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Simple Summary: In many households in rural communities, water needed for drinking and cooking
is fetched from rivers, fountains, or boreholes shared by the community. The water is then stored
in various storage containers for several days without treatment and exposed to several conditions
that could potentially contaminate the water and cause diseases. If the storage containers are not
regularly and properly cleaned, biofilms can form inside the containers. Several microorganisms
can be found inside the biofilm that can potentially cause diseases in humans. One such group of
organisms is called free-living amoebae, which graze on the bacteria found inside the biofilm. Several
of these potentially harmful bacteria have adapted and can survive inside these free-living amoebae
and potentially cause diseases when ingested by humans.

Abstract: This study investigated the co-existence of potential human pathogenic bacteria and free-
living amoebae in samples collected from stored water in rural households in South Africa using
borehole water as a primary water source. Over a period of 5 months, a total of 398 stored water and
392 biofilm samples were collected and assessed. Free-living amoebae were identified microscopically
in 92.0% of the water samples and 89.8% of the biofilm samples. A further molecular identification
using 18S rRNA sequencing identified Vermamoeba vermiformis, Entamoeba spp., Stenamoeba spp.,
Flamella spp., and Acanthamoeba spp. including Acanthamoeba genotype T4, which is known to be
potentially harmful to humans. Targeted potential pathogenic bacteria were isolated from the water
samples using standard culture methods and identified using 16S rRNA sequencing. Mycobacterium
spp., Pseudomonas spp., Enterobacter spp., and other emerging opportunistic pathogens such as
Stenotrophomonas maltophilia were identified. The results showed the importance of further studies
to assess the health risk of free-living amoebae and potential human pathogenic bacteria to people
living in rural communities who have no other option than to store water in their homes due to
water shortages.

Keywords: biofilm; borehole water; free-living amoebae; household water storage containers;
potential human pathogenic bacteria; rural environment

1. Introduction

Statistics South Africa [1] reported that only 88.2% of households have access to an
improved drinking water source in South Africa. Many households in rural and peri-urban
areas of South Africa have no other choice but to store water to use for drinking, cooking,
and other household chores [2]. Water quality deteriorates during household storage due
to physical, chemical, and microbiological processes [2–6]. If the storage containers are not
properly or regularly cleaned and hygiene behaviours are poor inside the household, a
biofilm forms inside the container [7–9].
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The presence of biofilms in water storage containers is a major contribution in the
survival and transmission of free-living amoebae (FLA) and potential amoeba-resistant
bacteria (ARB)—which include human pathogens—in stored water containers, especially
in large water storage tanks [10].

Biofilms can harbour potentially pathogenic microorganisms that can cause infections
if not removed properly [11]. Amoebae are found in biofilms due to their ability to strongly
adhere to the sub-stratum through their large area of contact [12] and they are also able
to graze on the bacterial biofilm [13]. The deterioration of stored water [14,15] and the
formation of biofilms within water storage containers [9,16,17] have been investigated;
many of these studies have been in low-income countries [18–21] but very few studies
have been done in South Africa. In 2002, Momba and Kaleni [22] demonstrated the direct
relationship between the material of the storage container, the quality of the intake water,
and the degree of bacterial regrowth. They found that total coliforms grew at a higher rate
on polyethylene than on galvanised steel; however, steel is vastly more expensive than
plastic and most people living in rural communities can only afford plastic storage ves-
sels [22], of which most are old used food or paint containers. Other studies in South Africa
have investigated the composition, biomass, adhesion mechanisms, and resistance profiles
of biofilms in water storage containers but the focus has been on total coliforms, E. coli,
Salmonella, Clostridium perfringens [22], somatic coliphages [3], heterotrophic bacteria [17,23]
and faecal coliforms [23,24].

Unfortunately, there is very little literature on studies carried out on FLA biofilms
in drinking water storage containers globally. Taravaud et al. [25] found a marked in-
crease in the FLA biofilm density at the top levels of drinking water storage towers.
Stockman et al. [26] enumerated FLA in (municipal) household water. Rohr et al. [27]
and Muchesa et al. [28,29] focused on FLA in hospital water networks; however, most
researchers focus on the bacterium Legionella pneumophila and its interaction with FLA
within biofilms [30–34] rather than on other known ARBs or human pathogens. The aim
of this study was to investigate the prevalence of FLA and potential human pathogenic
bacteria in stored household water as well as the prevalence of FLA present in biofilms
within household water storage containers used in South African rural households.

2. Materials and Methods
2.1. Study Area

A total of 82 households in seven informal settlements on the border between the
Gauteng and Mpumalanga provinces in South Africa were randomly selected and included
in this study. All households used borehole water as their primary water source, collected
from either a central free-standing tap outside the home, a windmill, or a large water
storage tank (with a capacity of between 260 L and 10,000 L). Distances to the water
collection points from the households varied between the settlements and ranged from a
few meters to approximately one kilometre. Households would typically collect drinking
water using 20 L plastic buckets that were reused food-grade plastic buckets that previously
contained cooking oil. The buckets were cleaned and repurposed by the households to
store water for drinking, cooking, and washing purposes (Figure 1A,B).

2.2. Sample Collection

All samples were collected once a month from each study household over a period of
5 months between March and July of 2016. Water was collected from the 20 L household
storage buckets using the cup/jug that the household normally used for water retrieval
(Figure 1A) and transferred into sterile 1000 mL collection containers that were clearly
marked with the settlement name, house number, and date. Biofilm samples were collected
by swabbing an area of 10 × 10 cm on the inside of the water storage container with a
sterile swab (COPAN, Murrieta, CA, USA). The swab was inserted into the water under
the waterline, as far down as possible (approximately 15 cm) without the person sampling
touching the water with their hand (Figure 2). The swab was placed back in its container
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and clearly marked with the settlement, house number, and the date collected. All samples
were refrigerated at 4 ◦C and transported to the laboratory early the next morning for
the analysis.
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2.3. Isolation and Identification of Potential Human Pathogenic Bacteria

Amoebal enrichment suspensions (100 µL of each sample) were inoculated onto differ-
ent selective media for the isolation of potential harmful bacteria The study only focused on
potential harmful bacteria including Salmonella, Shigella, Legionella, Mycobacterium, E. coli,
Vibrio, and Coliform bacteria based on a review article of ARB by Greub and Raoult [35]. The
selective media types used to isolate these bacteria included a BrillianceTM E. coli/coliform
selective medium for Escherichia coli and other coliform bacteria (Oxoid CM1046B); a xylose
lysine deoxycholate (XLD) agar for Salmonella and Shigella spp. (Oxoid CM0469B); a thio-
sulphate citrate bile salts sucrose (TCBS) agar for pathogenic Vibrio spp. (Oxoid CM0333B);
a charcoal yeast extract (CYE) agar (Oxoid CM0655B) with a Legionella buffered charcoal
yeast extract (BCYE) growth supplement for Legionellae spp. (Oxoid SR0110A); and Mid-
dlebrook 7H9 media with an oleic albumin dextrose catalase (OADC) growth supplement
for Mycobacterium spp. For each type of selective media, positive controls were used to
ensure that the media would serve as an accurate source of information regarding the
unknown organisms cultured on them and included Vibrio cholerae O139 (NSCC), Salmonella
enteritidis (NSCC), Shigella boydii (NCTC 9329), Escherichia coli (ATCC 43888), Legionella
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pneumophila (ATCC 33152), and Mycobacterium avium (NSCC). All incubations were done
as per the specifications of the manufacturers. The Ziehl–Neelsen stain [36] was used to
confirm Mycobacterium spp. Non-specific colonies on the selective media were picked and
re-plated onto nutrient agar (Sigma-Aldrich 70148) to isolate single colonies for further
identification. Likewise, single colonies identified using selective media as presumptive
Mycobacterium, Shigella, Legionella, Salmonella, Shigella, E. coli, or coliform species were also
picked and streaked on nutrient agar for purification before a molecular identification.
All molecular identifications were performed by Inqaba Biotechnical Industries (Pty) Ltd.
(Pretoria, South Africa). Only the 16S rRNA gene was investigated using primers sourced
from the literature. These primers amplify almost the entire length of the gene [37] and the
target region is conserved in many bacterial species [38]. For the Mycobacterium spp. iden-
tification, the forward primer pA (5′-AGAGTTTGATCCTGGCTCAG-3′) and the reverse
primer MSHE (5′-GCGACAAACCACCTACGAG-3′) were used [39]; for Legionella spp.,
the forward primer LEG 225 (5′-AAGATTAGCCTGCGTCCGAT-3′) and the reverse primer
LEG 858 (5′-GTCAACTTATCGCGTTTGCT-3′) were used [40]; and for the identification of
the colonies from the nutrient agar, XLD, and Brilliance E. coli/coliform media, 16S rRNA
primer pairs that included the forward primer 27 (5′-AGAGTTTGATCMTGGCTCAG-3′)
and the reverse primer 1492 (5′-CGGTTACCTTGTTACGACTT-3′) were used [41].

2.4. Isolation of FLA from the Water Samples

The FLA were then isolated using the amoebal enrichment method described by
Thomas et al. [42]. All water samples (500 mL of each sample) were filtered through
0.45 µm nitrocellulose filters (Millipore, Burlington, MA, USA) with a filter manifold
(Sartorius, Goettingen, Germany). The filter was aseptically placed face-side down onto
a non-nutrient agar (NNA) plate and covered with a layer of heat-killed Escherichia coli
(type strain, ATCC 25,922), which served as a food source for the amoeba; a few drops of
Page’s amoebal saline (PAS) were then added to aid mobility and the plates were incubated
aerobically at 33 ◦C [42]. The NNA plates were checked daily for the appearance of
amoebal cysts using a 10× light microscope. A disposable Pasteur pipette was used to cut
small plugs from the plates; these plugs were placed onto new NNA plates (covered with
heat-killed E. coli) and one drop of PAS was added to each plug. This process purified the
amoebae as other organisms remained on the original plate. These were sub-cultured onto
new NNA plates with E. coli and PAS until the culture was axenic. The sub-cultured plates
were flooded with 2 mL of PAS and a sterile plastic loop was used to gently scrape the
axenic amoebae from the plate surface. This suspension was transferred to clearly marked
sterile 2 mL Eppendorf® tubes. Before freezing the 2 mL tubes for a later analysis, 1 mL
of the amoebal suspension was lysed by passaging the suspension through a 27-gauge
syringe and vortexed at 2500 rpm (Vortex Genie® 2-Mixer 240 V, 50 Hz Scientific Industries,
Bohemia, New York, NY, USA) to release the ARB. The lysed amoebae were stored in a
different sterile marked tube at −70 ◦C.

2.5. Isolation of FLA from the Biofilm Samples

Each biofilm swab was vortexed in its individual sterile tube for 30 s with 1 mL of
Page’s amoebal saline (PAS) and then centrifuged for 10 min at 800× g. Of the supernatant,
200 µL was inoculated onto a 24-well plate and the pellet was suspended in 100 µL PAS and
plated onto a non-nutrient agar (NNA) plate seeded with heat-killed E. coli. The 24-well
plate was centrifuged for 30 min at 1500× g and incubated aerobically at 33 ◦C for three
days as per Thomas et al. [42] with the following exceptions: after the three days, when
the amoebae had attached to the plate, the supernatant was carefully removed (without
disturbing the cells) and discarded. A fresh volume of 100 µL PAS was added to the layer
of FLA cells in the 24-well plates and passaged by pipette until well-mixed then again
incubated aerobically at 33 ◦C for three days. The 24-well plate co-cultures were washed,
as previously described, and read by an inverted microscope to observe the FLA in their
natural state.
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2.6. FLA Identification

Only a subset (±10%) of the isolates that were positive for FLA by inverted microscopy
were randomly selected from the samples containing FLA and Acanthamoeba cysts to send
for an 18S rRNA PCR and sequencing, which were performed by the Department of
Hygiene, Social, and Environmental Medicine at Ruhr University, Bochum, Germany.

The selected samples stored after the initial amoebal enrichment were freshly inoc-
ulated onto NNA plates and allowed to grow. The plates were sealed individually with
Parafilm M® before they were packaged and sent to our collaborators in Germany for
PCR and sequencing. Amoebal DNA was extracted from 200 µL of the prepared amoebae
suspension in the amoebae-positive plates using a QIAamp DNA Blood Mini Kit (Qi-agen,
Hilden, Germany) as per manufacturer’s protocol. The nucleic acid was eluted in 100 µL
of an elution buffer into a sterile clearly marked 1.5 mL microcentrifuge tube and stored
at −20 ◦C. The FLA genotyping was performed using the forward primers Ami6F1 (5′-
CCAGCTCCAATAGCGTATATT-3′) and Ami6F2 (5′-CCAGCTCCAAGAGTGTATATT-3′)
as well as reverse primer Ami9R (5′-GTTGAGTCGAATTAAGCCGC-3′) to amplify the
18S rRNA gene [42]. For the Acanthamoeba genotype identification, the amplification was
performed with the primer set JDP1 (5′-GGCCCAGATCGTTTACCGTGAA-3′) and JDP2
(5′-TCTCACAAGCTGCTAGGGGAGTCA-3′) [43].

3. Results

A total of 97% (398/410) household stored water samples and 96% (392/410) biofilm
swabs were collected in this study over the 5 month study period because a few household
members were absent on the collection day and samples in a specific month could not
be collected.

When viewed under an inverted microscope, 92% (366/398) of the water samples and
89.8% (352/392) of the biofilm samples contained FLA. The FLA observed were grouped
into either trophozoites, round cysts, or Acanthamoeba spp. cysts based on the morphology
only (Table 1). FLA were present in both the biofilm and stored container water as either
a single form of FLA or in a combination (present as a cyst, trophozoites, or both in
one sample).

Table 1. Presumptive FLA identification by inverted microscope.

Presumptive Identification of
FLA Types

Water in Storage Container
(n = 398)

Biofilm in Storage Container
(n = 392)

Trophozoites Acanthamoeba cysts Round cysts
26.9% (107/398) 89.2% (355/398) 32.2% (128/398)
13.8% (54/392) 79.6% (312/392) 48.5% (190/392)

Approximately 10% of presumptive positive samples were selected and sent for an
18S rRNA PCR and sequencing in Germany, of which the water samples comprised 11.5%
(42/366) and the biofilm samples 9.7% (34/352) of the total number of samples. These
samples included a total of 41 samples previously identified as trophozoites and 35 samples
previously identified as presumptive Acanthamoeba cysts (Table 2).

Table 2. FLA selected for an 18S rRNA PCR and sequencing.

FLA Type Water (n = 42) Biofilm (n = 34)

Trophozoites (n = 42) 28 13
Presumptive Acanthamoeba (n = 43) 14 21

Table 3 indicates the molecular identification of Acanthamoeba spp. and other FLA from
the subset samples sent for the 18S rRNA PCR and sequencing. A total of 57.1% (16/28) of
the water samples and 53.8% (7/13) of the biofilm samples tested with the FLA primer set
yielded positive FLA results. With the specific Acanthamoeba spp. primer set, 42.9% (6/14)
of the water samples and 19.0% (4/21) of the biofilm samples were FL-positive.



Biology 2021, 10, 1228 6 of 12

Table 3. Samples positive for FLA according to the sample types and primer sets.

Primer Set Used Water in Storage
Container (n = 42)

Biofilm in Storage
Container (n = 34)

Ami6F1, Ami6F2, Ami9R (FLA) [42] 38.1% (16/42) 20.6% (7/34)
JDP1, JDP2 (Acanthamoeba spp.) [44] 14.3% (6/42) 11.8% (4/34)

From the 76 samples sequenced, FLA (n = 50) were identified in only 33 of the samples.
In addition, 37.0% (20/54) of Vermamoeba spp. and 29.6% (16/54) of Acanthamoeba spp.
were the most abundant of the amoebae isolated (Table 4).

Table 4. FLA identified using 18S rRNA sequencing from storage container biofilm and
water samples.

FLA Types
Isolated

Total nr of FLA
Isolated (n)

FLA Isolated form
Stored Water

FLA Isolated
from Biofilm

Amoebozoa spp. 5 3 2

Acanthamoeba spp. 5 3 2
Genotype T3 1 1 0
Genotype T4 5 3 1
Genotype T15 1 1 0
Genotype T16 4 2 2

Flamella spp. 2 2 0
F. fluviatalis 1 1 0

Korotnevella spp.
Korotnevella hemistylolepis 1 0 1

Lobosea spp. 1 1 0

Stenamoeba spp. 2 2 0
S. berchidia 1 0 1

Vermamoeba spp.
V. vermiformis 20 16 4

Vexillifera spp.
V. westveldii 1 1 0

Total 50 36 14

Table 5 lists the ARBs isolated from the stored water and confirmed with the 16S rRNA
PCR and sequencing. Of the 398 water samples tested, 28.4% (113/398) yielded results for
the presence of potential human bacteria with Mycobacterium spp. comprising the largest
part of the isolates with 48.7% (55/113).

The 43 samples without positive FLA results either contained slime moulds or could
not be amplified after repeated PCR attempts. The slime moulds belong to the group Myce-
tozoa that form part of the super-group Amoebozoa and comprise numerous amoebae [44]
that can harbour bacteria [45].
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Table 5. Potential human bacteria pathogens isolated in stored household water samples.

Potential Human Pathogen Bacteria Isolated

Pseudomonas spp.:
Pseudomonas fluorescens
Pseudomonas geniculata
Pseudomonas kilonensis
Pseudomonas koreensis

Pseudomonas poae
Pseudomonas tremae

Pseudomonas vancouverensis
Pseudomonas poae/tolaasii

Pseudomonas putida

Arthobacter spp.:
Arthrobacter nicotinovorans

Mycobacterium spp.:
Mycobacterium chlorophenolicum

Mycobacterium chubuense
Mycobacterium elephantis

Mycobacterium fallax
Mycobacterium farcinogenes
Mycobacterium florentinum

Mycobacterium gilvum
Mycobacterium intermedium
Mycobacterium llatzerense

Mycobacterium noviomagense
Mycobacterium pallens

Mycobacterium poriferae
Mycobacterium psychrotolerans

Mycobacterium rhodesiae
Mycobacterium salmoniphilum

Mycobacterium smegmatis
Mycobacterium tokaiense
Mycobacterium triplex

Caulobacter spp.:
Caulobacter segnis

Klebsiella spp.:
Klebsiella oxytoca
Klebsiella variicola

Enterobacter spp.:
Enterobacter amnigenus

Enterobacter asburiae
Enterobacter cancerogenus

Enterobacter kobei
Enterobacter ludwigii

Paenibacillus spp.:
Paenibacillus validus

Pragia spp.:
Pragia fontium

Microbacterium spp.:
Microbacterium spp.

Microbacterium oxydans
Microbacterium paraoxydans

Achromobacter spp.:
Achromobacter insolitus

Achromobacter marplatensis
Achromobacter spanius

Rhodococcus spp.:
Rhodococcus erythropolis

Sarratia spp.:
Serratia ureilytica

Stenotrophomonas spp.:
Stenotrophomonas maltophilia

Mixed bacterial spp.:
Alcaligenes faecalis and Achromobacter marplatensis

4. Discussion

Although people are supplied with a safe water source, several practices can contami-
nate the water from the point of collection to the point of consumption (e.g., type of storage
container used, cleanliness of the container, the handling of the water during collection
and storage, water treatment practices at the household) [14,15]. However, most of these
studies concentrated on the prevalence of indicator coliform bacteria and Escherichia coli
whereas a few studies have investigated the survival of certain viruses and parasites in
different storage water [46]. Very few studies have been conducted to provide information
of the prevalence of FLA and potential human pathogenic bacteria in water stored at the
household at the point of consumption.

In this study, all the households used wide-mouthed pre-used food containers to
store their household water in (Figure 2). Several studies have proved that wide-mouthed
domestic water storage vessels are more prone to contamination by unclean hands, dirty
cups, and other water retrieval methods than screw-top containers (with their lids closed),
which have a positive effect on the water quality [3,15,47–50]. It was also seen that the
cup/jug (metal, glass, or plastic) used to retrieve the water from the storage vessel was
often kept uncovered near the storage vessel and thus exposed to dust, flies, and unwashed
hands, similar to the results of other studies in South Africa [3]. Other potential sources of
groundwater contamination could be from agricultural activities and pit latrines [51] and a
few studies have shown that the material of the containers could assist in the survival and
transmission of potential pathogenic microorganisms [52,53].

Most of the FLA identified in this study were consistent with the environment from
which the samples were taken (water and/or soil, or animal hosts). Vermamoeba spp. were
one of the most abundant of the FLA isolated in this study (Table 4). Vermamoeba vermiformis
has been isolated from various water sources both natural and man-made [54,55] as well
as bat guano [56]. It has also proved to be a double threat as it may act as a potential
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pathogen in humans [57–59] and is also an important reservoir and vector for Legionella
pneumophila [60], Mycobacterium spp. [58,61], and Stenotrophomonas maltophilia [54,62]. The
other abundant FLA isolated in this study was Acanthamoeba spp. (Table 5); isolates con-
taining genotype T4 have most frequently been isolated from human infections [63–65]
because the T4 genotype is more transmissible and more virulent than other genotypes [66].
Other studies also reported Acanthamoeba spp. and A. castellanii str. Neff in soil samples [67].
The soil amoebae isolated from the samples included Stenamoeba spp. [68] and Stenamoeba
berchidia [69]. Several FLA are known waterborne amoebae such as Vexillefera westveldii [70]
and Korotnevella hemistylolepis [71]; Flamella spp. can be found in saltwater, freshwater, and
soil samples [72]. Usually, FLA are ubiquitous and have been isolated from various natural
sources such as freshwater, saltwater, dust, air, and soil [73,74]. Loret and Greub [75]
collated data from recent studies and found that 62% of surface water and 71% of ground-
water samples contained FLA. They often live in water–soil, water–air, and water–plant
interfaces as well as on biofilms. Several FLA species attach to particulate matter to feed
but others prefer to move in their planktonic phase [35,73–75]. Limitations of this study
were the selection of the primer sets used for the identification of the FLA and the FLA
enrichment cultivation method used that was selective in the isolation of the FLA from
the water samples. Further studies with other isolation methods and different primers are
needed to show the prevalence of other FLA in the water and biofilm samples.

Several bacteria are ingested by FLA and digested as a food source [35] whereas others
have adapted to survive and grow within the amoebae by resisting the microbiocidal
mechanisms of FLA and are termed amoeba-resistant bacteria [76]. These potential harm-
ful bacteria are protected from adverse conditions until they excyst the amoebae [35,77].
These bacteria can persist within the FLA if the defence mechanisms of the amoebal cell
are inefficient or impaired, which leads to a symbiotic relationship [78]. In a review by
Thomas et al. [79], 102 of these bacterial species (all human pathogens and capable of
survival in FLA) were identified. A few of the genera include Achromobacter, Klebsiella, My-
cobacterium, Legionella, Stenotrophomonas, Enterobacter, and Pseudomonas [80] A wide range
of potential human pathogenic bacteria were identified from the container-stored water
samples in this study. Future studies could include determining accurately if these poten-
tial human bacteria species are ARBs retrieved from FLA. A few of the potential human
pathogenic bacteria seen in this study are known human pathogens and are particularly
fond of causing hospital-acquired infections such as K. oxytoca [80] and S. maltophilia [81]
whereas several bacteria identified in this study are found naturally in the environment
such as E. amnigenus [82] and M. salmoniphilum [83] in animals and P. kilonensis [84] and P.
koreensis [85] in soil. Numerous Mycobacterium spp. were isolated from the stored water
samples. Mycobacterial species can live and grow in amoebae for years in a truly symbiotic
relationship [86]; it was also proven that Acanthamoeba castellanii can amass several different
mycobacterial species within their cytoplasm [87].

5. Conclusions

The results from this study showed the prevalence and co-existence of FLA and
potential harmful bacteria which could be a health concern, that were found in household-
stored water and containers, highlighting the need for improved hygiene education and
intervention programmes on water collection and treatment practices at a household level.
Many of the FLA and potential harmful bacterial spp isolated from the stored drinking
water and the container biofilms were potential pathogens and a health risk to vulnerable
individuals who could drink the water without any prior treatment. In addition, to our
knowledge, this is the first study in South Africa to isolate FLA and potential harmful
bacteria present in storage container biofilms as well as identify them at a species level.
Several recommendations can, therefore, be made from the results of this study. Firstly,
further studies are needed to examine the prevalence, behaviour, and possible disinfection
of FLA in both the planktonic and biofilm states. Secondly, further studies are needed
to examine the removal of these organisms from the storage containers to protect the
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communities that rely on the water, especially with the increase in demand for groundwater
in semi-arid areas such as South Africa. Thirdly, further studies are needed to examine
the causal links between the organisms found and the clinical symptoms presented by the
users of the water (if any) as well as exploring the possibility of changing conventional
water testing by means of indicator organisms alone to include more organisms that have
proven to be emerging pathogens. Lastly, more studies are needed to assess the effect of
global warming on the survival and distribution of pathogenic amoebae and to determine
the microbiomes inside these amoebae to increase our understanding of the health risks of
amoeba protection strategies in drinking water.
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