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A B S T R A C T

The goal of this review is to apply an evolutionary lens to understanding the origins of multiple sclerosis

(MS), integrating three broad observations. First, only humans are known to develop MS spontan-

eously. Second, humans have evolved large brains, with characteristically large amounts of metabolically

costly myelin. This myelin is generated over long periods of neurologic development—and peak MS

onset coincides with the end of myelination. Third, over the past century there has been a dispropor-

tionate increase in the rate of MS in young women of childbearing age, paralleling increasing western-

ization and urbanization, indicating sexually specific susceptibility in response to changing exposures.

From these three observations about MS, a life history approach leads us to hypothesize that MS arises

in humans from disruption of the normal homeostatic mechanisms of myelin production and main-

tenance, during our uniquely long myelination period. This review will highlight under-explored areas of

homeostasis in brain development, that are likely to shed new light on the origins of MS and to raise

further questions about the interactions between our ancestral genes and modern environments.
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INTRODUCTION

Multiple sclerosis (MS) is a complex neurologic dis-

order that is a leading cause of non-traumatic dis-

ability in young adults. Over the past generation,

there has been a remarkable increase in the number

of therapies targeting the immune dysregulation

that leads to myelin destruction in MS. However,

despite the plethora of contributing genetic and en-

vironmental factors identified [1], the underlying

cause of MS remains unknown.

The goal of this review is to apply an evolutionary

lens to understanding the origins of MS. This

approach echoes that deployed in Robert

Sapolsky’s now classic examination of modern

review
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human stress and anxiety, “Why zebras don’t get ulcers”. Here, we

integrate three broad observations [2]. First, only humans are

known to develop MS spontaneously. Second, humans have

evolved large brains, with uniquely large amounts of metabolically

costly myelin. This myelin is generated over long periods of neuro-

logic development—and peak MS onset coincides with the end of

‘myelination’. Third, over the past century there has been a dis-

proportionate increase in the rate of MS in women of childbearing

age [3], paralleling increasing westernization and urbanization [4],

suggesting sexually specific susceptibility in response to changing

exposures.

From these three observations about MS, a life history ap-

proach leads us to hypothesize that MS arises in humans as a

result of disruption, during our uniquely long myelination period,

of the normal homeostatic mechanisms of myelin production,

maintenance and clearance. Given the potential breadth of this

topic, this review will focus on highlighting under-explored areas

of homeostasis in brain development, that are likely to shed new

light on the origins of MS and to raise further questions about the

interactions between our ancestral genes and modern

environments.

BACKGROUND

Multiple sclerosis

Multiple sclerosis (MS) is a complex neurologic disorder thought

to affect �2.3 million individuals worldwide, with increasing

prevalence [5]. It is characterized by episodic inflammatory at-

tacks on myelin in the central nervous system (CNS), i.e. inflam-

matory demyelination. Eventually, the demyelinated axons

undergo degeneration, leading to progression of symptoms and

of disability. There is marked variability in the severity and extent

of neurologic impairment that arises from MS lesions, including

both visible (ambulatory or visual impairment) and less visible

(fatigue and depression) symptoms; in the extent of recovery after

inflammatory events; and in the pace of axonal loss and

neurodegeneration. MS symptoms typically first develop during

the childbearing years, but can begin before age 18 years in �5%

[6], and after age 50 years in 10%, of individuals [7]. Consequently,

MS is a leading cause of non-traumatic disability in young adults.

Given the fact that many brain lesions may be ‘clinically silent’, i.e.

do not cause classical MS relapse symptoms, there is sometimes

a ‘prodromal phase’ during which lesions develop in the CNS

without causing symptoms. This is supported by reports of

increased healthcare utilization for all causes up to 5 years before

an MS diagnosis [8], autopsy studies where in up to 25% of cases

of pathologic MS, the patient had no diagnosis [9]; and studies of

brain MRIs showing incidental, classic MS lesions in asymptom-

atic individuals (i.e. radiologically isolated syndrome) [10] who

may or may not later go on to develop MS symptoms. Currently,

all of the therapies approved for the treatment of MS are aimed at

decreasing the number of inflammatory events (new lesions and

consequent new clinical attacks, or relapses); none has a primary

mechanism of preventing axonal degeneration.

MS is considered a complex genetic disease, with over 200 risk

alleles identified; the most important of these, the human leuko-

cyte antigen (HLA)-DRB15*01 allele, confers an odds ratio of 3.08

[11]. However, none is causative, and concordance among mono-

zygotic twins is <30%, suggesting an important role for environ-

mental factors [12–14]. Historically considered a disease affecting

Caucasians living in northern latitudes, MS appears to be

increasing among non-Caucasians in western countries,

including children of foreign-born parents [15]. It also appears

to be increasing in many regions of the world [5], such as Iran

[16]. While this increase is often explained in terms of westerniza-

tion and changing exposures, it is also likely that unequal access

to diagnostic tools, such as MRIs, in developing countries leads to

inequities in MS ascertainment [17]. Observational studies have

shown a strong effect of early residence on risk of MS,

demonstrating an important role for experiential programming

of MS risk. Immunologically, MS is thought to arise as a result

of shift from immune tolerance to, to active immunity against,

myelin (particularly myelin basic protein, MBP, a major compo-

nent of the myelin sheath), through activation of myelin-reactive

lymphocytes. Allelic variants of HLA genes appear to shift T- and

B-cell responses against myelin. The many environmental risk

factors identified (all of which are commonly found in people

without MS) include low vitamin D levels, exposure to Epstein-

Barr virus (EBV) during childhood [18], and more recently, gut

microbiota [19, 20]. Infectious exposures appear to stimulate pat-

tern-recognition receptors on dendritic cells present in lymph

nodes, potentially activating or re-programming T cells that circu-

late through the lymph nodes with myelin reactivity. Despite this

plethora of contributing genetic and environmental factors

identified [1], the underlying cause of MS remains unknown.

Relevant evolutionary approaches

Life history theory
The evolutionary concept of life history theory provides a method

to examine the evolutionary drives underlying the physiologic

events occurring over an organism’s life, from fetal origins

through senescence. At each step of development, an energy al-

location tradeoff occurs between the various physiologic systems

(e.g. [21–23]), with homeostasis altered by a range of environmen-

tal, social or other cues. To provide a classical example of these

time allocation trade-offs, the tasks of somatic and cognitive de-

velopment are delayed if a young child is fighting parasitic infec-

tions [24, 25]. The evolution of the long post-reproductive lifespan

in humans, a feature shared only with some whales species, has

also been examined through a life history lens [26]. According to

the classical Grandmother Hypothesis [27], down-regulation of

direct reproductive function and long post-reproductive life,
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may allow the organism to shift energy toward less direct repro-

ductive contributions (in the form of parental or grandparental

care to ensure the growth of highly dependent children, thereby

ensuring that one’s offspring will successfully reproduce). A modi-

fication of this hypothesis, the Embodied Capital Hypothesis [28],

posits that the longevity is advantageous to both men and women,

who over the lifespan develop more successful brains and tools,

allowing them to continue to acquire more resources than needed

well into old age. However, with age it becomes more advanta-

geous to reallocate these resources away from increasingly risky

direct reproduction, and toward optimizing the well-being and

fertility of children and grandchildren. Within neuroscience, the

framework of ‘critical periods of plasticity’ [29, 30] is beginning to

shed light on some of the specific developmental and homeostatic

functions (guide, prune, refine and phagocytose) of glial cells to

optimize neuronal development and function over the life span,

which will enable more mechanistic investigations of life history

tradeoffs.

Evolutionary mismatch
The concept of evolutionary mismatch [31] can be defined as ‘de-

viations in the environment that render biologic traits unable, or

impaired in their ability, to produce their selected effects’ [32]. A

classical illustration of the evolutionary mismatch theory is the

Hygiene Hypothesis (that purports that modern hygienic prac-

tices alter development of the immune system by reducing its

exposure to pathogens) [33]. The Old Friends Hypothesis, a more

recent modification, attributes the increase in inflammatory

chronic diseases to developing system’s deprivation of

stimulation from specific antigens, symbionts, helminths and

other micro-organisms that were present over [34–36].

Evolutionary mismatch is also cited when examining the rise of

non-communicable conditions such as obesity and cardiovascu-

lar disease. Developing populations are particularly vulnerable as

they transition more rapidly than did western populations from

adverse (hunger, infections, insecurity) to affluent (abundance,

hygiene, security) environments, because of genetic and persist-

ent epigenetic programming toward ‘thriftiness’ (i.e. storing ex-

cess calories), and delayed shifts in cultural ideals emphasizing

slimness and activity [37].

Three observations about MS

Observation 1. Only humans appear to develop MS
spontaneously
There are to date no known cases of spontaneously occurring MS

in other species. For example dogs, animals that live in the same

households and are exposed to many of the same environmental

factors as humans, are known to develop a number of autoim-

mune conditions, such as autoimmune thyroiditis [38], hepatitis

[39], hemolytic anemia [40] and myasthenia gravis [41]. They also

spontaneously develop a number of degenerative CNS

conditions, many of which share hallmarks with their human

counterparts; but not MS [42–44]. Similarly, we found no reports

of MS-like disease in elephants, that have hippocampal volumes

similar to humans’ [45], or in large-brained whales.

In humans’ closest living genetic relatives, the non-human pri-

mates, a demyelinating neurodegenerative process can be

induced in response to viral and other antigen exposures. For

example, the most common animal model of MS (experimental

autoimmune encephalomyelitis) can be induced via injection of

myelin proteins or T cells specifically reactive to these antigens, in

rhesus and common marmoset monkeys. While a spontaneous

MS-like disease, Japanese Macaque Encephalomyelitis, has been

reported, it is linked to exposure to a previously undescribed,

gamma-2 herpesvirus [46]. In the great apes, spontaneous MS

has not been described [47]—and although it is possible that rare

occurrences go unobserved in the wild, this is unlikely.

Observation 2. Humans experience a characteristic
prolonged period of myelination
Myelination evolved in jawed vertebrates to improve the speed

and efficiency of conduction of action potentials along long axonal

distances. The existence of insulating myelin around most of the

axonal length means that membrane potential-sensing ion

channels can be aggregated at nodes where ion exchange is

concentrated and focused, allowing saltatory, rather than

membrane, conduction. This dramatically speeds action potential

transmission, and is energetically favorable for the neuron. Myelin

in the CNS is formed by oligodendrocytes (which differentiate

from oligodendrocyte precursor cells, or OPCs), where it serves

several other functions: providing physical and metabolic support

for axons [48, 49] and possibly fine-tuning the exquisitely

coordinated integration of action potentials coming in from

multiple areas of the CNS. [50] Myelin, by increasing the conduc-

tion velocity of axons permits increased body size, rapid move-

ment and a large and complex brain [51].

Relative to the non-human primates, humans have larger

brains, resulting in exceptionally high basal metabolic rate and

total energy expenditure [52], as well as greater white matter vol-

ume [53]. Humans’ unique long period of post-natal altriciality

[54, 55] (slow childhood growth and reliance on others during

development) was typically considered an accommodation of

the ‘obstetrical dilemma’, i.e. between evolutionarily adaptive re-

quirements for social and communicative brains and human bi-

pedalism (wider birth canal and hips impose stress on bipedal

females’ knees) [56]. More recently, parturition has been

hypothesized to occur when the energetic requirements of the

developing infant surpass the supply of the mother [57], and

may coincide with the high metabolic demand of myelinating cells

on neurons (e.g. lactate/glucose metabolism and transport from

neurons to oligodendrocytes [48, 58]. Therefore, human infants fit

through the birth canal with a limbic system, and then exhibit

ongoing brain growth during their extended period of altriciality,
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to become the highly social animals capable of adapting to diverse

environments.

Volumetric MRI studies are uncovering remarkably consistent

spatial and temporal patterns of dynamic changes in human brain

structure and maturation throughout childhood, adolescence,

and young adulthood [59, 60]. It is generally accepted that cortical

gray matter maturation of primary sensory and motor areas is

followed by maturation of higher-order processing areas; and that

white matter axonal maturation begins in central and caudal areas

and progresses toward polar and rostral locations.

Astrocytes support the multiplication and differentiation of

neurons, and often operate under sexually specific hormonal sig-

naling [61]. This initial neuronal multiplication is followed by

pruning of gray matter and synapses during specification, while

oligodendrocytes myelinate the axons (forming white matter);

and there appears a tight coordination between maturation of gray

matter regions and their connected white matter tracts [62]. To

support this development, microglia (resident macrophages in

the CNS) identify infectious pathogens, plaques, and injured

neurons; present them as antigens to T cells; and clear them

through cytotoxicity, phagocytosis and synaptic stripping.

Throughout development, then, while a highly coordinated series

of peripheral immunologic events occurs, the developing CNS

also requires constant immune homeostasis and surveillance,

as well—in a manner that appears less ‘immune privileged’ than

it is compartmentalized relative to peripheral blood [63].

Overall, human brains exhibit slow childhood growth curves,

and then, over a period of years (and with a range of input from

parents, siblings, grandparents and other helpers), prune and

myelinate the developing neocortex through the post-pubertal

period, until their brains reach peak brain size by early adulthood

[64–66]. Both neuronal progressive (cell growth and maturation,

myelination) and regressive (synaptic pruning, cell death and atro-

phy) processes are at work. Accompanying structural changes,

functional imaging studies have revealed progressive maturation

of task-specific networks important for the acquisition and en-

hancement of skills and behaviors [67], and for the development

of higher cognitive function in the transition from childhood to

mid-adulthood [68, 69]. Deviations from this developmental tra-

jectory appear strongly related to altered cognitive performance

[70] and neurologic impairments [71].

Burgeoning observations in rodents support the concept of

critical windows of plasticity for myelin regulation. For example,

OPC density is regulated through a balance of active growth and

self-repulsion, ensuring that OPCs are available to replace oligo-

dendrocytes and participate in tissue repair [72]. In mice, activity

dependent plasticity is supported by data from both motor

learning (leading to increased OPC differentiation [73]) and sen-

sory deprivation (demonstrating dynamic modulation of myelin

during critical periods of plasticity [74]) experiments. To support

the metabolic requirements of OPC differentiation, OPC-intrinsic

hypoxia-inducible factor signaling couples postnatal white matter

angiogenesis, axon integrity, and the onset of myelination in

mammalian forebrain [75]. As myelin sheaths age, they gradually

release myelin pieces, which are subsequently cleared by micro-

glia (forming insoluble, lipofuscin-like lysosomal inclusions) [76].

Importantly, due to differences in the relative duration of life his-

tory stages (e.g. prolonged development and duration of

postreproductive lifespan in humans), windows of plasticity

identified in rodents or other animal models may be unlikely to

capture the range of windows in humans, limiting our understand-

ing of this process in humans.

It is becoming increasingly clear that throughout the life course,

other cells seem to actively support this plasticity: glial cells inter-

act dynamically with neurons to guide, prune, repair and clear

away debris from complex neural circuits. For example, microglia,

which mature according to a stepwise developmental program,

integrate tissue-specific immune response pathways in response

to immune stimuli (e.g. gut microbiome or prenatal stress) [77],

rapidly repopulate the brain after microglial depletion [78], and are

now known to play a role in remodeling neural circuits [79, 80].

Furthermore, removal of waste plays an important role in brain

development and homeostasis, with reduced waste clearance as

individuals age noted for some time. Initially, clearance of 24S-

hydroxycholesterol (primarily produced in the brain) was reported

to fall markedly after age 20 [81]. To what extent this reflects

decreased clearance, or decreased rates of production, of this

marker is uncertain. The description of the paravascular

glymphatic system in recent years, including its ability to be

non-invasively visualized using MRIs [82], will dramatically ex-

pand the scope of inquiry into regulation of brain homeostasis

and immune surveillance. This glymphatic system facilitates the

flow of cerebrospinal fluid (CSF) and the clearance of interstitial

solutes (including amyloid B) [83], and its efficiency is impaired in

the aging brain [84].

By comparison with human’s closest living phylogenetic rela-

tives, chimpanzees, human myelination appears clearly pro-

longed (Fig. 1). This is also true when compared with the highly

sophisticated brains of dolphins, which feature advanced myelin-

ation at birth [85]. In fact, neuropathologic and MRI studies have

revealed distinct developmental schedules of neocortical myelin-

ation between the two species: at birth, chimpanzees have more

myelinated axons than humans, and myelin growth appears com-

plete around the time of reproductive maturity; whereas humans

experience a period of post-pubertal myelin growth that continues

into the third decade, developing in primary cortical areas before

association areas [64]. Further, heritability for brain size and cor-

tical organization appears to be lower in humans, particularly in

association areas [86], and there is a delay in the prefrontal cortex

gene expression profiles in humans [87]. These observations sug-

gest a species-specific neuroplasticity inviting an increased role

for environmental (ecological, social, cultural) factors in

stimulating activity-dependent myelination during development.

As the periods of adolescence and young adulthood appear quite
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novel in human evolution, the functional significance of post-pu-

bertal neurologic maturation could be in promoting additional

gains in cognitive skills relating to executive function. However,

disruption in homeostatic regulation of this protracted and plastic

process of myelination could also be a factor leading to neuro-

psychiatric diseases such as schizophrenia [93], and MS.

Interestingly, the peak age of MS onset (age 24 in women and

25 in men [94]), i.e. of individual vulnerability to CNS inflamma-

tory events, coincides with the time around which this myelination

period is typically considered complete (some myelination in

frontal and temporal lobes may continue until the fifth decade

[95]), i.e. when the work of oligodendrocyte activity slows.

Observation 3. Life histories are sex-specific, and humans
worldwide are experiencing rapidly changing sex-specific
epidemiologic exposures
A central aspect of human reproductive physiology is responsive-

ness to cues regarding the optimal physiologic and environmental

conditions to sustain a pregnancy/father a child, and then raise

this child over decades. In addition to sex chromosome effects,

sex hormones appear to regulate a number of aspects related to

myelin production and regulation. Responsiveness of the female

immune system to gonadal steroids (including those during

menstrual cycling) is evolutionarily adaptive, enabling the

immunotolerant state of pregnancy [96, 97]. In the CNS, there is

evidence of hormone-, task- and region-specific menstrual cycle

phase-dependent neural plasticity [98–103] and modulation of

gray matter volume [104]. With respect to myelin regulation, most

notably modulation of the estrogen receptors (ERa and ERb [105],

and the membrane-associated G protein-coupled receptor 30,

GPR30 [106, 107]) have been reported to induce remodeling of

the oligodendrocyte cytoskeleton [108, 109], and to stimulate both

endogenous myelination as well as remyelination after demyelin-

ation [110–112]. Androgens in contrast appear to attenuate the

stimulation induced by myelin basic protein-primed T cells on

astroglial activation and production of proinflammatory mol-

ecules (e.g. IL-6 and IL-1b) [113]. Finally, progesterone may modu-

late a number of inflammatory processes, ion and water

homeostasis and myelin repair in the injured CNS [114–116].

Over the past century there has been a disproportionate in-

crease in the rate of MS in young women of childbearing age,

moving from near-equal ratios to a 3:1 female:male ratio [3].

Interestingly, women with MS are more likely to carry the HLA

DRB1*1501 risk allele than are men, but otherwise have lower

non-HLA genetic risks scores [117], indicating that interactions

of HLA genes and novel exposures may account for some of the

increased risk in women. In fact, the increase in the sex ratio par-

allels increasing westernization and urbanization [4], sexually spe-

cific plasticity in response to changing exposures, including

industrialization, sedentarism, and effects of the demographic

transition and gender equity on women’s age at menarche and

reproductive choices (age at first birth, parity, breastfeeding and

exogenous hormone use) [118]. These changing ecologic and

sociologic influences regulating life history transitions may play

an important role in altering homeostatic regulation of myelin and

hence propensity for MS.

THEORETICAL FRAMEWORK, INITIAL FINDINGS,
AND PREDICTIONS

Hypothesis and framework

A life history approach to integrating our three observations leads

us to hypothesize, first, that given the absence of spontaneously

occurring MS in other species despite the broad potential for

mammals to develop autoimmune diseases, and given the spe-

cific potential of non-human primates to develop an MS-like

demyelinating disease under stimulated conditions, then some-

thing specific about the pace or pattern of human myelination

must shift the immune system toward reactivity against myelin.

Second, the extended period of myelination of the human brain,

evolutionarily adaptive in allowing a remarkable degree of plasti-

city in response to internal and external cues, may also provide an

expanded time window during which homeostatic mechanisms of

myelin production and maintenance become dysregulated as a

result of perinatal or childhood exposures, resulting in enhanced

myelin breakdown. As the rate of myelination slows in the third

decade, there could be failure to downregulate the immune sur-

veillance required for regulation of myelination and neuronal loss

(both of which were critical to the developing brain), thereby

shifting toward a pro-demyelinating state. This would increase

the likelihood of local immune-driven demyelination [119], sec-

ondarily expanded and reinforced by the circulating innate im-

mune system, in individuals with genetic susceptibility. Finally,

in increasingly novel environments, the changing ecologic and

sociologic influences that partially regulate life history transitions

likely result in altered homeostatic regulation of myelin—which is

Figure 1. Schematic comparison of the period of developmental myelination

relative to median lifespan in humans, chimpanzees and mice. The temporal

demarcation provided represents the approximate period by which maximal

developmental myelination has occurred, based on currently available data.

Beyond this period, some ongoing myelination (including adaptive

myelination) may continue to occur albeit at lower rates [88–92]
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highly sensitive to environmental modulation during develop-

ment—and hence propensity for MS.

Evidence and predictions across developmental transitions

To evaluate the influence of the protracted nature of human mye-

lination on human susceptibility to MS, the evidence available to

date from humans to directly support or refute these hypotheses

remains scant, and may partially reflect the fact that animal

models incompletely capture the range of variability that occurs

during humans’ protracted myelination.

Further, given the limited opportunities to conduct

neuropathologic studies in the brains of healthy young people,

new tools are needed. Among these non-invasive tools, the fields

of neuroimaging and epigenetics hold promise. Non-invasive

neuroimaging techniques that allow for dynamic visualization of

glial cell biology, including OPC activity and myelin formation are

being optimized. Such techniques include magnetization transfer

imaging ([120, 121], including magnetization transfer ratio [122],

diffusion-weighted imaging and T2 relaxometry [123–125]; see

[126] for a review], MR spectroscopy [127], and positron emission

tomography (PET [128, 129]). Other neuroimaging tools are

advancing the field of ‘connectomics’ [62, 130, 131], allowing a

more precise evaluation of the spatial and temporal connection of

CNS tracts and regions across development. The field of epigen-

etic regulation of MS is still-nascent [127, 128]. Initial epigenetic

signals include sex biases in MS transmissibility and in genetic

risk (women more likely to carry the HLA DRB1*1501 MS risk

allele, but men with higher non-HLA MS genetic risk burdens

[117, 132]). This suggests sex-specific interactions with MHC risk

alleles, including epigenetic modifications [133], which remain

sparsely explored [134]. As epigenetic insights unfold, so will

our mechanistic understanding of how differential exposures dur-

ing development increase susceptibility to MS.

To close this gap in understanding as new tools come online,

application of evolutionary concepts—life history and evolution-

ary mismatch—holds significant potential to generate new, test-

able hypotheses likely to advance research on opportunities for

modulation of myelin refinement and MS risk during humans’

protracted myelination.

Prenatal environment and early childhood
If MS risk is influenced by developmental exposures, then the

prenatal and perinatal periods should play a particularly large role

in shaping more proximal myelin development, but also in

programming lifelong proinflammatory trajectories and myelin

regulation. For example, prenatal hormone levels have been

associated with MS risk [135, 136] and most convincingly, low

prenatal levels of the hormone vitamin D [137], which may set

the stage for development and intergenerational immunologic

changes [138, 139]. Similarly, maternal adiposity, whose effects

on offspring immune trajectories could result from metabolic

programming of growth trajectories or the timing of puberty, is

also beginning to show an association with MS [140]. Among

possible contributors to myelin regulation (e.g. prenatal stressors

[141] and specific toxins [142, 143]), the synthetic xenoestrogen

bisphenol-A (BPA), has been reported to impair proliferation and

differentiation of OPCs in the prenatal and postnatal periods as

well as decrease the expression of genes regulating myelination

[143]. Work is ongoing to understand the role of these exposures,

and the effect of their early or late manipulation (e.g. through

antibiotics, diet and transfers for the gut microbiome; supplemen-

tation for vitamin D levels), on myelin and immune regulation.

Childhood
After birth, neurons continue to migrate from the ventricles along

a migratory ‘Arc’ to cortical regions, differentiating into more ma-

ture populations, such as inhibitory interneurons in the infant

orbitofrontal cortex [144]. Cortical gray matter volume peaks

around age 4 years, declining thereafter. Yet as a result of ongoing

myelination, cortical white matter volume increases rapidly until

age 10, with steady continued development until early adulthood

(about age 20 years). In fact, total intracranial volume increases by

about 300 ml from 3 months to 10 years. There is a wave of brain

growth during childhood and adolescence: around 9 years of age

the rate of annual brain growth is 1% until at age 13 years, when a

gradual volume decrease sets in. In young adolescence, close

spatial relationships have been observed between gray matter

density reduction in frontal and anterior regions, and total brain

growth. Together, they determine the ultimate density of mature

frontal lobe cortical gray matter [145]. Subcortical structures in

contrast do not show consistent changes [146].

During childhood, evolutionary mismatch has particularly im-

portant sequelae. As postulated in the previously referenced

Hygiene [33] and Old Friends Hypotheses [32–34], exposure to

an overly sanitized environment [35, 147–156] that lacks certain

pathogens, appears to influence downstream immune function

[157–167] as well as microglial activation, cholinergic develop-

ment and inflammatory responses in the developing brain

[168–170]. ‘Modern’ exposures, such as high-salt diets and even-

tual use of antihypertensives, could also influence other aspects of

myelin homeostasis including regulation of waste removal from

the CNS (reviewed in [171]).

Indeed, MS risk has been linked with exposure to a number of

environmental stimuli such as obesogenic industrialized environ-

ments ([172–177], potentially mediated by leptin [162, 163,

178–181]), dietary factors such animal protein [182] (salt intake,

while investigated, no longer appears to be a prominent risk factor

[183]), and toxins [136, 184, 185]. Of particular interest is the gut

microbiome, a major point of contact between the immune sys-

tem and novel antigens during development [184, 186–199], with

consequences for brain development [200], including CNS micro-

glial function [20, 201, 202]. With respect to myelin refinement,

commensal gut flora may stimulate various lineages of the
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immune repertoire, including myelin-specific CD4(+) T-cell re-

sponses [203] and autoantibody-producing B cells, in the pres-

ence of the target autoantigen, myelin oligodendrocyte

glycoprotein (MOG) [204]. Supporting a regulatory function of

diet and gut microbiome on myelin formation, in germ-free mice,

the presence of hypermyelinated axons in the prefrontal cortex has

been reported; these changes are potentially reversed by colon-

ization with a conventional microbiota [205]. Similarly, depletion

(through antibiotics) and transfer of gut microbiota in mice

results in changes in prefrontal cortex gene expression and

myelination [206]. Interestingly, associations between adiposity

[174, 175], or gut microbiome [192, 207, 208] and autoimmunity

appear more pronounced in girls, opening the door for compara-

tive studies that would reveal mechanisms for immune respon-

siveness to these cues.

Adrenarche and puberty
Critical for regulation of immune, metabolic and reproductive

physiology by a number of exposures [210–212], the pubertal tran-

sition corresponds to an apparent female-specific increase in MS

risk [213]. Earlier puberty represents a risk factor for MS [214], and

for earlier onset of MS symptoms [215, 216] in girls, but not so

clearly in boys [213], which remains an area of active study [217].

Here, puberty may represent a proxy for earlier risk exposures that

influence both downstream immune signaling and pubertal age

(such as body weight [218–224] or shared genes [225, 226]), per-

haps in response to hormonal signaling from leptin, amongst

other hormones [218, 221, 227]. Interestingly, the developmental

genetic susceptibility to elevated BMI, which increases MS risk

[228], may have only been ‘uncovered’ in the more obesogenic

environments of the recent past [229].

But hormonal changes that occur at puberty also influence

immune pathways [224, 230] and thereby immune activity

[231]. In fact, an emerging body of work supports an inflection

point in a number of maturational changes in the associative

cortex, including of gray matter, white matter, interneurons,

synapses, neurotransmitter expression, among others—

substantial direct evidence is needed to support hormonal

regulation of maturation (including myelination) (reviewed

recently in [232]).

With respect to hormonal cycling, the greater number and

regular frequency of periods that women experience in

westernized societies relative to women in other societies or

throughout our evolutionary past (e.g. [233, 234]) could provide

more frequent opportunity for altered (dys)regulation of these

immune and neurologic responses, contributing to a pro-in-

flammatory MS state. Here, extended-cycle hormonal contra-

ceptives (i.e. cycles every 3 months) might, in comparison

with typical hormonal contraceptives (i.e. monthly cycles), be

hypothesized to result in fewer demyelinating inflammatory trig-

gers (fluctuations in pro-inflammatory cells) and fewer new MS

lesions.

Late adolescence and young adulthood
During young adulthood, between �18 and 35 years of age, pos-

sibly another wave of growth, or at least a period of no brain tissue

loss, occurs [60]. As stated above, the peak age of MS onset, i.e. of

individual vulnerability to CNS inflammatory events, is in the mid-

20s, perhaps slightly earlier in women than men [94]. This peak

age of individual vulnerability to CNS inflammatory demyelination

coincides with the time that myelination is considered complete,

i.e. when the work of oligodendrocyte activity slows.

To return to our hypothesis, we expect, first, that a background

process of myelination and remyelination will be found to be dy-

namic in healthy brains, particularly during childhood and adoles-

cence. The concept of experience-dependent myelination in

response to a new activity or skill acquisition, hypothesized to

occur in an early study demonstrating changes in the auditory

cortex after cochlear implants [235], has been bolstered by evi-

dence of tract changes in neuroimaging studies of children and

adolescents practicing piano [236], and of young adults acquiring

a visuomotor skill [237]. Conversely, selective loss of myelin would

be expected to occur in a tract whose gray matter was injured from

a vascular or accidental event.

Second, as the pace of myelination slows in young adulthood,

the local CNS immune regulation, both innate and adaptive,

should be expected to downshift myelin modeling, including by

decreasing immune cells targeting myelin. Therefore, during late

adolescence and young adulthood, a greater number of glial and

immune cells would be expected in late-myelinating tracts relative

to regions with more complete myelination, and overall in late

adolescence relative to early adulthood.

Third, MS would then arise in individuals who, due to ‘multiple

hits’ (which influence immune activation or myelination) incurred

during the protracted period of myelination, are less successful at

shifting from a dynamic state of myelin remodeling in adoles-

cence (with active immune surveillance, myelin formation and

debris clearance) to a less dynamic homeostatic balance in adult-

hood, resulting in ongoing and more targeted attacks on myelin.

There are some signals that B cells specific to the myelin surface

antigen MOG might, through antigen-presenting cells, activate

MOG-specific effector T cells either within the CNS or peripherally

[238]; and that there is age-dependent autoimmunity to MOG in

MS [239]. However, the significance of MOG as an antigen or a

bystander remains unclear [240]. After an initial demyelinating

attack, some patients do seem more able to achieve CD4(+) T-cell

quiescence [241], avoiding further demyelination. However, more

mechanistic insights are needed to understand how immune sur-

veillance and glial activity change, and can become pathological,

once the rate of myelination slows.

It remains to be proven whether the tracts that are latest to

myelinate are the first to experience demyelination. While a num-

ber of studies have reported the general anatomical location of

first clinical attacks (i.e. optic nerve, spinal cord, brainstem, e.g.

[242]), ascertainment of this earliest stage is limited by the high
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number of MS demyelinated lesions that are asymptomatic (sev-

eral lesions may be present at the time of the first clinical attack).

Even when demyelinated lesions are incidentally noted on an MRI

obtained for other purposes (radiologically isolated syndrome

[10]), the requirement that these lesions be spatially disseminated

across the CNS to fulfill criteria for demyelinating disease, may

limit ascertainment of the location of the very earliest lesion.

Certainly, it has been shown that spinal cord lesions strongly pre-

dict recurrent demyelination [243, 244], but it is not clear whether

this is biologically meaningful (i.e. that spinal cord lesions signal

or result in increased immune activation) or whether they simply

provide more specificity in distinguishing demyelinating lesions

from the other non-demyelinating causes of white matter

abnormalities in the brain. The pattern of remyelination in

humans with MS, as well as of remyelination after toxic injury in

mice, does appear to be influenced by neuroanatomical location

(e.g. may be faster in the murine corpus callosum than in the

cortical gray matter [245]; and more extensive in subcortical le-

sions than periventricular lesions and near absent in cerebellar

lesions in humans [246]).

As the epigenetic signatures that mark stages of brain develop-

ment [61, 247–249], including completion of myelination, as well

as proinflammatory profiles in circulating blood and the CNS, are

identified, it will become possible to more precisely query the

temporal relationship between myelination and the activated im-

mune system, and to identify potentially aberrant patterns in

people with underlying genetic susceptibility to MS.

Life history approaches beyond development

Aging in MS
Beyond raising important questions about MS risk, evolutionary

approaches continue to be informative in examining other aspects

of MS, such as the process of accelerated aging. In all individuals,

after age 35 years, a steady volume loss is found of 0.2% per year,

which accelerates gradually to an annual brain volume loss of

0.5% at age 60. This loss appears driven primarily by curvilinear

declines in cortical gray matter volume, while cortical white matter

volume remains constant during the first five decades [250–252],

but then may decrease (in mice). This process of brain volume

loss is accelerated in individuals with MS. Before the 6th decade,

i.e. broadly the age of menopause and declining ovarian function,

women appear to have a relatively slower rate of disability accrual

than men despite higher risk of relapses [253]. More research is

required to determine whether this is due to gonadal hormone

effects on remyelinating capabilities [109] during this time (pos-

sibly to enable pregnancy-induced brain plasticity) or other mech-

anisms altogether.

Aging is associated with a number of impairments of

remyelination, including decreased OPC recruitment and differ-

entiation [254, 255], and shorter internodes [256–258]. These age-

associated changes likely arise from changes in environmental

signaling [259] and in epigenetic regulation [260, 261]. The effect

of increasing age on impaired remyelination is further supported

by reversal of age-associated remyelination deficits with telomer-

ase reactivation [262] and with enhancement of remyelination

after heterochronic parabiosis, in which unidentified circulating

factors may respectively inhibit or enhance remyelination

including blood-derived monocytes from a younger mouse re-

cruited to demyelinating lesions, by increasing M2 microglia

and macrophages in these lesions [263, 264]. In humans, OPCs

may represent a smaller proportion of the total glial population

[265] than in other mammals such as rodents, where they make up

�8–9% of the total cell population in white matter [266].

Once damaged, myelin debris may prematurely shift microglia

toward aging, rather than earlier, immune regulation pathways,

leading to premature brain senescence [77]. Some support for

hypothesis derives from a still unreplicated report of that muta-

tions in the LXRA gene may be presents in some cases of familial

progressive MS [267]; these mutations are postulated to decrease

innate immune suppression of pro-inflammatory mediators,

leading to exaggerated attack on myelin as well as impaired

remyelination, accelerating axonal loss and MS progression [267].

Female-specific exposures: reproductive events
To understand this sex-specific influence on MS risk, here as well,

the life history and evolutionary mismatch approaches may be

informative. A major aspect of altered life history in modern dec-

ades is delayed age of childbearing, which combined with earlier

menarche, translates to more years of exposure to hormonal

cycling (Fig. 2). Both nulliparity and delayed pregnancy appear

to increase the risk of MS [268, 269]. It is now well established

that there is a dramatic decline in relapse risk of MS in the last

trimester, with a rebound in relapses (for up to 30% women)

noted in the first trimester postpartum [270, 271]. The increase

in relapses postpartum coincides with dramatic hormonal shifts

and loss of the immunotolerant state of pregnancy [272, 273]. A

number of immune mechanisms have been postulated, including,

classically, induced shifts from T-helper 1 to T-helper 2 responses

[281], as well as fetal HLA-maternal killer immunoglobulin-like

receptors interactions [282, 283], microchimerism derived from

Figure 2. Schematic comparison of the period from menarche to first birth in

U.S.-born girls relative to non-contracepting populations. U.S. birth and

menarche data were obtained from [274, 275]. For comparison purposes, data

were averaged from 7 communities whose reproductive histories are

considered more typical of those encountered over human history: Ache,

Agata, Dogon, Hazda, Hiwi, !Kung, and Pygmy (East) [28, 276–280]
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fetal cells or antigens [284, 285], and placenta-derived

immunoregulation [286]. Hormonal signaling during breastfeed-

ing, reflecting the metabolic demands placed on the mother [287,

288], may also play a role in modulating immune activity and

relapse susceptibility in MS [289]. Both the increased years of

exposure to hormonal fluctuations (from menarche to childbear-

ing), as well as delayed or reduced exposure to immunotolerant

state of pregnancy, could shift or maintain the immune system in

a pro-inflammatory state, with a greater potential for activation

against myelin than in women with less hormonal cycling or

earlier pregnancies.

In addition to immune effects, pregnancy also induces brain

plasticity [290], demonstrating tight integration of signaling along

the hypothalamic–pituitary axis [291] to coordinate release of oxy-

tocin and prolactin [292–294] and enable the physiology of gesta-

tion and lactation for a current, and even subsequent, pregnancies

[295]. Beyond these physiologic hormonal adaptations, higher-

level cognitive and affective processes also appear to change dur-

ing pregnancy [296], possibly enabling broader preparations of the

female brain for motherhood. These include for example changes

in the expression of oxytocin receptors in brain regions beyond the

hypothalamus and pituitary, to permit centrally released oxytocin

to facilitate the expression of maternal behavior [297]; or

decreased olfactory thresholds during the first trimester to poten-

tially protect the mother and developing fetus from toxic inges-

tions [298, 299]. Most interestingly altered hippocampal

neurogenesis and plasticity [300–302], as well as loss of gray mat-

ter volume in areas modulating social cognition [303], have been

reported in gestation and the postpartum period, with unknown

functional consequences but possible relevance to postpartum

mood and memory disorders [304]. Prospective studies of young

women during a pregnancy compared with nulliparous controls

will be substantially enhanced with neuroimaging and epigenetic

tools that query the influence of the timing of pregnancy-related

neural and immunologic changes, relative to broader patterns of

immunologic and brain maturation, and consequent immune ac-

tivation against myelin.

CONCLUSION

Humans have evolved a highly complex brain, and its maturation

is both highly coordinated, and thanks to an extended period of

myelination, demonstrates a remarkable degree of plasticity in

response to internal and external cues. While one environmental

cause for MS in humans may yet be identified, from an evolution-

ary lens, MS could represent an unfortunate byproduct of this

sophisticated brain, specifically arising from a disruption in local

homeostatic mechanism of myelin regulation during the pro-

tracted and plastic period of myelination and in response to a

number of cumulative, and interactive, genetic and environmental

risks. A similar perspective has been proposed for both neuro-

psychiatric disorders such as schizophrenia [93], and

neurodegenerative disorders such as Alzheimer’s disease [304].

Just as in other species, these risks would have the most profound

impact with exposure early during development, but would have a

longer time frame in which to affect myelin regulation than in

other species. Therefore, the incidence of MS is expected to

continue to increase, and specifically in non-Caucasians due to

evolutionary mismatch as they immigrate to regions of high MS

prevalence, or as their native environments are increasingly

westernized. One major scientific implication of this perspective

is that animal models, which do not manifest this protracted

period of myelination, inadequately unravel the extent of the inter-

action between risk factors, immune regulation, and glial biology

during human development. In the coming years, the fields of

epigenetics and advanced neuroimaging—which illuminates

brain connectomics and glial biology—all promise to shed further

light on the dynamic maintenance of homeostasis within the CNS

across humans’ protracted development, and to answer the ques-

tion of why only humans appear to spontaneously develop MS.
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