis or whether other

genetic backgrounds would behave similarly under similar

selective pressures. Sequencing of isolates from individual

HIV patients treated by fluconazole [41] inferred driver

mutations from the persistence of LOH events in consecutive
isolates. In this case, three of the four of these isolates were

more virulent than the progenitor strain from the same patient,

when tested in the C. elegans model [97]. Recurrent recombina-

tion events have also been observed in in vitro evolution

experiments. For example, in strain T118 evolved in increasing

concentrations of fluconazole [98], related recombination

events generated i(5 L) in three different isolates [64]. Thus,

LOH events are frequently associated with, and are often

drivers of, phenotypic changes in vivo as well as in vitro.

Thus, both aneuploidyand LOH arise in vivo and these events

can affect overall fitness, albeit in a gene-dependent, strain back-

ground-dependent and environment/niche-dependent manner.

Specific aneuploidies and LOH events can improve fitness under

specific environmental stress conditions.

Aneuploidies often appear coincident with an increase in

drug resistance (as measured by MIC) and are more transient

than LOH events [41,64,68], suggesting that the aneuploid

state may facilitate the appearance of other mutations [99].

Elevated resistance levels that persisted in subsequent isolates

were likely owing to additional LOH and/or small mutations

that arose in response to the drug. This is consistent with the

idea that aneuploidy may be a rapid solution enabling

improved survival, which is subsequently replaced by one or

more optimal solutions that incur lower fitness costs [100].

Of course, aneuploidy is transient, as whole chromosome

aneuploidy is easily lost through a single chromosome non-

disjunction event; by contrast, loss of an LOH requires

acquisition of new information from a diverse partner via

mating, a process that apparently occurs only rarely in

pathogenic S. cerevisiae [101] and C. albicans [102].
5. Cell cycle processes that rapidly generate
diversity: sex, parasex or no sex?

Knowing how emerging fungal pathogens generate diversity

is critical for designing strategies to intervene in their spread.

In most eukaryotes, sexual reproduction and recombination

are among the major mechanisms for increasing genetic

diversity [103]. Sexual life cycles require a series of ordered

processes and do not ensue particularly rapidly. Interestingly,

sexual reproduction appears to occur only infrequently in

fungal pathogens of humans. Either some of the essential

genes have been lost or only one of the two possible mating

types is predominant in the environment [104]. Furthermore,

it appears that isolates that adapt to the human host undergo

far less recombination than do environmental isolates of the

same species [101].

Several Candida species have only incomplete (parasexual)

cycles, in which diploids of opposite mating type can mate to

form tetraploids, and genome size reduction is achieved by

random chromosome loss rather than meiosis (reviewed in

[105,106]). The parasexual cycle has the potential to generate

diversity through mitotic rather than through meiotic divisions

[31,107]. Parasexual cycles have been observed primarily

in vitro and just a few examples of in vivo mating have been

reported [108,109]. Parasexual progeny acquire genetic diver-

sity via chromosome loss, which is random and generates

some degree of chromosome homozygosis as well as aneu-

ploidy of one to three chromosomes. The chromosome loss

process appears to follow random trajectories in which aneu-

ploid intermediates can include many different combinations

of homologues as well as different combinations of trisomic
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chromosomes [30], thereby producing diversity in a non-meio-

tic manner including rare, transient haploid intermediates [31].

How haploids form is not yet clear, although many haploids

were isolated following passage in mice using a model of oro-

pharyngeal candidiasis (Forche et al. 2016, unpublished data).

The most parsimonious explanation would be that haploids

form as a result of extensive chromosome loss. It remains

unclear whether parasex occurs in vivo and whether parasex

is the major mechanism by which aneuploid isolates are gener-

ated during growth within the human host.
6. Antifungals alter cell cycle progression to
yield trimeras and aneuploids without
parasexual mating

Because aneuploidy is so frequent in fluconazole-resistant

C. albicans, we followed cell cycle dynamics in response to anti-

fungal drug exposure. DNA content and cell cycle progression
were monitored during the first hours of fluconazole exposure

(figure 2a; [110]) and DNA content as well as cell size were

measured by flow cytometry and increased with time in the

drug (figure 2a). Fluorescence microscopy revealed two uncon-

ventional cell types: trimeras (figure 2b) and multimeras

(figure 2c). Trimeras were evident within 4–8 h of drug

exposure and continued to appear for at least 12–20 h after

drug exposure. Multimeras, very large cells with unusually

high numbers of nuclei/nucleoli (figure 2c), became evident

after 12 h in drug. Trimeras and multimeras were alive and

divided, albeit slowly [110].

Cells exposed to drug undergo a series of stereotypical

events to become aneuploid via a tetraploid intermediate

(figure 3). This involves changes in the regulation of cell cycle

progression (nuclear/spindle division is uncoupled from cell

growth) and a failure of cytokinesis (resulting in mother and

daughter cells sharing a contiguous cytoplasm). The next dra-

matic defect was the production of a single new bud, to form

a trimera—a set of three continuous cell ‘compartments’ (grand-

mother, mother and daughter cells). A fourth bud failed to form,
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perhaps owing to limiting membrane components or inhibition

of multiple budding events in the contiguous cytoplasm [110].

This resulted in three cell compartments and two nuclei that

undergo mitosis to yield four nuclei—a problematic situation

in which one of the daughter compartments necessarily receives

two nuclei—either via collapse of a mother–daughter pair

to reform a single nucleus or via formation of a dikaryotic cell

composed of two unfused nuclei.

The resulting tetraploid or dikaryotic nuclei contain two

spindles, a situation that clearly drives chromosome mis-

segregation (figure 2d ). This multi-spindle state presumably

occurs owing to a failure to fuse the spindle pole bodies,

as a process that occurs during conjugation, for example in

S. cerevisiae [78]. What is not clear is whether parasexual

mating in C. albicans also results in more than one spindle.

Ultimately, aneuploid cells continue to undergo chromosome

mis-segregation and stabilize in a near-euploid state that is

usually, but not always near-diploid [30].

Importantly, trimera progeny are at least as viable as non-

trimera progeny. They (as well as multimeras) yielded viable

colonies; the colonies were often aneuploid and were able to

survive on drug at least as well as non-trimera cells. Of note,

trimeras form in vivo as well, soon after fluconazole is adminis-

tered in a model that enables visualization of fungal cells

growing within the host mouse ear [111]. Furthermore, differ-

ent azole antifungals as well as caspofungin can induce trimera

formation. Trimera formation in azole antifungals was evident

in other non-albicans Candida species [110] and appears to be

occurring in C. neoformans, a basidiomycete pathogen, as well

(Lukasz Kozubowski 2016, unpublished result). Thus, for-

mation of aneuploids via a tetraploid intermediate may turn

out to be a common mechanism in eukaryotes, ranging from

cancer cells [112] to ascomycete and basidiomycete fungi. Fur-

thermore, it appears to be a common response to high levels of

stress such as drug exposure.

If a specific chromosome imbalance confers a selective

advantage in a given stress (e.g. a given antifungal drug),

cells containing that specific aneuploid chromosome constel-

lation should become enriched in a population (e.g. in the

presence of the drug). If the selection coefficient is large,

this could happen very quickly. We propose that events of

this sort would promote the rapid appearance of new isolates

with strong selective advantages over their progenitors and

could help explain the emergence of new fungal pathogens.

Accordingly, we propose that the series of events through

which mitotic collapse leads to tetraploidy, aneuploidy and

then near-euploidy, provides a mechanism of generating

highly diverse genomes that yield some progeny better
adapted to a specific selection pressure. This process appears

to be quite general, as analogous mechanisms involving

polyploidization followed by chromosome mis-segregation

clearly operate in cancer cells [94] and aneuploidy appears

to be well tolerated across the fungal kingdom [113].

In summary, it appears that in fungi, and specifically in

human pathogenic fungi such as C. neoformans and C. albicans,
survival of stress may not require the fastest growth rate, nor

the frequent operation of a sexual or parasexual cycle. Rather,

mitotic defects have the potential to produce trimeras, tetra-

ploids and aneuploid progeny rapidly. These diverse

progeny have the potential to survive and evolve under the

selective pressure of acute stress conditions.

The series of events that lead to a specific adaptive outcome

may differ between cells, but likely involve aneuploidy, LOH

and the acquisition of smaller-scale changes at the nucleotide

level. As new fungal threats continue to emerge, consideration

of these adaptive mechanisms may help us to understand the

genetic basis for their new found success. The genomic diver-

sity afforded by whole scale changes in chromosome copy

number may be far greater than currently appreciated, and

even transient changes, in the right place and right time, may

contribute to the emergence of previously non-pathogenic

fungi as threats to plants, animals and humans alike.

Ultimately, the ability to survive and adapt is critical to the

emergence of new pathogens, and the mechanisms here pro-

vide rapid, if not elegant, first steps toward adaptation to

new hosts and environments. This is consistent with the

often-paraphrased Darwinian adage: . . .it is not the strongest

of the species that survives; but the ones best able to adapt

and adjust to the changing environment . . . [114, p. 4].
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Galarza J, Costa-de-Oliveira S, Castro AG, Pedrosa J,
Pais C. 2010 Virulence attenuation of Candida
albicans genetic variants isolated from a patient
with a recurrent bloodstream infection. PLoS ONE 5,
e10155. (doi:10.1371/journal.pone.0010155)

67. Ferrari S et al. 2009 Gain of function mutations in
CgPDR1 of Candida glabrata not only mediate
antifungal resistance but also enhance virulence.
PLoS Pathog. 5, e1000268. (doi:10.1371/journal.
ppat.1000268)

68. Abbey D, Hickman M, Gresham D, Berman J. 2011
High-resolution SNP/CGH microarrays reveal the
accumulation of loss of heterozygosity in commonly
used Candida albicans strains. G3 (Bethesda) 1,
523 – 530. (doi:10.1534/g3.111.000885)

69. Pierce JV, Dignard D, Whiteway M, Kumamoto CA.
2013 Normal adaptation of Candida albicans to the
murine gastrointestinal tract requires Efg1p-
dependent regulation of metabolic and host
defense genes. Eukaryot. Cell 12, 37 – 49. (doi:10.
1128/EC.00236-12)

70. Muzzey D, Sherlock G, Weissman JS. 2014 Extensive
and coordinated control of allele-specific expression
by both transcription and translation in Candida
albicans. Genome Res. 24, 963 – 973. (doi:10.1101/
gr.166322.113)

71. Ciudad T, Hickman M, Bellido A, Berman J,
Larriba G. 2016 The phenotypic consequences
of a spontaneous loss of heterozygosity in a
common laboratory strain of Candida albicans.
Genetics 203, 1161 – 1176. (doi:10.1534/genetics.
116.189274)

72. Sunshine AB, Payen C, Ong GT, Liachko I, Tan KM,
Dunham MJ. 2015 The fitness consequences of
aneuploidy are driven by condition-dependent gene
effects. PLoS Biol. 13, e1002155. (doi:10.1371/
journal.pbio.1002155)

73. Torres EM, Williams BR, Amon A. 2008 Aneuploidy:
cells losing their balance. Genetics 179, 737 – 746.
(doi:10.1534/genetics.108.090878)

74. Gasch AP, Hose J, Newton MA, Sardi M, Yong M,
Wang Z. 2016 Further support for aneuploidy
tolerance in wild yeast and effects of dosage
compensation on gene copy-number evolution. eLife
5, e14409. (doi:10.7554/eLife.14409)
75. Sterkers Y, Lachaud L, Bourgeois N, Crobu L, Bastien
P, Pagès M. 2012 Novel insights into genome
plasticity in eukaryotes: mosaic aneuploidy in
Leishmania. Mol. Microbiol. 86, 15 – 23. (doi:10.
1111/j.1365-2958.2012.08185.x)

76. Mannaert A, Downing T, Imamura H, Dujardin J-C.
2012 Adaptive mechanisms in pathogens: universal
aneuploidy in Leishmania. Trends Parasitol. 28,
370 – 376. (doi:10.1016/j.pt.2012.06.003)

77. Lee SC, Corradi N, Doan S, Dietrich FS, Keeling PJ,
Heitman J. 2010 Evolution of the sex-related locus
and genomic features shared in microsporidia and
fungi. PLoS ONE 5, e10539. (doi:10.1371/journal.
pone.0010539)

78. Refsnider JM, Poorten TJ, Langhammer PF,
Burrowes PA, Rosenblum EB. 2015 Genomic
correlates of virulence attenuation in the deadly
amphibian chytrid fungus, Batrachochytrium
dendrobatidis. G3 (Bethesda) 5, 2291 – 2298.
(doi:10.1534/g3.115.021808)

79. Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli
M, Dunham MJ, Amon A. 2007 Effects of
aneuploidy on cellular physiology and cell division
in haploid yeast. Science 317, 916 – 924. (doi:10.
1126/science.1142210)

80. Braun BR, Johnson AD. 2000 TUP1, CPH1 and EFG1
make independent contributions to filamentation in
Candida albicans. Genetics 155, 57 – 67.

81. Korting HC, Hube B, Oberbauer S, Januschke E,
Hamm G, Albrecht A, Borelli C, Schaller M. 2003
Reduced expression of the hyphal-independent
Candida albicans proteinase genes SAP1 and SAP3
in the efg1 mutant is associated with attenuated
virulence during infection of oral epithelium.
J. Med. Microbiol. 52, 623 – 632. (doi:10.1099/jmm.
0.05125-0)
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