
 1 

Genotype inference from aggregated chromatin 1 

accessibility data reveals genetic regulatory 2 

mechanisms 3 

 4 

Brandon M. Wenz*1, Yuan He*2, Nae-Chyun Chen3, Joseph K. Pickrell4, Jeremiah H. Li4, Max F. 5 

Dudek5, Taibo Li2, Rebecca Keener2, Benjamin F. Voight6,7,8, Christopher D. Brown6, Alexis 6 

Battle2,3,9,10,11 7 

 8 

1. Genetics and Epigenetics Program, Cell and Molecular Biology Graduate Group, Biomedical Graduate Studies, 9 

University of Pennsylvania - Perelman School of Medicine, Philadelphia PA 19104 10 

2. Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD, 21218 11 

3. Department of Computer Science, Johns Hopkins University; Baltimore, MD, 21218 12 

4. Gencove, Inc., New York, NY, 11101 13 

5. Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA 19104 14 

6. Department of Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA, 19104 15 

7. Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania - Perelman 16 

School of Medicine, Philadelphia PA, 19104 17 

8. Institute for Translational Medicine and Therapeutics, University of Pennsylvania – Perelman School of Medicine, 18 

Philadelphia, PA, 19104 19 

9. Department of Genetic Medicine, Johns Hopkins University; Baltimore, MD, 21218 20 

10. Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, 21218 21 

11. Data Science and AI Institute, Johns Hopkins University, Baltimore, MD, 21218 22 

*: These authors contributed jointly to the work.  23 

 24 

Correspondence to: 25 

Alexis Battle, PhD 26 

ajbattle@jhu.edu 27 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.04.610850doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.610850
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

 28 

Abstract 29 

 30 

Background 31 

Understanding the genetic causes for variability in chromatin accessibility can shed light on the 32 

molecular mechanisms through which genetic variants may affect complex traits. Thousands of 33 

ATAC-seq samples have been collected that hold information about chromatin accessibility 34 

across diverse cell types and contexts, but most of these are not paired with genetic information 35 

and come from diverse distinct projects and laboratories. 36 

 37 

Results 38 

We report here joint genotyping, chromatin accessibility peak calling, and discovery of 39 

quantitative trait loci which influence chromatin accessibility (caQTLs), demonstrating the 40 

capability of performing caQTL analysis on a large scale in a diverse sample set without pre-41 

existing genotype information. Using 10,293 profiling samples representing 1,454 unique donor 42 

individuals across 653 studies from public databases, we catalog 23,381 caQTLs in total. After 43 

joint discovery analysis, we cluster samples based on accessible chromatin profiles to identify 44 

context-specific caQTLs. We find that caQTLs are strongly enriched for annotations of gene 45 

regulatory elements across diverse cell types and tissues and are often strongly linked with 46 

genetic variation associated with changes in expression (eQTLs), indicating that caQTLs can 47 

mediate genetic effects on gene expression. We demonstrate sharing of causal variants for 48 

chromatin accessibility and diverse complex human traits, enabling a more complete picture of 49 

the genetic mechanisms underlying complex human phenotypes. 50 
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 51 

Conclusions 52 

Our work provides a proof of principle for caQTL calling from previously ungenotyped samples, 53 

and represents one of the largest, most diverse caQTL resources currently available, informing 54 

mechanisms of genetic regulation of gene expression and contribution to disease. 55 

Introduction 56 

Genome wide association studies (GWAS) have identified thousands of loci and 57 

common human genetic variants that are associated with a wide range of complex human traits, 58 

diseases, and risk factors[1]. GWAS variants are often found in noncoding regions, where they 59 

are likely to be involved in gene regulation[2,3]. However, a full picture of the causal regulatory 60 

elements that underlie these associations remains incomplete for most loci[4]. Characterizing 61 

the genetic effects of variants on gene expression as revealed by expression quantitative trait 62 

locus (eQTL) mapping has provided insights into the molecular basis of phenotypes[3,5–7]. 63 

Although some eQTL variants directly affect open-reading frames, the vast majority are in non-64 

coding regions, as has been described for GWAS variants. Connecting causal variants to the 65 

regulatory elements and the genes of action that they perturb remains a central goal of the post-66 

GWAS era. 67 

Accessibility of chromatin regions to transcriptional machinery is a key factor in gene 68 

regulation[8,9], and genetic variants can affect complex traits through changes in gene 69 

expression levels that are mediated by chromatin accessibility[10,11]. Improved understanding 70 

of the mechanisms involved in chromatin accessibility, revealed by genetic variants that 71 

modulate chromatin accessibility (i.e., caQTLs), has the potential to illuminate the molecular 72 

mechanisms and genetic regulatory architecture of complex traits. caQTLs have been 73 

measured in a variety of tissue and cell types, at both bulk[12–16] and single-cell 74 
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resolutions[17]. caQTLs have been used in a variety of studies to characterize gene expression 75 

regulation[18], and to propose mechanisms for risk loci identified through GWAS[19]. caQTLs 76 

may co-occur with eQTLs together, thus describing a more complete picture of the genetic 77 

mechanism underlying GWAS-associated signals. However, relevant caQTLs may be 78 

discovered even in the absence of any established eQTL, as eQTL studies may not include the 79 

relevant cell type or environmental context to reveal the change to gene expression. Analysis of 80 

the contribution of caQTLs to complex human traits can help us better understand the molecular 81 

impact of these variants and the mechanism(s) driving GWAS signals. To date, caQTL studies 82 

have mostly been performed in analyses restricted to single tissue/cell types, a majority of which 83 

have assayed a limited number of samples. 84 

The Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) 85 

technology has been widely used to capture chromatin accessibility in various cell types and 86 

experimental conditions[20–22]. There is a rapidly accumulating trove of ATAC-seq data 87 

generated from various experiments, labs, and conditions. This wealth of information has the 88 

potential to boost power for caQTL analysis. Unfortunately, many of these samples do not have 89 

matched genotype information, a necessary component for QTL analyses. ATAC-seq reads, 90 

however, naturally carry the sequence information at nucleotide resolution, providing the 91 

possibility of inferring sample genotypes from these data directly. 92 

Here, we have selected and evaluated pipelines to uniformly process ATAC-seq 93 

samples, including peak calling and genetic variant calling directly from ATAC-seq reads. We 94 

called genotypes using a pipeline incorporating Gencove’s low-pass sequencing methods 95 

applied to ATAC-seq reads in accessible chromatin, which utilizes imputation to infer genotype 96 

for variants that are located outside of regions covered by observed reads in accessible 97 

regions[23,24]. We benchmarked this pipeline, using gold standard genotype information 98 

available for a subset of samples, and compared it with other methods. Because large-scale 99 

public data often contains multiple samples from the same donor or even the same cell line, we 100 
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also developed a method to automatically infer donor assignment based on genotype from the 101 

called variants. Peak calling from thousands of diverse samples presents challenges of 102 

identifying true, distinct regions of chromatin accessibility rather than low-signal false positives, 103 

or large regions merged from what should be distinct peaks[25,26]. Based on comparisons 104 

across various peak-calling approaches, we finalized a pipeline based on an Genrich, an ATAC-105 

seq specific method[27] for collectively calling peaks across large, diverse data sets and 106 

quantifying accessibility in each peak. 107 

Using our ATAC-seq derived genotypes and accessibility estimates across peaks and 108 

samples, we then called caQTLs from this collection of publicly available ATAC-seq data. We 109 

identified thousands of caQTLs that share a causal signal with GWAS signals, many of which 110 

are not explained by known eQTLs. Additionally, we identified many GWAS signals that appear 111 

to share a causal signal with both eQTLs and caQTLs, enabling a more comprehensive analysis 112 

predicting target gene, gene regulatory element and even potential transcription factors that are 113 

driving GWAS signals for a variety of complex human traits. Furthermore, to capture context-114 

specific caQTLs, we inferred clusters of samples with similar accessibility profiles, mostly 115 

reflecting cell or tissue type, and identified cluster-specific caQTLs. With the captured global and 116 

cluster-specific caQTLs, we investigated potential mechanisms involving transcription factors 117 

and their role in target gene regulation.  118 

Results 119 

Accurate genotyping and imputation based on ATAC-seq reads from public 120 

repositories 121 

We established a workflow to collect a diverse set of publicly available ATAC-seq 122 

datasets and ascertain donor genotype from ATAC-seq reads, with the overall objective of 123 

mapping genetic variants that are associated with differences in chromatin accessibility for 124 
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diverse tissues and contexts on a large scale (Figure 1A). We collected 10,293 human samples 125 

from 653 projects from the Gene Expression Omnibus (GEO) data repository, where most 126 

projects were comprised of 10 or fewer samples (Figure 1B, Supplementary Table 1). The 127 

aggregated data includes samples from a wide variety of tissues or cell types (Figure 1C), 128 

labeled based on a manual curation of project abstracts, sample labels, and project methods, 129 

with the most common cell/tissue types including T cells and brain.  Additionally, based on our 130 

metadata review, both cancer and normal primary tissue are well represented, along with cell 131 

lines and experimentally differentiated cell types (Figure 1D). The diversity of samples highlights 132 

the value of a workflow that can aggregate data and genotype samples from ATAC-seq reads, 133 

providing an overall large sample size, but also tissue-specific sample sizes larger than any 134 

existing genotyped chromatin accessibility study for several individual tissues including lung, 135 

breast, heart, and pancreas[12,28–30]. 136 
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 137 

Figure 1. Study overview and characteristics of specimens utilized in this study. (A) 138 

Overview of study design to jointly call genotype and caQTLs across studies. Human ATAC-seq 139 

datasets were obtained from GEO.  After variant-calling (Methods), we identified the unique 140 

donors in the dataset (Methods) for use in caQTL mapping. (B) The distribution of the number of 141 

samples collected across all n=653 studies. (C) Frequency of the Cell/Tissue types present in 142 
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samples collected across studies based on manual metadata curation (D) Frequencies of 143 

cancer, non-cancer, primary tissues, and cell-line samples included in our study based on our 144 

metadata review. For each category, samples were assigned a “Yes” if they belonged to that 145 

category (e.g. cell line samples for ‘Cell Line’ category), a “No” if they did not belong (e.g. 146 

primary tissue samples for ‘Cell Line’ category), or an “Unknown” if it was not clear from the 147 

metadata. 148 

  149 

QTL mapping requires paired genotype and molecular phenotype information for each 150 

sample. In standard QTL studies, genotyping arrays or whole genome sequencing (WGS) are 151 

used to ascertain sample genotype information[31]. Unfortunately, for most of the ATAC-seq 152 

data in public repositories that has already been collected, genotype data is not readily 153 

available. However, ATAC-Seq directly captures genomic DNA fragments from accessible 154 

chromatin regions; thus, we surmised that it might instead be possible extract genotype 155 

information for these samples directly from the ATAC-seq reads. To obtain genotyping from 156 

ATAC-sequencing and evaluate the performance of variant calling using ATAC-seq reads, we 157 

applied two approaches: a pipeline incorporating genotyping from Gencove, which optimizes 158 

genotyping and imputation for low-pass sequencing data[23,24,32,33], and a standard GATK 159 

variant calling pipeline[32,33](Methods). To benchmark the performance of our workflow, we 160 

used a published dataset of 71 HapMap lymphoblastoid cell lines (LCL) samples with paired 161 

ATAC-seq and WGS data [34]. We observed that, compared to the standard GATK variant 162 

calling pipeline, the Gencove pipeline with imputation greatly increased the number of variants 163 

called and resulted in a median correlation of over 0.88 between true and called donor genotype 164 

(Figure 2A). To quantify the effects of read coverage on the performance of variant calling, we 165 

randomly subselected ATAC-seq reads at varying total read counts for use with the Gencove 166 

pipeline. We observed a marginal increase in accuracy with deeper coverage, however, variant-167 

calling accuracy remained high at effective coverage as low as 0.04 (Figure 2B). In our full 168 
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dataset, the distribution of effective coverage in the full sample set was within the range 169 

previously tested with the gold standard HapMap LCL samples, verifying the accuracy of 170 

genotype calling in this larger data set. These analyses demonstrate the capabilities of accurate 171 

inference of genome-wide genotypes directly from ATAC-seq data. 172 

As a proof of concept, we next performed caQTL mapping using genotypes called from 173 

ATAC-seq reads, comparing the results to the caQTLs identified using the full set of gold 174 

standard genotypes in these 71 HapMap LCL samples. We observed that caQTL calling using 175 

ATAC-seq reads and the Gencove pipeline performed better than the GATK pipeline with 99% 176 

accuracy and over 90% recall compared to caQTL calling using WGS data. The increased recall 177 

is due to the Gencove pipeline’s imputation step and sacrifices very little in accuracy (Figure 178 

2C). The performance of the Gencove pipeline had substantially greater benefit when testing 179 

variants in larger caQTL mapping window sizes where recall remained above 90% for the 180 

Gencove pipeline but dropped to 16% for the GATK pipeline at 100 kb (Figure 2C). Overall, we 181 

conclude that genotype calling from ATAC-seq reads leads to highly accurate caQTL calling 182 

with relatively high recall with a low rate of false positives. Given the diverse samples collected 183 

and varying study designs, an individual donor will likely have multiple ATAC-seq samples 184 

represented. As such, we next developed a pipeline to infer unique donors based on the 185 

correlation between inferred sample genotypes across different samples and projects (Figure 186 

2D-E, Methods). Applying this pipeline to all samples, we identified 1,454 unique donors across 187 

our entire dataset (Supplementary Table 2). The majority of donors (~82%) are found within a 188 

single project only. As expected, the occurrence of multiple samples per donor was especially 189 

common amongst cell lines, which is reflected in the reduced proportion of cell line samples in 190 

the final unique donor sample set (Supplementary Figure 1). 191 
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Figure 2. High quality genotyping with unique donor information is inferable directly from 192 

reads obtained by ATAC-Seq. (A) Variants called for the HapMap samples using two pipelines 193 

- Gencove, and GATK HaplotypeCaller. (B) Accuracy of variant genotype called by Gencove 194 

pipeline using a random subset of sample reads. Spearman correlation and mean squared error 195 

(MSE) are computed between the called genotype and genotype from WGS. (C) caQTLs called 196 

using ATAC-seq derived genotypes across the HapMap samples. (D) Spearman correlation of 197 

called genotypes between all samples. (E) Spearman correlation of called genotypes between 198 

samples in study PRJNA388006. On the top the "True donor" indicates the donor assignment 199 

obtained from metadata information for this study, and "Assigned donor" indicates the donor 200 
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assignment derived from called genotypes (Methods). 201 

 202 

Peak calling across all samples identifies a plethora of open chromatin regions 203 

with regulatory potential 204 

The next step in our pipeline was to identify open chromatin regions. We called 205 

chromatin accessibility peaks based on evidence across all samples using Genrich, a peak 206 

caller optimized for ATAC-seq reads[27]. Genrich assigns p-values to genomic positions within 207 

each sample, then combines p-values across samples using Fisher’s method to call peaks. We 208 

compared this Genrich pipeline to strategies which called peaks in individual samples followed 209 

by merging. The Genrich strategy alone produced peaks that are likely derived from 210 

nucleosome-free and mono-nucleosome fragments, as seen by enrichment around 100 bp and 211 

200 bp in the observed peak length distribution (Figure 3A). 212 

Across 10,293 samples, we identified 1,659,379 autosomal peaks with a median peak 213 

length of 250 base pairs, covering approximately 27% of the genome (Figure 3A). Chromatin 214 

accessibility is influenced by a variety of regulatory processes[35–37], and we would expect to 215 

see chromatin accessibility peaks in regions associated with gene regulation. To verify the 216 

quality of our ATAC-seq peaks, we annotated our peaks, along with length-matched, randomly 217 

selected controls, with various genomic features that included transcript annotations and 218 

enhancer annotations as defined by the FANTOM5 enhancer atlas[38,39] (Methods). We found 219 

that relative to controls, our ATAC-seq peaks were enriched for genomic regions annotated as 220 

enhancers and all transcript annotations but depleted for gene intergenic regions 221 

(Supplementary Figure 2, Supplementary Table 3). Similarly, we would expect our ATAC-seq 222 

peaks to be enriched for histone modifications associated with gene regulatory regions[40–42]. 223 

The ENCODE Roadmap Epigenomics Mapping Consortium[43] provides chromatin 224 

immunoprecipitation with sequencing (ChIP-seq) data representing eight different histone marks 225 
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from 556 cell line, tissue, and primary cell samples derived from a variety of biological origins. 226 

Using these data, the highest enrichment of our ATAC-seq peaks and chromatin histone marks 227 

was for H3K4me1, a histone mark that has been linked to enhancers (Supplementary Table 228 

4)[40]. In contrast, our ATAC-seq peaks were depleted for overlap with the histone mark 229 

H3K9me3, which is associated with gene repression and heterochromatin[44]. Together, these 230 

data suggest that our ATAC-seq peaks are enriched for cis-regulatory regions, as expected for 231 

genomic sequences implicated in regulatory activity and indicating high quality peak calls. 232 

 233 

Inferred genotypes support high-powered caQTL mapping across samples 234 

Next, we sought to identify genetic variants that are associated with differences in 235 

measured chromatin accessibility in ATAC-seq peaks, i.e., caQTLs. We tested a 10 kilobase 236 

(kb) window in cis flanking each chromatin accessibility peak, as we anticipate that genetically 237 

altered active transcription factor binding sites are likely to be found within or very nearby 238 

regions of chromatin accessibility[45,46]. Utilizing our peak calling and genotyping pipelines, we 239 

identified 23,381 chromatin accessibility peaks with a significant caQTL at FDR 5% across 240 

1,454 unique donor samples (Figure 3B, Methods, Supplementary Tables 5-6). To mitigate 241 

potential confounding from population stratification, we estimated variation in similarity across 242 

donors generated by our genotyping via principal components analysis (PCA), including 3 PCs 243 

as covariates in discovery analysis. In addition, we also included 200 PCs generated from the 244 

donor chromatin accessibility peak read count matrix to mitigate potential latent confounders in 245 

QTL mapping [47] (Methods). 246 

We examined the quality of our caQTL variants by determining whether they were 247 

enriched for expected functional characteristics. First, we confirmed that the distribution of 248 

positions for lead caQTL variants was centered within the open chromatin peak tested, as 249 

expected (Figure 3C). In addition, we observed that peaks with a mapped caQTL were the most 250 

strongly enriched for gene 5’ UTRs and enhancer regions while depleted in gene intergenic 251 
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regions (Supplementary Figure 3, Supplementary Table 7). Interestingly, caQTL peaks were 252 

further enriched in enhancer regions compared to all chromatin accessibility peaks, suggesting 253 

that caQTLs we mapped may be found at genomic elements involved in distal gene regulation. 254 

This could potentially arise due to selective pressure reducing functional variation in promoters 255 

and other proximal elements. 256 

Additionally, we examined whether our caQTL peaks were enriched for transcription 257 

factor binding sites in the ENCODE transcription factor ChIP-seq data from 129 cell types and 258 

340 transcription factors[48]. As expected, caQTL peaks, compared to length-matched random 259 

controls, were enriched for binding sites for all transcription factors except for SRSF9, which is 260 

depleted in caQTL peaks (Supplementary Table 8). Enrichment of these functional 261 

characteristics support the conclusion that our caQTLs are high quality, reflect enrichment in 262 

expected regulatory elements, and can help identify genetic mechanisms relevant to regulation 263 

of gene expression. We sought further evidence that caQTL variants were enriched for 264 

functional roles in gene expression regulation by intersecting them with eQTLs. Across all 49 265 

Genotype-Tissue Expression (GTEx) v8 tissues, we observed caQTL/eQTL enrichments 266 

ranging from 2.1 to 4.8-fold per tissue and a total of 2,859 (~13% of unique caQTLs) unique 267 

overlapping lead caQTL/lead eQTL variants found across all tissues, for an enrichment of 268 

approximately 1.8-fold (Supplementary Table 9).  269 

Finally, to further demonstrate that our catalog represents reproducible peaks and 270 

caQTLs, we compared our findings here to a recent caQTL study that identified variants 271 

associated with chromatin accessibility in African LCL samples[49] not included in our discovery 272 

effort. Lead caQTLs and peaks identified in our study resulted in a replication rate (p1 273 

value[50,51]) of 0.62 with this orthogonal study (Figure 3D). Together, these analyses further 274 

demonstrate that on average, our catalog of caQTLs are high quality and provide insight into 275 

how genetic variation may affect gene regulation and complex traits. 276 

 277 
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 278 

 279 

 280 

 281 

 282 

Figure 3. Characteristics of chromatin accessibility peaks and caQTL variants identified 283 
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in this study. (A) Distribution of peak length across 1,659,379 called peaks (peaks under 1000 284 

bp shown). (B) Manhattan plot of lead variant for 23,381 caQTL peaks. (C) Distance from lead 285 

caQTL variant to midpoint of caQTL peak showing elevation of caQTL variant within the 286 

identified chromatin accessibility peak. (D) Lead variants for 23,381 caQTL peaks were matched 287 

in external caQTL mapping dataset of African LCLs[49]; p-values from the replication study are 288 

plotted here. 289 

 290 

 291 

Colocalization suggests shared causality between chromatin accessibility, 292 

complex traits, and expression QTLs 293 

To gain further insight into the molecular mechanisms underlying GWAS signals, we 294 

sought to link GWAS association signals, expression QTLs (eQTLs), and caQTLs together via 295 

statistical colocalization (Methods). Colocalization analysis discerns if an association signal is 296 

likely shared between two traits, suggestive of a common underlying genetic mechanism. First, 297 

we examined which caQTL signals are shared with GWAS signals across a variety of complex 298 

human traits. We obtained GWAS summary statistics from a subset of the UK Biobank (UKBB) 299 

study, selecting 78 traits of interest with high confidence of significant heritability (Methods)[52]. 300 

We then performed colocalization analysis (Methods) for any caQTL peak that was located 301 

within 1 Mb of a genome-wide significant lead GWAS signal (Methods). We observed that 67 302 

traits had a caQTL/GWAS colocalization event (PP3+PP4 > 0.8 and PP4/(PP3+PP4) > 0.9.) for 303 

a total of 12,882 colocalization events across all traits, involving 4,351 (~19%) unique caQTL 304 

peaks and 4,706 (~34%) unique tested GWAS signals (Supplementary Table 10).  305 

Regulatory variants do not always affect the nearest gene and assigning a GWAS signal 306 

to a causal gene is not a trivial procedure[53,54]. Furthermore, comparison of the overlap 307 

between lead variants of GWAS signals and the lead variant of eQTLs can suggest the incorrect 308 
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causal gene[55]. Given the prominence of long-range gene expression regulation, colocalization 309 

of cis regulatory elements with eGenes can suggest a shared causal variant[56,57]. We 310 

performed colocalization analyses between caQTLs and 49 GTEx v8 eQTL tissues. Across all 311 

tissues, between 358 (Kidney) and 5,427 (Thyroid) eGenes colocalized with our caQTLs. 312 

Colocalized caQTLs/eQTLs were shared across a median of three tissues and 17,471 unique 313 

eGenes colocalized with caQTLs in any GTEx tissue (Supplementary Figure 4, Supplementary 314 

Table 11). We found that only 13% of eQTL/caQTL colocalizations involve the gene nearest to 315 

the lead caQTL and that there was a median of 6 genes closer to the lead caQTL than the 316 

colocalizing gene (Supplementary Figure 4). Additionally, the putative regulated gene 317 

transcription start site (TSS) was a median of 80,798 base pairs away from the colocalizing 318 

caQTL (Supplementary Figure 4). These results suggest that caQTLs may often be found 319 

tagging and potentially modifying the behavior of distal gene regulatory elements. 320 

 321 

Multiple molecular QTL datasets provide insight into regulatory mechanisms underlying 322 

GWAS associations  323 

  eQTLs have been shown to provide a regulatory mechanistic hypothesis for GWAS 324 

associated signals, yet only an estimated ~25-43% of GWAS signals colocalize with known 325 

eQTLs[6,58], implying that more than half of GWAS loci may lack an obvious functional, 326 

mechanistic hypothesis[6,59–61]. caQTL mapping could help close that gap if, for example, the 327 

effects of the eQTL are only apparent in certain cellular contexts, during specific developmental 328 

stages, or in the presence of external stimuli[62–64], whereas chromatin accessibility may be 329 

primed and reveal effects in a wider range of context. Across all traits and GTEx tissues, we find 330 

that lead GWAS signals colocalize with a median of 5 eQTLs and 2 caQTLs (Supplementary 331 

Figure 5). For each GWAS trait, we then considered whether independent GWAS lead signals 332 

colocalize only with eQTLs, colocalize with both caQTLs and eQTLs, or colocalize only with 333 

caQTLs. Across all GWAS, a median of 35 unique signals colocalized with a caQTL only, a 334 
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median of 66 unique signals colocalized with an eQTL only, and a median of 53 unique signals 335 

colocalized with both a caQTL and an eQTL (Figure 4, Supplementary Table 13). These 336 

differences may reflect context-specific behavior of gene regulation that is not well captured by 337 

steady-state, adult gene expression data, but may still be reflected in chromatin accessibility. 338 

These results demonstrate that incorporating both caQTLs and eQTLs nominates putative 339 

causal mechanisms for approximately 29% more GWAS signals than using eQTLs alone. 340 

Furthermore, 57% of GWAS signals we tested were linked with either a caQTL, eQTL, or both 341 

(Supplementary Figure 6). Instances where GWAS signals colocalized with both caQTLs and 342 

eQTLs may also allow for a better delineation of the mechanism at these loci by nominating a 343 

candidate caQTL-associated gene regulatory element to a target eGene[65].  344 
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 345 

Figure 4. caQTLs map to regions tagged by GWAS and eQTL variation. For each GWAS 346 

trait, independent lead GWAS variant signals were checked for colocalization with caQTL and 347 

eQTL signals across all GTEx tissues. Plotted is the number of unique lead GWAS signals per 348 

colocalization group, as multiple caQTL peaks, eGenes, etc. can colocalize with the same lead 349 

GWAS signal. Traits with greater than 50 colocalizing lead variants shown. 350 

 351 
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To gain insight into molecular mechanisms that may be unique to caQTLs as compared 352 

to eQTLs, we calculated the enrichment of colocalizing caQTLs and lead eQTLs for diverse 353 

genomic annotations. caQTLs and eQTLs involved in colocalizations with GWAS signals were 354 

both significantly enriched for all tested genomic annotation categories except for intergenic 355 

regions, where they were significantly depleted, compared to matched random controls 356 

(Supplementary Figure 7, Methods). However, caQTLs from GWAS/caQTL and 357 

caQTL/GWAS/eQTL colocalization events were further enriched for enhancer regions and less 358 

depleted in intergenic regions than eQTLs from GWAS/eQTL colocalizations alone 359 

(Supplementary Figures 8-9). In contrast, lead variants of eQTLs that colocalized with a GWAS 360 

signal only were further enriched for gene promoters and other gene proximal categories, less 361 

enriched in enhancer regions, and showed greater depletion for intergenic regions, consistent 362 

with previous reports (Supplementary Figure 10)[6,66]. These differences in enrichment may be 363 

due to systematic differences in GWAS signals that are explained by eQTLs compared to those 364 

explained by potentially distal regulatory mechanisms captured by caQTLs[67]. 365 

While our caQTLs were called from heterogeneous cell/tissue samples, they are 366 

predominantly from brain and whole blood (Figure 1). To reflect this, we also performed an 367 

analysis of caQTL/GWAS colocalizations compared to eQTL/GWAS colocalizations from brain 368 

cortex and whole blood only. Across 69 GWAS, each trait has at least 1 GWAS signal that 369 

colocalizes only with a caQTL, and one trait, standing height, had 360 lead GWAS variants that 370 

colocalize exclusively with caQTLs compared to brain eQTLs. In contrast, we identify a 371 

maximum of 66 lead GWAS variants that colocalize only with eQTLs for a given trait. Across all 372 

GWAS, a median of 76 unique signals colocalized with a caQTL only, a median of 15 unique 373 

signals colocalized with an eQTL only in Whole Blood, and a median of 11 unique signals 374 

colocalized with both a caQTL and a Whole Blood eQTL (Supplementary Figure 11, 375 

Supplementary Table 14). Furthermore, across all GWAS, a median of 83 unique signals 376 

colocalized with a caQTL only, a median of 10 unique signals colocalized with an eQTL only in 377 
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Brain Cortex, and a median of 7 unique signals colocalized with both a caQTL and a Brain 378 

Cortex eQTL (Supplementary Figure 12, Supplementary Table 15). Compared to the analysis 379 

considering eQTLs across all tissues, we find that caQTL/GWAS only colocalizations occur with 380 

a larger proportion of GWAS signals in single tissue eQTL analysis colocalizations. This 381 

discrepancy provides further evidence that using caQTLs can provide molecular insight into 382 

GWAS association signals beyond eQTLs when restricting to a single eQTL tissue. 383 

 384 

Integration of caQTLs informs mechanistic interpretation at many GWAS loci 385 

Colocalization analysis with QTL datasets across multiple modalities, such as 386 

expression and chromatin accessibility, has previously been shown to nominate putative target 387 

genes underlying more GWAS signals than a single modality alone[65,68]signals that 388 

colocalized separately with both caQTLs and eQTLs and quantified how many of the GWAS-389 

colocalizing caQTLs and eQTLs also colocalized with each other. We identified 43,005 unique 390 

colocalization events involving a GWAS trait, caQTL peak, eGene, and eGene tissue 391 

(Supplementary Table 16). These were comprised of 2,177 unique eGenes and 1,695 unique 392 

caQTL peaks. 393 

In cases where caQTLs colocalize with both GWAS signals and eQTLs, they provide a 394 

more complete picture of the mechanisms likely driving the association signal. First, we provide 395 

an instructive example of a well-characterized GWAS locus strongly associated with plasma 396 

low-density lipoprotein cholesterol (LDL-C) at the 1p13 locus. eQTL colocalization analyses at 397 

this locus, followed by functional characterization in vitro and in vivo, suggest that the causal 398 

gene at this locus is SORT1, with expression differences observed in the liver [46]. We find a 399 

caQTL at this locus that colocalizes with both the SORT1 eQTL in liver, and the GWAS trait self-400 

reported high cholesterol (Supplementary Figure 13). This caQTL peak contains a well-studied 401 

noncoding variant that creates a C/EBP (CCAAT/enhancer binding protein) TF binding site, 402 

altering hepatic expression of SORT1 and plasma LDL-C levels[46]. This highlights the ability of 403 
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our analyses to identify verified mechanisms underlying GWAS signals. 404 

In a second example, we identified a compelling locus where a caQTL peak, a whole 405 

blood eQTL for PAX8, and a GWAS signal for blood urea levels colocalized (Figure 5). The 406 

shared lead caQTL and eQTL variant, rs7589901, is an intronic variant within the PAX8 gene. 407 

The reference allele of rs7589901-A is associated with increased chromatin accessibility in the 408 

associated peak (Supplementary Figure 14). Based on motif analysis, ZNF135 is predicted to 409 

bind to a motif overlapping rs7589901, with the alternate C allele strongly favored for binding 410 

(PWM value=0.8, Supplementary Figure 15). In GTEx, the rs7589901 eQTL direction of effect is 411 

concordant with the caQTL direction of effect, suggesting that increased accessibility at this 412 

locus is associated with increased PAX8 gene expression in whole blood. The lead GWAS 413 

variant at this locus, rs7421852, is associated with increased blood urea levels, is ~3,000 bp 414 

from rs7589901, and is in strong LD (r2=0.85) with rs7589901 in our caQTL sample genotypes. 415 

These results suggest a potential mechanism where ZNF135 is acting as a transcriptional 416 

repressor at this locus, a functional role that has been implicated in a different context[69]. The 417 

culmination of evidence suggests a mechanism where decreased ZNF135 binding leads to 418 

increased chromatin accessibility, increased expression of the PAX8 gene, and lower blood 419 

urea levels. Such examples demonstrate the power of integrating multiple molecular QTL 420 

datasets to nominate mechanistic hypotheses that may be further validated experimentally. 421 
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Figure 5. Change in chromatin accessibility and expression implicate PAX8 in serum 423 

urea levels. The top three plots are the colocalization windows (10kb + caQTL peak) for the 424 

caQTL, eQTL, and GWAS, respectively. The following two plots are showing a larger window to 425 

illustrate the eQTL and GWAS signals, respectively, at this locus at a different scale. The 426 

bottom gene track highlights the position of genes at this locus, as well as the location of the 427 

caQTL peak (gold dotted lines).  428 

 429 

 430 

Sample heterogeneity enables identification of context-specific clusters 431 

Because profiles of chromatin accessibility often segregate context or cell-type specific 432 

information, we next grouped our samples by their profiles of chromatin[70]. We performed 433 

dimensionality reduction[71] and applied a semi-supervised clustering method[71] to identify 434 

groups of similar samples, identifying 11 clusters (Figure 6A). We used sample metadata to 435 

assign a label to each cluster, denoting biological origin. Overall, clustering appears to be 436 

mainly driven by the tissue or cell type from which the sample is derived (Supplementary 437 

Figures 16-17). For example, blood cell types appear to be grouped together or near each other 438 

in separate, but related clusters. In addition, we found other examples of clusters where nearly 439 

half of the samples are derived from a single tissue, such as pancreas. Annotating samples with 440 

other aspects of metadata, such as primary sample vs. cell line, or cancer vs. non-cancer 441 

samples, did not appear to explain clustering results (Supplementary Figure 18).  442 

 443 

Clustering allows for identification of caQTLs in specific clusters 444 

To determine whether clustering samples of similar biological origin enables the 445 

discovery of additional caQTL signals, we next performed caQTL mapping within each cluster. 446 

Each cluster is composed of a different number of samples, with varying contributions from cell 447 
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types and projects, which is reflected in the number of caQTLs identified in each cluster. Cluster 448 

sample size ranged from 80-220 samples (Supplementary Table 17) and resulted in 174-15,277 449 

(FDR<5%) caQTLs identified in a single cluster. As in the global analysis, cluster caQTLs 450 

showed similar patterns of genomic region annotation enrichments (Supplementary Figure 19) 451 

and lead caQTLs were centered within the open chromatin peak tested (Supplementary Figure 452 

20). Across all clusters, cluster caQTLs rediscovered 34-94% of caQTL peaks observed in the 453 

global analysis (Figure 6B) with median global caQTL replication rate of 0.99 (p1 value) across 454 

all clusters (Supplementary Figure 21). Analysis comparing cluster caQTL peak discoveries to 455 

other clusters resulted in a range of caQTL peak rediscovery (Supplementary Figure 22) but 456 

high replication rate across clusters (p1 value 0.91-0.99) (Figure 6C, Supplementary Table 18).  457 

This suggests that clusters are capturing common global signals, but some clusters are better 458 

powered at identifying caQTLs that might be cell/tissue-specific. For example, cluster 9, which 459 

identified the largest number of cluster caQTLs, is comprised of more than 50% LCL samples, 460 

many of which are from a single study (Supplemental Table). Approximately 2/3 of the caQTL 461 

peaks identified in cluster 9 are not identified as caQTL peaks in the global analysis performed 462 

across all tissues/cell types, suggesting that cluster 9 may be better powered to discover 463 

caQTLs more prevalent in LCLs and related blood cell samples. As a measure of reproducibility 464 

across experiments, we found that Cluster 9 caQTL lead variants were enriched for evidence of 465 

caQTL peak causality in the original study[34] that the majority of cluster 9 samples originate 466 

from (Supplementary Figure 23). These results suggest that as with eQTLs, future work 467 

increasing the sample size to examine cell/tissue-specific caQTLs is likely to capture novel 468 

caQTLs that will be useful for elucidating molecular mechanisms underlying GWAS signals. 469 

Mapping caQTLs in clusters highlights the increase in caQTL discovery power of 470 

aggregating all samples across experiments, particularly for caQTLs that might be found across 471 

cell types. In our global analysis we identified 23,381 caQTL peaks, with a maximum of 5,169 of 472 
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those also identified in a single cluster caQTL mapping experiment. This suggests that by 473 

considering all samples, we achieve greater than a 4.5X increase in caQTL discovery power for 474 

global caQTLs. Across all clusters, we identify 8,610 (37% of global) caQTL peaks that were 475 

also found in the global analysis and 14,795 caQTL peaks that were not found in the global 476 
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analysis. 477 

Figure 6. Clustering and discovery of cluster caQTLs across ATAC-Seq samples. 478 

(A) UMAP followed by k-means clustering to identify groups of related samples based 479 

on chromatin accessibility profiles across all peaks. (B) Cluster characteristics, caQTLs 480 
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identified, and replication with respect to global caQTL mapping. (C) Replication rate (p1 481 

value) of caQTLs identified in each cluster compared to those found in all other clusters. 482 

 483 

 484 

Cluster-specific caQTLs can explain additional gene regulation and GWAS signal 485 

causality 486 

We next performed colocalization analysis between GTEx eQTLs and the caQTLs 487 

identified within each cluster to determine if cluster-specific caQTLs appear to be involved in 488 

gene regulation as well. As in the cluster caQTL analysis, we find that the number of 489 

colocalizations found per cluster was commensurate with the number of caQTLs identified in 490 

each cluster. We find a maximum of 13,688 unique eGenes colocalizing in a single cluster, and 491 

a total of 16,833 unique eGenes colocalize when considering all clusters (Supplementary 492 

Tables 19-20). Compared to the global analysis, which identified a total of 17,471 unique 493 

colocalizing eGenes, 14,017 of which also colocalized in the cluster analyses, suggesting that 494 

the majority of colocalizing eGenes are identified across both analyses. As in the cluster caQTL 495 

analyses, we find that colocalizing eGenes are often shared across clusters (Supplementary 496 

Figure 24). Considering all cluster colocalization events, 7,789 total eGenes were found to 497 

uniquely colocalize in a single cluster, with 5,532 (71%) of these in cluster 9. Overall, we find a 498 

variable number of cluster-specific caQTL/eQTL colocalizations per cluster, many of which are 499 

shared across clusters.  500 

Our previous analyses assessed the benefit of utilizing global caQTLs in GWAS 501 

colocalizations compared to eQTLs. In this analysis, we considered eQTLs that were discovered 502 

in experiments performed in single tissues, experiments that are much more likely to identify 503 

variants with tissue-specific effects compared to our multi-tissue, global caQTL mapping 504 

strategy. Cluster-specific caQTLs might more closely mimic these single-tissue eQTL datasets, 505 
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as these caQTLs were mapped in clusters of samples that likely shared a similar biological 506 

origin. To better compare the contribution of eQTLs and caQTLs to GWAS signals, we 507 

considered caQTLs identified in both global and cluster-specific analyses to assess 508 

colocalization improvement. Across all GWAS traits and eQTL tissues tested, we find that 509 

combining global and cluster-specific caQTLs results in an increase of the contribution of 510 

caQTLs to GWAS colocalizations. Specifically, we find a median of 41 GWAS signals 511 

colocalizing with caQTLs only and a median of 67.5 GWAS signals colocalizing with both 512 

caQTLs and eQTLs (Supplementary Figure 25, Supplementary Table 21). Both measurements 513 

are increases compared to the global analysis only. In contrast, the median number of GWAS 514 

signals that colocalize with eQTLs only decreased to 39 (Supplementary Figure 25, 515 

Supplementary Table 21). Leveraging both global and cluster caQTLs, together with eQTLs, we 516 

explained a median of 62% of GWAS signals tested (Supplementary Figure 26). Overall, we find 517 

that both global and cluster-specific caQTLs can contribute to the causal mechanisms 518 

underlying GWAS signals not captured by eQTLs.  519 

Discussion 520 

We developed a pipeline to discover caQTLs on a large scale by aggregating and 521 

genotyping large-scale ATAC-seq data across many studies. We collected 10,293 human 522 

ATAC-seq samples, representing 1,454 unique donors, from public databases that come from a 523 

diversity of cell types and conditions, demonstrating that genotype data can be accurately called 524 

from ATAC-seq data, and identified unique sample donors, both within and across projects. 525 

Combining accessibility and genotype information, we performed caQTL analysis and were able 526 

to capture global and cluster-specific caQTLs. caQTL studies are often limited by sample size 527 

constraints. We show that amassing public-domain project data allows for identification of a 528 

greater number of caQTLs than smaller individual studies alone. We demonstrated that caQTLs 529 

are enriched for various regulatory elements and likely underlie gene expression differences 530 
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and complex human traits. We provide our large catalog of global and cluster caQTLs as a 531 

resource. 532 

Our study does have limitations and opportunities for further development. Naturally, as 533 

more ATAC-seq data are generated, a similar study could be repeated on a larger scale. 534 

Additionally, the clustering performed in our study was coarse, and may have grouped multiple 535 

cell types or contexts together. With a larger sample size from new studies or more extensive 536 

exploration of clustering methods or cell type prediction approaches, these grouping could be 537 

further refined and made more homogeneous, which would be expected to boost statistical 538 

power for discovery. Although we analyzed a large and diverse set of samples and experiments, 539 

many GWAS signals were not tagged by one of our caQTLs (and/or by eQTLs). One 540 

explanation for this is that we are missing many cluster/context-specific caQTLs that may 541 

underlie the remaining GWAS signals. One limitation of this study is that while the sample 542 

contexts were diverse, we still do not have sufficient sample size across some disease-relevant 543 

contexts to fully examine context-specific caQTLs. Further work, perhaps using single cell 544 

ATAC-seq data, is necessary to gain insight into tissue/cell context specific caQTLs. Other 545 

types of molecular QTLs may underlie some unexplained GWAS signals[60]. Incorporating 546 

additional data modalities, such as those reflecting chromosome conformation changes, may 547 

identify additional QTLs underlying GWAS loci. A recent study has shown that genetic variants 548 

in enhancer regions affect gene expression changes via enhancer-promoter touching and 549 

looping processes[72]. Integrating HiC or HiChIP datasets with ATAC-seq data can provide 550 

insight into this process. These datasets may also help identify target genes or resolve 551 

situations where multiple eGenes are implicated as causal genes at a locus[73]. Furthermore, 552 

other mechanisms, such as DNA methylation (meQTLs)[74,75] or post-transcriptional processes 553 

such as splicing (sQTLs)[66] or protein concentrations (pQTLs)[76] could underlie GWAS 554 

signals that have yet to be explained. 555 
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Although we observed colocalization analysis between our caQTLs and GWAS signals 556 

on par with previous studies [77], experimental validation is necessary to determine whether 557 

putative causal variants underlying these QTLs directly mediate disease risk[78,79]. Previous 558 

studies have shown that this type of analysis has led to the correct identification of molecular 559 

mechanisms underlying disease. For example, regulatory mapping has successfully identified 560 

gene targets that can be experimentally modulated to produce a phenotypic effect both in vitro 561 

and in vivo[80]. Furthermore, caQTL analyses have been used to predict mechanisms 562 

underlying GWAS signals with follow-up functional experiment results supporting these 563 

predictions[15]. Ultimately, regulatory elements and gene targets that we identify as implicated 564 

at GWAS loci will need additional support from low-throughput experimental techniques to 565 

confirm our findings, such as using base editing to dissect variant function[81]. Toward the goal 566 

of understanding molecular mechanisms underlying GWAS signals, molecular QTLs generate 567 

hypotheses and our work has demonstrated that including caQTLs in these experiments 568 

increases the number of GWAS signals for which a putative molecular mechanisms may be 569 

identified. 570 

Conclusions 571 

In summary, we have deployed a pipeline to call a set of consensus peaks from thousands of 572 

publicly available ATAC-seq samples and genotype these samples directly from the 573 

experimental sequencing reads. We leveraged these data to identify caQTLs that likely share 574 

causal variants with eQTLs and GWAS signals. We show that caQTLs can improve our 575 

understanding of the mechanisms underlying GWAS signals and we provide this dataset as a 576 

resource for use in further fine-mapping experiments. 577 

 578 

 579 
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METHODS 580 

Sample Collection 581 

ATAC-seq samples were identified through the Gene Expression Omnibus (GEO) database and 582 

downloaded. Collected sample metadata is found in Supplementary Table 1. 583 

 584 

Benchmarking on HapMap samples 585 

We downloaded ATAC-seq for 71 HapMap samples from ENA project PRJEB28318[34]. We 586 

aligned the sequencing reads to GRCh38 using bowtie2 and retained only autosomal 587 

chromosomes. Duplicated reads tagged by Picard were removed and Base Quality Score 588 

Recalibration (BQSR) was performed using GATK tools. Variant calling was done using GATK 589 

HaplotypeCaller. Loci with less than 2 reads were filtered out and variants were mapped to 590 

GRCh37 using Picard LiftoverVcf. Minimac4 was utilized to run imputation with reference panel 591 

derived 1000G Phase 3 592 

(https://csg.sph.umich.edu/abecasis/mach/download/1000G.Phase3.v5.html). We kept only the 593 

genotype for common variants derived from 1000G with MAF > 0.05. The gold standard variants 594 

were obtained from https://www.internationalgenome.org/data-portal/data-collection/grch38. For 595 

the ATAC-seq data, we converted cram files to bam files, and removed the reads that map to 596 

mitochondrial genome. We obtained the genotype from the 1000 Genome Project on the 597 

GRCh38 genome assembly[82].  598 

 599 

Benchmarking for caQTLs in HapMap samples 600 

We first obtained caQTLs using ATAC-seq reads with BH corrected P-value < 0.05, then ran 601 

QTL analysis using gold standard genotype and obtained caQTLs with BH corrected P-value < 602 

0.05. The precision is computed as the percentage of replicated caQTLs at FDR < 0.05 using 603 

the gold standard genotype. Similarly, we first obtained caQTLs using gold standard genotypes 604 

with BH corrected P-value < 0.05, then ran QTL analysis using ATAC-seq reads and obtained 605 
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caQTLs with BH corrected P-value < 0.05. The recall is computed as the percentage of 606 

replicated caQTLs at FDR < 0.05 using the ATAC-seq reads.  607 

 608 

Variant calling 609 

For the ATAC-seq data, we performed two pipelines of variant calling, one using GATK 610 

HaplotypeCaller, and the other with Gencove’s low-pass sequencing pipeline. Using the GATK 611 

HaplotypeCaller, we performed alignment using Bowtie2, and removed duplicated reads and 612 

applied base quality score recalibration, followed by GATK HaplotypeCaller[33,83,84]. Variants 613 

with at least 3 reads were extracted. We then compared the called genotype dosage to the gold 614 

standard genotype by computing the Spearman correlation and mean squared error (MSE). 615 

 616 

Peak Calling 617 

Genrich[27] (v0.6.1) was used to call peaks. A slightly modified version of Genrich was applied 618 

to allow peak calling across a large number of samples (https://github.com/maxdudek/Genrich). 619 

Genrich assigns p-values to genomic positions within each sample followed by combining p-620 

values across samples using Fisher’s method to call peaks. Bam files were filtered using: 621 

‘samtools view -S -b -q 10’. Bam files were name sorted using: ‘samtools sort -n 622 

/path/to/q10_filtered_bams/sample.bam | samtools view -h -o 623 

/path/to/nameSortedBams/sample.bam’. Peak calling parameters were: ‘Genrich -t 624 

/path/to/nameSortedBams/sample1.bam, path/to/nameSortedBams/sample2.bam, 625 

path/to/nameSortedBams/sampleN.bam, -j , -o /path/to/outputFile -v -E 626 

/path/to/blacklistRegions.bed -r -q 0.05’. 627 

 628 

Genomic Annotation Enrichment 629 

Genomic annotation enrichment analyses were performed using the R package annotatr 630 

(v.1.28.0) (https://bioconductor.org/packages/release/bioc/html/annotatr.html). 100 iterations of 631 
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random, matched background data using bedtools shuffle with flags “-chrom -excl 632 

/path/to/blacklistRegions.bed -g /path/to/chrSizes.txt”. P values were calculated by quantifying 633 

the number of random data iterations that were more extreme than the true data values for each 634 

category. 635 

 636 

Encode Roadmap Enrichment 637 

Histone ChIP-seq data derived from adult human samples were downloaded from 638 

https://www.encodeproject.org/search/?type=Experiment&status=released&award.project=Road639 

map . ATAC-seq peaks that overlapped histone mark data were identified using bedtools 640 

intersect -wo -a /path/to/encodeData.bed -b /path/to/peakCoords.txt. 100 iterations of random, 641 

matched background data using bedtools shuffle with flags “-chrom -excl 642 

/path/to/blacklistRegions.bed -g /path/to/chrSizes.txt”. P values were calculated by quantifying 643 

the number of random data iterations that were more extreme than the true data values for each 644 

histone mark. 645 

 646 

caQTL Mapping 647 

Sample peak counts were generated for all samples. To remove potential outlier peak regions, 648 

peaks with mean count <1 and max count > 100,000 were removed. Peaks were also removed 649 

if >5000 samples had a read count of zero in that peak. Given that a single individual might 650 

contribute multiple samples to the 10,293 sample pool, we identified each sample that can be 651 

attributed to each individual and averaged sample peak CPM values to calculate a single CPM 652 

value per peak for each individual donor. This workflow results in 1454 individual donor samples 653 

for caQTL mapping. Code available in file 654 

“Post_peakCalling_CountMatrixGeneration_Pipeline.txt”. tensorQTL (v.1.0.9) [85] was used to 655 

identify caQTLs using a linear model with 3 genotype PCs and 200 principal components as 656 

covariates. PCs generated from each cluster’s chromatin accessibility peak read count data 657 
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sample matrix was used to map caQTLs on chromosome 1 over a large range of included PCs. 658 

The optimized PC covariate number was chosen based on the elbow of the PCs included vs. 659 

caQTL discovery plot on chromosome 1 (Supplementary Table 23). We tested all genotyped 660 

biallelic genetic variants with MAF > 0.05 within 10 kilobases of all open chromatin peak 661 

boundaries detected by Genrich from the ATAC-Seq data[35]. Empirical p-values were 662 

estimated by tensorQTL to get peak-level p-values and q-values [86]. caQTL mapping code 663 

available in file “caQTL_mapping_code_pipeline.txt”. 664 

 665 

Lead caQTL/eQTL Enrichment 666 

Significant lead eQTL variants were downloaded for 49 tissues from GTEx v8 publicly available 667 

data. Unique global sample analysis lead caQTLs (n= 21,647) were intersected with lead eQTL 668 

variants to assess overlap within each GTEx tissue. The unique intersection of overlaps across 669 

all tissues was considered to determine the total number of caQTL lead variants that were found 670 

to be a lead eQTL variant in at least one tissue. Background variants were selected to perform 671 

enrichment analyses. Background variants were chosen by randomly sampling non-lead caQTL 672 

genetic variants that were matched, +/- 10%, to the allele frequency and distance to nearest 673 

gene transcription start site of true lead caQTL variants. Enrichment of caQTLs/eQTLs in each 674 

tissue was calculated as the ratio of the overlap of true lead caQTL/eQTL compared to the 675 

overlap of background variants/eQTL across 100 iterations.  676 

 677 

Replication Analysis 678 

An external dataset was identified that was not included in our peak calling or caQTL mapping 679 

workflow[49]. Global FDR5 caQTL peaks with any overlap with the external study and variants 680 

tested in both analyses against these shared peaks were identified. External study p values 681 

were used for p1 replication rate calculation and plotted. 682 

 683 
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GWAS Trait/Signal Selection 684 

GWAS summary stats for traits were downloaded February 2021 from the UKBB Neale Lab 685 

repository and selected for relevant traits based on the following filters: h2 > 0.05, z > 7, 686 

confidence == high. Independent significant GWAS signals from 78 traits were chosen to 687 

prevent counting a single GWAS signal multiple times. This was done by selecting GWAS 688 

signals with a minimum p-value of 5e-08, considering a window of 50 kb on either side of these 689 

variants, clumping all variants with R2 > 0.01, and selecting the variant with the most significant 690 

p-value as the lead GWAS signal for this locus. 691 

 692 

Colocalization Analyses 693 

Colocalization was performed using coloc[59] (v.5.2.3). All reported colocalizations utilized a 694 

previously published approach to define significance[87]. This approach consists of considering 695 

whether the colocalization is sufficiently powered, PP3+PP4 > 0.8. For those events that 696 

surpass this threshold, we assessed whether the colocalization is significant, PP4/(PP3+PP4) > 697 

0.9. GTEx v8 data were downloaded from https://www.gtexportal.org/home/downloads/adult-698 

gtex/bulk_tissue_expression.  699 

 700 

Colocalization Genome Annotations 701 

Genomic annotation enrichment analyses were performed using the R package annotatr 702 

(v.1.28.0)(https://bioconductor.org/packages/release/bioc/html/annotatr.html). For each type of 703 

colocalization, caQTL peaks involved in the colocalization were labeled with genomic 704 

annotations they overlap. To perform an enrichment analysis, true data results were compared 705 

with the median of 1000 iterations of random genomic regions matched to the true data using 706 

bedtools shuffle with flags “-chrom -excl /path/to/blacklistRegions.bed -g /path/to/chrSizes.txt”. 707 

Summaries were produced by identifying significant enrichments (annotation category 708 

enriched/depleted p value <= 0.05) across all traits or trait/tissue pairs and calculating the mean 709 
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and median enrichment/depletion values. 710 

 711 

Clustering Analyses 712 

To reduce the dimensions of the data, Uniform Manifold Approximation and Projection (UMAP) 713 

was performed on the normalized sample CPM count matrix across all peaks. Kmeans 714 

clustering was performed on UMAP coordinates 1 and 2. 11 outlier samples were removed from 715 

analysis. The number of clusters was optimized using several clustering metrics 716 

(Supplementary Table 22) and samples were assigned to a cluster based on the results of the 717 

clustering algorithm. 718 

 719 

Cluster-specific caQTL mapping 720 

caQTL mapping was performed as in the global analysis. In this analysis, peaks identified in the 721 

global analysis were included if at least 50% of cluster samples had non-zero CPMs in that 722 

feature, resulting in the removal of 5-5920 (0.0003-0.35% of total peaks). All steps of the caQTL 723 

mapping pipeline were performed within each cluster. caQTL mapping was performed including 724 

3 genotype PCs and an optimized number of principal components based on each cluster. For 725 

each cluster, a range of PCs generated from each cluster’s chromatin accessibility peak read 726 

count data sample matrix was used to map caQTLs on chromosome 1. The optimized PC 727 

covariate number was chosen based on the elbow of the PCs included vs. caQTL discovery 728 

plot. We tested all genotyped biallelic genetic variants with MAF > 0.05 within 10 kilobases of all 729 

open chromatin peak boundaries detected by Genrich from the ATAC-Seq data[35]. Empirical p-730 

values were estimated by tensorQTL to get peak-level p-values and q-values [86]. All 731 

colocalizations were performed as described for the global analyses. 732 

 733 

Cluster caQTL replication analyses 734 

Cluster caQTL replication of global caQTLs was assessed by extracting global caQTL peak test 735 
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statistics from each cluster and calculating p1 replication rate. The reported replication rate for 736 

each cluster was calculated by calculating the median p1 replication rate after calculating p1 737 

replication rate with a range of values for the lambda parameter (from=0.1,to=0.9,by=0.05). 738 

Cluster caQTL replication rate across all other clusters was calculated in a similar fashion. For 739 

each cluster, cluster caQTL peak test statistics were extract from all other clusters and p1 740 

replication rate was calculated. The reported replication rate for each cluster was calculated by 741 

calculating the median p1 replication rate after calculating p1 replication rate with a range of 742 

values for the lambda parameter (from=0.1,to=0.9,by=0.05). 743 
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