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ABSTRACT: In this study, we investigated the impact of lipid oxidation on the discoloration of Sawai (Pangasianodon hypo-
phthalmus) lipids and proteins. Sawai microsomes, liposomes, and salt-soluble myofibrillar proteins were prepared and sub-
jected to lipid oxidation process. The results revealed that the levels of thiobarbituric acid-reactive substances, yellowness 
(as indicated by b* values), and pyrrole compounds increased when Sawai liposomes and microsomes were oxidized using 
iron and ascorbate. Meanwhile, the levels of free amines decreased, particularly as the iron content (25∼100 M) and in-
cubation time (0∼20 h) increased. The impact of oxidized liposomes at different levels (1, 2, and 5%) on the salt-soluble 
Sawai myofibrillar proteins was also evaluated. The findings revealed that lipid oxidation products reduced the sulfhydryl 
content and increased the surface hydrophobicity and carbonyl content of the salt-soluble Sawai myofibrillar proteins. These 
results imply that the formation of yellow discoloration in Sawai muscle could be due to nonenzymatic browning reactions 
occurring between lipid oxidation products and amines in the muscle protein.

Keywords: amines, liposomes, Maillard reaction, microsomes, pyrroles

INTRODUCTION

Lipid oxidation of fish muscle is a major contributor to 
quality losses during processing and storage. Lipid oxida-
tion causes protein denaturation, discoloration, and an 
off-flavor. Lipid hydroperoxides degrade during lipid oxi-
dation, producing carbonyl molecules such as aldehydes 
and ketones. Aldehydes are secondary products that have 
drawn a lot of attention due to their unpleasant odor and 
affinity for amino acids. It has long been known that non-
enzymatic browning occurs when lipids are oxidized in 
the presence of protein. The nonenzymatic browning is 
the result of condensation of aldehydes and amines via 
Schiff base reactions, which starts with the oxidation of 
lipids in muscle foods (Papuc et al., 2017; Wu et al., 
2022). Pyrrolation is responsible for the development of 
brown pigments in fish muscle, which can reduce its con-

sumer appeal (Jones, 1963). Pyrrolation is a chemical re-
action that occurs in fish muscle during storage, espe-
cially in frozen or chilled conditions. It involves the for-
mation of pyrrole compounds from amino acids and lipid 
oxidation products. Pyrrolation can also take place in the 
muscular tissue of fish during the processing stage. This 
process has the potential to change the coloration of fish 
muscle through the formation of brown or red pigments, 
which subsequently diminish the freshness and overall 
quality of the product (Ochiai and Ozawa, 2020).

The production and consumption of frozen catfish, such 
as Sawai (Pangasianodon hypophthalmus), is increasing glob-
ally. Although frozen storage significantly delays micro-
bial deterioration, several chemical reactions can still take 
place during storage. One such reaction is the formation 
of yellow pigments (Sriket et al., 2019), which can lead to 
rancid odors (Santos-Yap, 1996). Changes in texture and 
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muscle discoloration during storage have been reported 
in some fish species, including Indian catfish fillets (P. 
hypophthalmus) (Kunnath et al., 2015), basa (Pangasius bo-
courti) (Sriket and La-ongnual, 2018), Sawai (P. hypoph-
thalmus) (Sriket et al., 2019), and giant catfish (Pangasia-
nodon gigas) (Chaijan et al., 2010). These changes occur 
because of lipid oxidation, as reported by Hematyar et al. 
(2019) and Singh et al. (2022).

Sawai muscle has a high lipid content (40.96% dry ba-
sis), as reported by Sriket et al. (2017), and the lipids con-
tain a high amount of unsaturated fatty acids (62.02% of 
total lipid), making them prone to oxidation and muscle 
discoloration. Previous studies have described methods 
to solve this problem in other fish species, such as the 
use of ergothioneine-rich mushroom extracts on salmon 
fillets (Pahila et al., 2017) and lactic acid bacteria for con-
trolling discoloration in tuna (Jo et al., 2023). The re-
jection of frozen fish products due to quality deterioration 
caused by discoloration makes it crucial to obtain a better 
understanding of the processes involved in the develop-
ment of yellow pigments in Sawai protein and lipid frac-
tions. This study aims to analyze the impact of lipid oxi-
dation on the development of yellow pigments in the mi-
crosome and liposome systems of Sawai cultured in Thai-
land. The knowledge gained from this research may help 
food processors to develop prevention methods for this 
phenomenon.

MATERIALS AND METHODS

Chemicals
The chemicals used in this study were purchased from Sig-
ma Chemical Co. and Merck and were of analytical grade. 
The chemicals included ferric (III) chloride, butylated hy-
droxytoluene (BHT), L-ascorbic acid, thiobarbituric acid 
(TBA), monopotassium dihydrogen phosphate, dipotas-
sium hydrogenphosphate, p-dimethylamino benzaldehyde 
(DMAB), 2,4,6-trinitrobenzenesulfonic acid (TNBS), Tri-
ton X-100, sodium dodecyl sulfate (SDS), 5,5’-dithiobis- 
(2-nitrobenzoic acid) (DTNB), ethylenediaminetetraacetic 
acid (EDTA), hydrochloric acid, methanol, and chloro-
form.

Sample preparation
Sawai (P. hypophthalmus) weighing 2∼3 kg were obtained 
from a fish farm in Ubon Ratchathani, Thailand. The fish 
were sacrificed via ice-shocking, and then transported on 
ice (1:2, w/w) in an insulated box during transport to the 
laboratory. The temperature of the fish during transpor-
tation was 0∼2°C. The temperature was monitored using 
a thermocouple to ensure that the temperature did not 
fluctuate during transportation. The transportation time 
was within 1 h of the fish being purchased. After arrival, 

the fish were cleaned with tap water, filleted, deskinned, 
and sliced to 1∼2 cm thicknesses. The resulting slices 
were minced to achieve a uniform mixture.

Preparation of Sawai microsomal fraction, liposomes, and 
salt-soluble myofibrillar proteins (SSP)
The method of Brannan and Decker (2001) with slight 
modifications was used to isolate Sawai muscle micro-
somes. In brief, 25 g of minced fish was added to 100 mL 
of extraction buffer (25 mM phosphate buffer/0.12 M 
KCl, pH 7.2), and homogenization was performed at a 
speed of 20,000 rpm for 2 min using a tissuemizer 
(Tekmar Co.). Then, the mixture was centrifuged at 
10,000 g and 4°C for 30 min using a Sorvall Superspeed 
RC2-B centrifuge (Thermo Fisher Scientific, Inc.). The 
collected supernatant was subjected to ultracentrifugation 
at 100,000 g for 60 min using a Sorvall Ultra 80 (DuPont) 
to obtain a pellet containing the insoluble muscle compo-
nents, including the microsomes. The myofibrillar pro-
teins were collected from the pellet and solubilized in ex-
traction buffer. The microsome-containing pellet was iso-
lated by ultracentrifugation at 100,000 g for 60 min. The 
method described by Lowry et al. (1951) was used to cal-
culate the protein content of the microsomal fraction. The 
obtained microsomes were adjusted to 30 mg of pro-
tein/mL using extraction buffer and stored at −60°C un-
til further use.

To extract the lipids from the Sawai microsomes, one 
part of microsome was homogenized for 2 min with five 
parts of solvent (methanol/chloroform, 1:2). The solvent 
phase was collected and evaporated under nitrogen. Next, 
liposomes were prepared from the isolated Sawai phos-
pholipids using the method described by Decker and 
Hultin (1990). The fish microsome lipid (5 mg/mL) was 
dispersed in extraction buffer using a Potter-Elvehjem ho-
mogenizer and then sonicated in an ice bathtub for 30 
min using a sonic dismembrator (Model 500, Thermo 
Fisher Scientific, Inc.) at 35% amplitude with 5-s repeat-
ing cycles.

SSP were isolated using a modified method described 
by Thanonkaew et al. (2006). The natural actomyosin 
(NAM) pellet was mixed with 30% glycerol (v/v) and 
kept at −60°C. Before analysis, the frozen NAM was de-
frosted using flowing tap water. Chilled water (10 vol-
ume) was added to the thawed NAM to remove the glyc-
erol and gently stirred for 30 min at 4°C. After centrifu-
gation at 8,000 g and 4°C for 25 min, the resultant NAM 
mixture was stored on ice for further use. The concentra-
tion of protein in the NAM was measured using a biuret 
method, as described by Robinson and Hogden (1940).

During the lipid oxidation of liposomes and the micro-
somal fraction of Sawai muscle, to accelerate the oxida-
tion of lipids in the microsomal systems or liposomes, a 
nonenzymatic iron redox cycling system was used fol-
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lowing the process of Thanonkaew et al. (2006) with a 
few adjustments. The reaction mixture consisted of 200 
M ascorbate and 5 mg of lipid (for liposomes) or 5 mg 
of fish microsomal protein per mL of extraction buffer 
with varying concentrations of FeCl3 (25, 50, and 100 
M). The assay medium was sampled at different inter-
vals and tested for thiobarbituric acid-reactive substances 
(TBARS), free amines, color, and pyrrolization, as ex-
plained below.

To evaluate the effect of lipid oxidation on the chemical 
properties of SSP and NAM, solutions with the highest 
levels of these products were added directly to the SSP at 
varying concentrations (1, 2, and 5%). A control group 
was created by using an equivalent quantity of water. 
Each sample was then placed in an agitating incubator 
(INOVATM 4080, New Brunswick Scientific Co., Inc.) and 
incubated under atmospheric conditions at 37°C for a du-
ration of 9 h. The samples were subsequently analyzed 
for sulfhydryl content, surface hydrophobicity (SoANS), 
and carbonyl content using the methods outlined below.

Measurement of physical and chemical alterations in the 
SSP, microsomes, and liposomes
To assess the level of lipid oxidation, the TBARS level 
was measured using a modified method based on the pro-
cedure developed by Mcdonald and Hultin (1987). The 
TBA stock mixture was composed of 0.375% TBA and 
15% trichloroacetic acid (w/v) in 0.25 M HCl. First, 3 mL 
of 2% BHT in ethanol was added to 100 mL of the TBA 
stock solution. Then, microsomes were mixed with TBA 
solution at a ratio of 1:2 and vortexed. The mixture was 
then kept at 95°C and cooled to ambient temperature af-
ter 15 min. Next, the mixture was centrifuged at 2,000 g 
for 15 min. The optical density of the supernatant was 
read at 532 nm, and the results were reported as M of 
TBARS per mg of microsomal protein. The concentrations 
of TBARS were measured based on a standard curve of 
malonaldehyde plotted using 1,1,3,3-tetraethoxypropane.

Color values
The color of the microsomes and liposomes was evaluat-
ed using a colorimeter (Model ColorFlex EZ, HunterLab), 
and the readings were noted using the CIE-L*a*b* color 
system.

Free amine groups
The spectroscopic method of Kubo and Mori (2005), with 
minimal modifications, was used to determine the free 
amine groups. The sample was diluted four times with 
5% Triton X-100 and kept for 25 min at ambient tem-
perature. Next, 100 mM TNBS (30 L) was mixed in a 
diluted solution (1.5 mL). The mixture was stored for 60 
min at ambient temperature, and the development of the 
resulting derivatives of trinitrophenyl was observed spec-

trophotometrically at 420 nm using a UV-visible spec-
trophotometer (UV-210PC, Shimadzu Scientific Instru-
ments). A blank was produced similarly, using buffer in 
place of the liposomes or microsomes. Concentrations 
were determined based on the standard curve made with 
glycine.

Formation of pyrrole compounds
To assess nonenzymatic browning, phospholipid pyrroli-
zation was used as an index, following the technique of 
Hidalgo et al. (2004) with minor changes. An equal 
amount (1:1) of 25 mM phosphate buffer containing 3% 
SDS was added to the sample for dilution. The resulting 
mixture (1 mL) was added to 0.134 M Ehrlich reagent 
(160 L). The Ehrlich reagent was created by adding 
p-DMAB (200 mg) to ethanol (2 mL), and then making 
the volume up to 8 mL using 1.25 N HCl. The mixture 
was kept for 30 min at 45°C, and the optical density was 
read at 570 nm. To remove the protein following color 
formation, microsome samples were centrifuged at 1,600 
g for 30 min. A blank was made similarly, using buffer in 
place of the liposomes or microsome.

Total sulfhydryl content
The total sulfhydryl content of the SSP was analyzed us-
ing DTNB based on the techniques established by 
Thanonkaew et al. (2006), with some slight modifica-
tions. Specifically, 1 mL of a 5 mg/mL SSP solution was 
combined with 9 mL of Tris-HCl buffer (0.2 M, pH 6.8), 
containing EDTA (10 mM), SDS (2%), and urea (8 M). 
One milliliter of this mixture was added to 100 L of 
0.1% DTNB, which was then incubated for 30 min at 
40°C. The optical density was read at 412 nm using KCl 
(0.6 M) solution as the blank, and the sulfhydryl content 
was evaluated using an extinction coefficient of 13,500 
M−1cm−1.

SoANS
The SoANS (surface hydrophobicity measured by anilino- 
naphthalene-sulfonic acid) of the SSP was determined 
using ANS (8-anilino-1-naphthalenesulfonic acid) as a 
probe, based on the approach developed by Benjakul et al. 
(1997). First, 10 mM sodium phosphate buffer (pH 6.0) 
with 0.6 M NaCl was used to dilute the SSP solution to 
obtain final protein concentrations of 1, 0.5, 0.25, and 
0.125 mg/mL. The resulting protein solutions were then 
incubated at ambient temperature for 15 min. A spectro-
fluorometer (RF-15001, Shimadzu Scientific Instruments) 
with an emission wavelength of 485 nm and an excitation 
wavelength of 374 nm was then used to measure the fluo-
rescence intensity of the ANS-conjugates that were cre-
ated after mixing diluted protein solution (2 mL) with 
20 L of 8 mM ANS in 0.1 M phosphate buffer (pH 7.0). 
The SoANS value was calculated as the initial slope of the 
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Fig. 1. Formation of thiobarbituric acid-reactive substances (TBARS) in Sawai liposome made from Sawai lipids (5 mg lipid/mL) 
(A) and muscle microsomes (5 mg microsomal protein/mL) (B) in the presence of 200 M ascorbic acid and various concentrations 
of FeCl3 (0~100 M) during incubation at 37°C for 20 h. Data are presented as mean±standard deviation (n=3). Different lowercase 
letters on the line graph within the same concentration of FeCl3 denote significant differences (P<0.05). Different uppercase letters 
on the line graph within the same reaction time denote significant differences (P<0.05).

fluorescence intensity versus the protein concentration.

Carbonyl content
To determine the carbonyl content of SSP, DNPH (2,4- 
dinitrophenyl hydrazine) derivatization was used, follow-
ing the protocol of Levine et al. (1994) and Larsson and 
Undeland (2010), with some adjustments. A homoge-
nate of 0.5 g of SSP in 10 mL of buffer (50 mM Tris, 1 
mM EDTA, pH 7.4) containing 0.01% BHT was prepared 
using an Ultra Turrax homogenizer (IKA Labortechnik). 
The homogenate (300 L) was then mixed with 30% 
TCA (0.5 mL) and centrifuged for 3 min at 13,400 g at 
4°C. The resulting pellet was then incubated with 10 mM 
DNPH melted in 2 M HCl for 60 min. A blank was cre-
ated using 2 M HCl as a substitute for the DNPH solu-
tion. The remaining DNPH was removed by washing with 
1.0 mL of ethanol-ethyl acetate (1:1) and 10 mM HCl af-
ter precipitation with 0.5 mL of TCA (30%). Finally, 1 
mL of 6 M guanidine chloride in 20 mM KH2PO4 (pH 2.3) 
was used to dissolve the protein pellets, which were then 
stored overnight at 4°C. The carbonyl content (nmol/mg 
protein) was calculated using the optical densities of the 
samples at 370 and 280 nm and an absorption coeffi-
cient at 370 nm of 22,000 M−1cm−1 for the generated 
hydrazones.

Statistical analysis
The experiments were conducted in triplicate, and the in-
formation was analyzed using analysis of variance. Mean 
judgments were performed using Duncan’s multiple range 
test, as described by Steel and Torrie (1980). Statistical 
analysis was carried out using the IBM SPSS 28.0 for 
Windows (IBM Corp.).

RESULTS AND DISCUSSION

Modifications in TBARS of Sawai liposome and microsome
We investigated the variations in the TBARS of Sawai 
liposomes and microsomes during incubation at 37°C 
for 20 h in the presence of ascorbic acid (200 M) and 
different concentrations of FeCl3 (0∼100 M). An up-
surge in lipid oxidation was observed in both the lipo-
somes (Fig. 1A) and microsomes (Fig. 1B) as the concen-
tration of iron and reaction time increased. Ascorbic acid 
has the ability to reduce iron to its ferric state, resulting 
in the prooxidative ferrous state, which accelerates lipid 
oxidation via a Fenton type reaction. The lipid oxidation 
of Sawai liposomes and microsomes in the presence of 
100 M FeCl3 was approximately 6-fold larger than that 
of the control samples. 

Thanonkaew et al. (2006) reported that the TBARS lev-
els in squid liposomes and microsomes increased with 
rising temperatures and reaction times. Chan et al. (1997) 
created a model system that involved positioning oxidized 
liposomes in a dialysis bag to investigate the connections 
between myoglobin and lipid oxidation products. This 
model was designed to prevent direct interactions be-
tween myoglobin and liposomes but to allow low molec-
ular weight lipid oxidation products to modify myoglobin 
by passing through the dialysis membrane. In the present 
study, a similar model could have been used to determine 
if the products of fatty acid breakdown interact with the 
proteins in muscle to produce yellow pigments. Fish 
products that contain highly unsaturated fatty acids are 
susceptible to oxidization and the production of alde-
hydes during storage, which causes discoloration (Singh 
et al., 2022) via reactions with amine groups to form non-
enzymatic browning products (Thanonkaew et al., 2006).

Changes in color
Fig. 2 and 3 illustrate the color changes in Sawai lipo-
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Fig. 2. Changes in L* (A), a* (B), and b* (C)-value in liposomes 
made from Sawai lipids (5 mg lipid/mL) in the presence of 
200 M ascorbic acid and various concentrations of FeCl3
(0~100 M) during incubation at 37°C for 20 h. Data are pre-
sented as mean±standard deviation (n=3). Different lower-
case letters on the bars within the same concentrations of 
FeCl3 denote significant differences (P<0.05). Different up-
percase letters on the bars within the same reaction time 
denote significant differences (P<0.05).

Fig. 3. Changes in L* (A), a* (B), and b* (C)-value in Sawai 
muscle microsomes (5 mg microsomal protein/mL) in the 
presence of 200 M ascorbic acid and various concentrations 
of FeCl3 (0~100 M) during incubation at 37°C for 20 h. Data 
are presented as mean±standard deviation (n=3). Different 
lowercase letters on the bars within the same concentrations 
of FeCl3 denote significant differences (P<0.05). Different up-
percase letters on the bars within the same reaction time 
denote significant differences (P<0.05).
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Fig. 4. Changes in amine groups (A) and the formation of pyrrole compounds (B) in liposomes made from Sawai lipids (5 mg 
lipid/mL) in the presence of 200 M ascorbic acid and various concentrations of FeCl3 (0~100 M) during incubation at 37°C for 
20 h. Data are presented as mean±standard deviation (n=3). Different lowercase letters on the bars within the same concentrations 
of FeCl3 denote significant differences (P<0.05). Different uppercase letters on the bars within the same reaction time denote 
significant differences (P<0.05).

somes and microsomes, respectively, after incubation at 
37°C for 20 h in the presence of 200 M ascorbic acid 
and varying concentrations of FeCl3 (0∼100 M). The L*, 
a*, and b* values of the Sawai liposomes were not signif-
icantly different from those of the control sample (P> 
0.05). However, a reduction in L* value was detected in 
all samples with increasing reaction time (P<0.05) (Fig. 
2A). No significant variations in the a* values of the sam-
ples were detected during incubation (P>0.05) (Fig. 2B). 
The b* values of all samples increased with reaction time 
(P<0.05). In particular, the liposomes with added iron 
exhibited higher b* values compared to the control sam-
ple (Fig. 2C). A positive correlation between lipid oxida-
tion (TBARS) (Fig. 1A) and yellow color (b*) was ob-
served in iron-containing liposomes. Similar color changes 
were observed in the Sawai microsomes when compared 
with the Sawai liposomes during incubation at 37°C for 
20 h in the occurrence of 200 M ascorbic acid and vary-
ing concentrations of FeCl3 (0∼100 M) (Fig. 3).

The results suggest that the development of yellow pig-
ments in Sawai can possibly be attributed to nonenzymat-
ic browning reactions among phospholipid head groups 
and fatty acid decomposition products. Alternatively, 
browning could happen due to connections between the 
amines in proteins and fatty acid decomposition prod-
ucts (Thanonkaew et al., 2006). Aldehydes and carbonyl 
compounds produced by the oxidation of unsaturated fat-
ty acids, such as heptanal, hexanal, and octanal, can react 
with free amino groups in proteins, causing discoloration 
and foul smells (Herrera and Calkins, 2022; Martin et al., 
2023). Yellow discoloration associated with lipid oxida-
tion has also been reported in squid liposomes and micro-
somes (Thanonkaew et al., 2006). Furthermore, lipid oxi-
dation and yellow discoloration were more pronounced in 
both Sawai liposomes and microsomes with higher con-
centrations of iron and reaction time. This is likely due 

to the fact that iron is a critical catalyst for lipid oxida-
tion and browning in muscle food.

Changes in amine groups and pyrrole compounds
Fig. 4 and 5 depict the changes in amine groups and pyr-
role compounds of Sawai liposomes and microsomes dur-
ing 20-h incubation at 37°C with 200 M ascorbic acid 
and various concentrations of FeCl3 (0∼100 M). The 
loss of amine groups, which is an indicator of interactions 
between phospholipids and lipid oxidation products, was 
observed in both Sawai liposomes (Fig. 4A) and micro-
somes (Fig. 5A) in the presence of ascorbic acid and iron. 
The loss of free amines occurred over the same period of 
time in both Sawai liposomes and microsomes, indicat-
ing that oxidative products of lipids possibly took part in 
the development of yellow pigments in the Sawai muscle.

Both Sawai liposomes (Fig. 4B) and microsomes (Fig. 
5B) showed a significant increase in pyrroles (P<0.05) 
when treated with ascorbic acid and varying concentra-
tions of iron. The control samples of both liposomes and 
microsomes exhibited a slow increase in pyrroles, partic-
ularly after 8 h of reaction time, indicating that time and 
temperature are significant factors in lipid oxidation. The 
formation of pyrroles resulting from the reactions be-
tween oxidized lipids and proteins is a crucial precursor 
to browning, as noted in previous studies (Li et al., 
2020). Pyrrolation is the process of adding pyrrole rings 
to proteins, which can lead to the formation of brown pig-
ments. The brown pigments are formed by reactions be-
tween pyrroles and amino acids, such as lysine and argi-
nine, in the proteins. The reaction between pyrroles and 
amino acids is known as the Maillard reaction. The exact 
chemical structure of the brown pigments formed during 
the Maillard reaction is not well-defined because it de-
pends on the specific amino acid, amine, and lipid oxida-
tion products involved in the reaction (Murata, 2021). 
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Fig. 5. Changes in amine groups (A) and the formation of pyrrole compounds (B) in Sawai muscle microsomes (5 mg microsomal 
protein/mL) in the presence of 200 M ascorbic acid and various concentrations of FeCl3 (0~100 M) during incubation at 37°C
for 20 h. Data are presented as mean±standard deviation (n=3). Different lowercase letters on the bars within the same concen-
trations of FeCl3 denote significant differences (P<0.05). Different uppercase letters on the bars within the same reaction time 
denote significant differences (P<0.05).

Fig. 6. Changes in total sulfhydryl content (A), surface hydro-
phobicity (B), and carbonyl content (C) of natural actomyosin 
extracted from Sawai muscle after exposure at 37°C for 9 h 
with various contents (0, 1, 2, and 5%) of Sawai liposome (5 
mg lipid/mL) oxidized by 200 M ascorbic acid and 100 M 
FeCl3. Bars standard deviation (n=3). Different lowercase let-
ters on the bars within the same content of Sawai liposome 
denote significant differences (P<0.05). Different uppercase 
letters on the bars within the same reaction time denote sig-
nificant differences (P<0.05).

However, the presence of some compounds, including pyr-
roles, furans, pyrazines, oxazoles, thiazoles, and other het-
erocyclic compounds, which can contribute to the forma-
tion of brown pigments in fish muscle, have been report-
ed previously (Mottram, 1998; Tamanna and Mahmood, 
2015; Murata, 2021).

In the presence of ascorbate and iron, the levels of free 
amines decreased, and simultaneously, the formation of 
pyrrole compounds, TBARS, and yellow pigments oc-
curred. This phenomenon suggests that oxidative prod-

ucts of lipids interact with amines, leading to the for-
mation of yellow pigments (Thanonkaew et al., 2006).

Changes in Sawai SSP due to oxidized Sawai liposomes
To investigate the effects of oxidative products of lipids 
from Sawai liposomes on the characteristics of Sawai SSP, 
oxidized Sawai liposomes were directly added to SSP at 
various concentrations (1, 2, and 5%) and developed at 
37°C for 9 h. The results of this experiment showed that 
the sulfhydryl content of SSP decreased (Fig. 6A) with in-
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creasing development time in the presence of higher con-
centrations (5%) of oxidized Sawai liposomes. The SoANS 
of SSP increased as the concentration of oxidized Sawai 
liposomes increased, particularly after 9 h of incubation 
(Fig. 6B). Moreover, the addition of oxidized Sawai lipo-
somes to the SSP had a significant (P<0.05) impact on the 
carbonyl content (Fig. 6C), which increased in a dose-de-
pendent manner. The carbonyl content is an indicator of 
protein oxidation (Wen et al., 2019). Malondialdehyde, 
a secondary oxidative product of lipids, can covalently 
attach to proteins, resulting in the formation of some of 
the carbonyls observed. The presence of carbonyl groups 
and products from lipid oxidation are known to contrib-
ute to the yellow discoloration of fish muscle protein 
(Tongnuanchan et al., 2011). These results suggest that 
oxidized Sawai liposomes are capable of modifying the 
properties of Sawai SSP.

In conclusion, the susceptibility of Sawai lipids in lipo-
somes and microsomes systems to lipid oxidation in-
creased with the addition of iron and ascorbic acid, and 
this vulnerability was observed to increase with increas-
ing iron concentration and reaction time. The oxidation 
of Sawai lipids produced yellow pigments in both lipo-
somes and microsomes. Moreover, oxidized Sawai lipo-
somes were found to increase protein oxidation in SSP. 
The findings of this research indicate that nonenzymatic 
browning reactions in Sawai muscle predominantly in-
volve interactions between lipid oxidation products and 
the amines of proteins, suggesting a positive connection 
between the oxidation of lipids and the formation of yel-
low pigments in Sawai meat.
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