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The intermediate conductance Ca2+-activated K+ channel, KCa3.1 (IK1/SK4/KCNN4) is
widely expressed in the innate and adaptive immune system. KCa3.1 contributes to pro-
liferation of activated T lymphocytes, and in CNS-resident microglia, it contributes to Ca2+

signaling, migration, and production of pro-inflammatory mediators (e.g., reactive oxygen
species, ROS). KCa3.1 is under investigation as a therapeutic target for CNS disorders
that involve microglial activation and T cells. However, KCa3.1 is post-translationally reg-
ulated, and this will determine when and how much it can contribute to cell functions.
We previously found that KCa3.1 trafficking and gating require calmodulin (CaM) binding,
and this is inhibited by cAMP kinase (PKA) acting at a single phosphorylation site. The
same site is potentially phosphorylated by cGMP kinase (PKG), and in some cells, PKG can
increase Ca2+, CaM activation, and ROS. Here, we addressed KCa3.1 regulation through
PKG-dependent pathways in primary rat microglia and the MLS-9 microglia cell line, using
perforated-patch recordings to preserve intracellular signaling. Elevating cGMP increased
both the KCa3.1 current and intracellular ROS production, and both were prevented by the
selective PKG inhibitor, KT5823.The cGMP/PKG-evoked increase in KCa3.1 current in intact
MLS-9 microglia was mediated by ROS, mimicked by applying hydrogen peroxide (H2O2),
inhibited by a ROS scavenger (MGP), and prevented by a selective CaMKII inhibitor (mAIP).
Similar results were seen in alternative-activated primary rat microglia; their KCa3.1 cur-
rent required PKG, ROS, and CaMKII, and they had increased ROS production that required
KCa3.1 activity. The increase in current apparently did not result from direct effects on the
channel open probability (P 2+

o) or Ca dependence because, in inside-out patches from
transfected HEK293 cells, single-channel activity was not affected by cGMP, PKG, H2O2 at
normal or elevated intracellular Ca2+. The regulation pathway we have identified in intact
microglia and MLS-9 cells is expected to have broad implications because KCa3.1 plays
important roles in numerous cells and tissues.

Keywords: KCa3.1/KCNN4/IK1/SK4 regulation, cGMP-PKG signaling, reactive oxygen species signaling, Ca2+-CaM-
CaMKII signaling, patch-clamp electrophysiology, fura-2 calcium measurement, alternative-activated microglia,
interleukin-4 stimulation

INTRODUCTION
Following the discovery of a Ca2+-dependent K+ efflux (“Gardos”
channel) in red blood cells (1), early patch-clamp studies focused
on the intermediate-conductance Ca2+-dependent K+ (IK) chan-
nel in thymic T cells, B lymphocytes (2), and T cells (3, 4). After the
KCNN4 gene was cloned (5–7) and identified as the IK channel
(also called KCa3.1, IK1, IKCa1, SK4); its upregulation in acti-
vated T lymphocytes and crucial role in their proliferation (8, 9)
generated interest in targeting this channel for immunosuppres-
sion [reviewed in Ref. (10–12)]. Initially, the KCa3.1 channel was
thought to be absent from the CNS, but then KCNN4 transcripts
and KCa3.1 protein were detected in microglia (13, 14), astro-
cytes, and some neurons (15–17). Many CNS disorders involve
inflammation and microglial activation, and KCa3.1 blockers or
knockdown have improved the outcome in animal models of

trauma, spinal cord injury, ischemic stroke, multiple sclerosis,
and Alzheimer’s disease [reviewed in Ref. (18, 19)]. Thus, there
is increasing interest in roles and regulation of KCa3.1 in the CNS.

KCa3.1 expression, activity, and contributions to T cell func-
tions are governed by the cells’ activation state but until recently,
little was known about this aspect for microglia. In rat microglia,
we found that KCa3.1 contributes to production of reactive oxy-
gen species (ROS) (14), to p38 MAPK activation, nitric oxide, and
peroxynitrite production in classical-activated microglia (“M1,”by
analogy with macrophages polarized by T cells), and to their capac-
ity to kill neurons in vitro and in vivo (15). We recently discovered
that when rat microglia are skewed to the anti-inflammatory“alter-
native” (M2) activation state using interleukin-4, both KCa3.1
expression and current are highly upregulated through the
type I IL-4 receptor and subsequent signaling through JAK3,
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Ras/MEK/ERK, and the transcription factor, AP-1 (20). While
KCa3.1 is involved in microglial ROS production, it is not known
if its activity is regulated by ROS. There is some indirect evi-
dence that this might occur. ROS can evoke Ca2+ release from
internal stores in Jurkat T cells (21) and pancreatic β-cells (22).
We found that, in microglia, the KCa3.1 current is functionally
coupled to Ca2+-release activated Ca2+ (CRAC) channels. When
CRAC was activated through P2Y2 metabotropic purinergic recep-
tors, this activated KCa3.1 channels, and they then contributed
to the microglia migratory phenotype (23). Migration is also
increased in alternative-activated microglia, and this depends on
KCa3.1 (20, 24).

KCa3.1 activity is also post-translationally regulated. Most fun-
damental is its absolute requirement for Ca2+ and calmodulin
(CaM) in order for the channels to open (8, 25) and to traffic to
the cell surface (26). CaM is bound to the C terminus of the chan-
nel but there is evidence that this interaction can be modulated.
We found that the KCa3.1 current is inhibited by cAMP kinase
(PKA) through a single phosphorylation consensus site (S334 in
human; S332 in rodent, which is two amino acids shorter), and a
consequent decrease in CaM binding to the channel (27). Many
years ago, we observed that the KCa3.1 current in human T lym-
phoblasts was reduced by the CaM kinase inhibitor, KN-62, but
only at 37°C (not room temperature) and not in KCa3.1 heterolo-
gously expressed in CHO cells (8). Both observations suggested an
indirect modulation by CaM kinase, but this was not investigated
further.

More recent studies suggested a possible link between KCa3.1
and CaMKII, ROS and cGMP-protein kinase (PKG). In cardiac
and neuronal cells, the PKG pathway can stimulate ROS pro-
duction and activate CaM/CaMKII signaling (28–30). Numerous
stimuli can activate PKG in immune cells, and we noticed that
the Ser334/S332 site in KCa3.1 that is regulated by PKA (27) is
also a potential consensus site for phosphorylation by PKG. Thus,
the present study was designed to test whether KCa3.1 is directly
inhibited by cGMP/PKG, and if not, whether it is indirectly regu-
lated and whether this involves crosstalk between Ca2+, ROS, and
CaM/CaMKII. First, we analyzed the endogenous KCa3.1 current
in a rat microglial cell line because we found that every MLS-9
cell expresses a robust KCa3.1 current that can be easily isolated
(23, 31). Then, we corroborated the salient findings on native
KCa3.1 channels in primary rat microglia. Importantly, regulation
of native channels was studied using the perforated-patch record-
ing configuration to maintain intracellular soluble mediators and
biochemical signaling pathways, and to allow cytoplasmic Ca2+ to
remain at physiological levels and change with treatments.

MATERIALS AND METHODS
CELLS
Primary cultured rat microglia and the MLS-9 microglia cell
line were used to study native KCa3.1 channels, and transfected
HEK293 cells were used to facilitate single-channel analysis.

Primary rat microglia
Microglia were isolated from brains of 1–2-day-old Sprague-
Dawley rats of either sex (Charles River, St. Constant, QC, Canada)
according to our standard protocols (15, 24, 31). The brains were

harvested, meninges removed, remaining tissue minced in cold
minimum essential medium (MEM; Invitrogen, Burlington, ON,
Canada), and then centrifuged (300 g, 10 min) and re-suspended
in MEM with 10% fetal bovine serum (FBS; Wisent, St. Bruno,
QC, Canada) and 0.05 mg/mL gentamycin (Invitrogen). The cul-
ture medium was replaced after 2 days to remove non-adherent
cells and debris. After six more days, the mixed cell cultures were
shaken on an orbital shaker (65 rpm, 4–5 h, 37°C, 5% CO2), and
then the microglia-containing supernatant was centrifuged (300 g,
10 min), and microglial cells were re-suspended in MEM with 2%
FBS. Microglia were plated at 7× 104 cells/coverslip for 24 h, and
then exposed to 20 ng/mL rat recombinant interleukin-4 (IL-4;
R&D Systems Inc., Minneapolis, MN, USA) for 1 or 2 days (37°C,
5% CO2) before analyzing ROS production, or for 2 days (37°C,
5% CO2) before analyzing KCa3.1 currents. We previously showed
that IL-4 shifts them to an alternative-activated state (24, 31)
and upregulates KCNN4 mRNA and the KCa3.1 current (20, 27),
whereas untreated rat microglia are non-activated (32).

MLS-9 cells
About 20 years ago, we derived the MLS-9 cell line by treat-
ing rat microglia cultures for several weeks with M-CSF (colony
stimulating factor-1) (33). Although we do not know whether
these cells reflect an alternative activation state, M-CSF can shift
macrophages to an alternative-activated state (34), and it sup-
presses the response of microglia to lipopolysaccharide (LPS) (35).
We have used MLS-9 cells extensively to study microglial K+, Cl−

and TRPM7 channels (23, 31, 36–41). After thawing, the cells
were cultured (37°C, 5% CO2) for several days in MEM with 10%
FBS and 0.05 mg/mL gentamycin. They were harvested in phos-
phate buffered saline (PBS) with 0.25% trypsin and 1 mM EDTA,
washed with MEM, centrifuged (300 g, 10 min), and re-suspended
in MEM. MLS-9 cells were plated on glass coverslips in 12-well
plates (4.5× 104 cells/coverslip) for patch-clamping and Fura-2
analysis, or in 96-well plates (6.0× 104 cells/well) for measuring
intracellular ROS.

Transfection of HEK293 cells
HEK293 cells (embryonic neuronal tumor from a human female
kidney) were grown for several days in Dulbecco’s modified
Eagle’s medium (DMEM; Invitrogen) with high glucose, 10% FBS,
100 mg/L penicillin–streptomycin (Invitrogen). They were har-
vested in PBS with 0.25% trypsin and 1 mM EDTA, washed with
MEM, centrifuged (300 g, 10 min), and re-suspended in MEM.
The human KCa3.1 gene (wild-type hKCa3.1) was subcloned
into the expression vector, pCMV6-XL5 (OriGene, Rockville,
MD). The plasmids, pCMV6-XL5-hKCa3.1 and pEF-GFP, were
co-transfected using LipofectAMINE (Invitrogen) for 36 h accord-
ing to the manufacturer’s protocol. HEK293 cells were plated at
5.5× 104 cells/coverslip for single-channel patch-clamp analysis.

PATCH-CLAMP ELECTROPHYSIOLOGY
Perforated-patch recordings
Endogenous KCa3.1 currents were recorded at room temperature
from primary cultured rat microglia and MLS-9 cells. Perforated-
patch recordings were obtained by including 200 µM ampho-
tericin B in the pipette (intracellular) solution, which contained
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(in mM): 100 K aspartate, 40 KCl, 1 MgCl2, 0.5 CaCl2, 1 EGTA,
2 MgATP, 10 HEPES, pH 7.2 (adjusted with KOH), 280 mOsm.
Internal free Ca2+ was 120 nM, as calculated by WEB-MAXC
Extended software (http://www.stanford.edu/~cpatton/webmaxc/
webmaxcE.htm; Stanford University). The extracellular (bath)
solution contained (in mM) 125 NaCl, 5 KCl, 1 MgCl2, 1 CaCl2,
5 glucose, 10 HEPES, pH 7.4 (adjusted with NaOH), and adjusted
to ~300 mOsm with sucrose. The bath solution was perfused
using a gravity-driven system flowing at 1.5–2 mL/min. Record-
ing pipettes (8–12 MΩ) were pulled from thin-walled borosilicate
glass (WPI, Sarasota, FL, USA) using a Narishige puller (Narishige
Scientific, Setagaya-Ku, Tokyo, Japan). Recordings were made with
an Axopatch 200A amplifier (Molecular Devices, Sunnyvale, CA,
USA), digitized with a DigiDATA 1322A board, filtered at 5 kHz
and sampled at 10 kHz. Junction potentials were reduced by using
agar bridges made with bath solution, and calculated with the
pCLAMP utility. After correction, all voltages are ~5 mV more
negative than shown in the figures.

Single-channel recordings
Inside-out patches were excised from HEK293 cells that had been
transfected with hKCa3.1. Recordings were made at room tem-
perature, sampled at 5 kHz, and low-pass filtered at 1 kHz (−3 dB
cut-off frequency). Pipettes were pulled from thin-walled borosil-
icate glass (6–8 MΩ) and filled with an extracellular solution
containing (in mM) 145 KCl, 1 MgCl2, and 1 CaCl2, 5 HEPES; pH
7.4 (adjusted with KOH), adjusted to ~300 mOsm with sucrose.
The bath solution contained (in mM) 145 KCl, 1 MgCl2, 1 CaCl2,
0.1 MgATP, 5 HEPES, and 5 glucose and 1.2, 1.5 or 2.8 EGTA, to
yield intracellular free Ca2+ concentrations of 1 µM, 500 nM, and
120 nM respectively; pH 7.2 (adjusted with KOH), ~300 mOsm.
NPo, the product of the apparent number of active channels in
the patch (N ) and the channel open probability (Po) was cal-
culated in pClamp by dividing the mean total current (I ) by the
single-channel current amplitude (i), where NPo= I/i. The single-
channel current was determined from the best Gaussian fit to the
single-channel event amplitude histogram, and this also indicated
the apparent number of active channels in the patch. At the end of
each recording, 1 µM TRAM-34 was added to block the channels
and identify them as KCa3.1.

MEASURING INTRACELLULAR ROS
Primary rat microglia and MLS-9 cells in 96-well tissue culture
plates were incubated with 5 µM of CM-H2DCFDA (5-(and-
6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate acetyl
ester) at 37°C for 1 h. After this cell-permeant reagent diffuses into
cells, the acetyl group is removed by intracellular esterases, and it
can then be oxidized by the intracellular reactive species, hydro-
gen peroxide (H2O2), hydroxyl radical (OH•), and peroxynitrite
(ONOO–) (42). The resulting fluorescent adduct, dichlorofluo-
rescein (DCF), is produced in proportion to the reactive species
and remains trapped inside the cell. Before plate-reader analysis,
cells were washed with the same extracellular solution used for
perforated-patch recordings. Intracellular DCF fluorescence was
excited at 480 nm, and measured at 530 nm with a fluorescence
plate reader (Victor3 1420 Multilabel Plate Counter; Perkin Elmer
Inc, Waltham, MA, USA). For each treatment, the fluorescence
was averaged from two separate wells of cells cultured from one

animal (for primary microglia) or from one passage (for MLS-9
cells), and then multiple n values were obtained using cultures
from different animals or cell passages. Background subtraction
was performed using control wells without CM-H2DCFDA. The
fluorescence intensity for each treatment group was normalized to
the corresponding control value.

INTRACELLULAR FREE Ca2+

The Fura-2 imaging methods were the same as recently described
(23, 27, 31). In brief, cells growing on glass coverslips (~7× 104

cells/15 mm diameter coverslip) were incubated at room tem-
perature with 3.5 µg/mL Fura-2AM (Invitrogen) for 40 min in
the dark. For recording, a coverslip was mounted in a 300 µL
volume perfusion chamber (Model RC-25, Warner Instruments,
Hamden, CT, USA) that contained the same bath solution as for
perforated-patch recording. Responses to db-cGMP and H2O2

were assessed on different batches of cells from separate cover-
slips. Images were acquired at room temperature using a Nikon
Diaphot inverted microscope, Retiga-EX camera (Q-Imaging,
Burnaby, BC, Canada), and Northern Eclipse image acquisition
software (Empix Imaging, Mississauga, ON, Canada). A Lambda
DG-4 Ultra High Speed Wavelength Switcher (Sutter Instruments,
Novato, CA, USA) was used to alternately acquire images at 340
and 380 nm excitation wavelengths. Images were acquired every
4 s, and the excitation shutter was closed between acquisitions to
prevent photobleaching. The intracellular free Ca2+ concentration
was calculated from the standard equation (43).

CHEMICALS
Working solutions were prepared just before use by diluting fresh
aliquots of stock solutions of dibutyryl-cGMP (db-cGMP), cGMP,
KT5823, N -(2-mercaptopropionyl)glycine (MPG), myristolated
autocamtide-2 related inhibitory peptide for CaMKII (mAIP),
TRAM-34, apamin, riluzole, and rat recombinant IL-4. Stock solu-
tions were prepared as follows: KT5823, TRAM-34, apamin, and
riluzole were prepared in DMSO and stored at –20°C; db-cGMP,
cGMP, and mAIP were prepared in distilled H2O and stored at
–20°C; MPG was prepared in distilled H2O and stored at 4°C;
IL-4 was prepared in sterile PBS containing 0.1% BSA and stored
at –20°C. H2O2 was prepared fresh daily from a 30% w/w liquid
stock (9.8 M). Aliquots of the original stock of PKG Iα holoenzyme
were stored at –80°C, and diluted immediately before use in the
bath solution that was used for single-channel recordings. PKG
Iα holoenzyme and mAIP were obtained from Calbiochem (EMD
Biosciences; San Diego, CA, USA), rat recombinant IL-4 was from
R&D Systems Inc. (Minneapolis, MN, USA), and all other reagents
were from Sigma Aldrich (Oakville, ON, Canada).

STATISTICAL ANALYSIS
Data are expressed as mean± SEM. For single and multiple com-
parisons to assess treatment effects on currents, either an unpaired
Student’s t -test or 1-way ANOVA with Tukey’s post hoc test was
used. Changes in intracellular Ca2+ following treatment with db-
cGMP or H2O2 were analyzed using a paired Student’s t -test. For
analysis of intracellular ROS production, a 2-way ANOVA followed
by Bonferroni’s post hoc test was used, with stimulation (untreated,
24 h IL-4, 48 h IL-4) and inhibitors (untreated, KT5823, TRAM-
34) as the two independent variables. Analyses were conducted
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FIGURE 1 |The endogenous KCa3.1 current in MLS-9 microglial cells is
increased by cGMP, which requires cGMP-protein kinase. For all traces,
the voltage protocol was a holding potential of –70 mV, and repeated ramps
from –100 to +80 mV. Recordings were conducted at room temperature in
the perforated-patch configuration, and riluzole was used simply to activate
the KCa3.1 current at the normal low intracellular Ca2+ concentration. The
bath always contained 100 nM apamin, a KCa2.1–2.3 channel blocker.
(A) Upper: Representative current traces from a control cell (trace marked
“ctrl”), followed by bath addition of 300 µM riluzole, and then 1 µM of the
selective KCa3.1 blocker, TRAM-34. Lower: The time course of current
activation and block by 1 µM TRAM-34. (B,C) Representative current traces
from cells before and after activating the current with riluzole; with or
without 1 µM TRAM-34. Cells were pre-treated with the
membrane-permeant cGMP analog, db-cGMP (100 µM), for 20 min at room

(Continued )

FIGURE 1 | Continued
temperature, without (B) or with (C) 1 µM KT5823, a selective inhibitor of
cGMP-protein kinase (PKG). (D) Summarized data from a population study
using the treatments in panels A–C. For each cell, the KCa3.1 current
amplitude was measured at +80 mV, as the component of the
riluzole-activated current that was blocked by TRAM-34 (1 µM). The current
was always normalized to the cell capacitance (in pF) to account for any
differences in cell size and expressed as current density. The
TRAM-34-sensitive KCa3.1 current is expressed as mean±SEM for the
number of cells indicated on each bar, and data were compared using
one-way ANOVA, with Tukey’s post hoc test. **p < 0.01, indicates a
difference from both controls and KT5823-treated cells. ††p < 0.01, for the
comparison indicated. There was no difference between the control and
KT5823-treated cells.

using GraphPad Prism ver 6.01 (GraphPad Software, San Diego,
CA, USA), and statistical significance was taken as p < 0.05.

RESULTS
PKG INCREASES THE ENDOGENOUS KCa3.1 CURRENT IN MICROGLIA
The MLS-9 microglial cell line was used for initial experiments
because these cells have a large endogenous KCa3.1 current, and
lack Kv1.3, Kv1.5, and Kir2.1 currents that are expressed in primary
rat microglia (33, 44, 45). They have a KCa2.3 (SK3) current (31,
41); thus, the bath always contained the blocker, 100 nM apamin.
While KCa3.1 channels in many cell types can be activated by sub-
micromolar intracellular free Ca2+ (18), we found that the K d is
nearly 8 µM in MLS-9 cells (23), and that 1 µM Ca2+ failed to
activate the current in primary rat microglia (20, 27). We do not
know why this is the case. However, the microglial current can
be activated at lower Ca2+ (e.g., 1 µM) by the activators, riluzole,
1-EBIO, or NS309 (20, 27, 31). These activators act as positive gat-
ing modulators that increase the Ca2+ sensitivity of KCa2.x and
KCa3.1 channels (18).

To study the native channels in MLS-9 and primary microglial
cells, we used riluzole because it reliably activated a KCa3.1 current
in perforated-patch recordings. The current was also stable enough
to add TRAM-34 to confirm the channel identity and quantify the
current density (20, 31). As expected, the KCa3.1 current was not
activated at resting levels of intracellular Ca2+ in MLS-9 cells.
However, a stable KCa3.1 current was activated by riluzole in all
cells tested (Figure 1A). As expected for KCa3.1, current activa-
tion was independent of voltage, and it reversed close to the Nernst
potential for K+ (–84 mV with the solutions used). The current
was entirely KCa3.1 (in the presence of apamin), as demonstrated
by full inhibition by the selective KCa3.1 blocker, 1 µM TRAM-34
(Figure 1A). In all subsequent experiments, the KCa3.1 current
was quantified as the TRAM-34-sensitive component.

Effects of elevating intracellular cGMP were analyzed in MLS-9
cells exposed for 20 min to the membrane-permeant cyclic GMP
analog, db-cGMP, before establishing a perforated-patch record-
ing. The KCa3.1 current was much larger after db-cGMP treatment
(Figure 1B) than the control current. Two observations pro-
vided the initial evidence for an indirect action of cGMP that
requires intact cells (perhaps a diffusible mediator is lost when
the cell integrity is disrupted). cGMP alone did not activate the
channels (riluzole was required), and adding db-cGMP during
whole-cell recordings did not increase the current (not shown).
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Therefore, we focused on perforated-patch recordings, and tested
1 µM KT5823, a membrane-permeant compound that selectively
inhibits PKG (cGMP-protein kinase) with no effect on PKA (29).
After treatment with db-cGMP in the presence of KT5823, only
a small KCa3.1 current was activated (Figure 1C). As summa-
rized in Figure 1D, the current density was 13.9± 2.1 pA/pF
(n= 9) in control cells, more than twofold larger after db-cGMP
(29.0± 2.6 pA/pF; n= 12; p < 0.01), and 11.3± 1.4 pA/pF (n= 5;
not different from control) when the PKG inhibitor was also added.
These results indicate that the current enhancement by db-cGMP
required PKG.

LACK OF DIRECT KCa3.1 ACTIVATION BY cGMP-PROTEIN KINASE (PKG)
IN EXCISED PATCHES
The next question, whether PKG directly affects KCa3.1 channel
activity, was prompted by our recent study in which KCa3.1 was
assessed in excised inside-out patches from transfected HEK293
cells (27). PKA decreased the channel open probability (Po), and
this was abolished by mutating the S334 site to S334A, which can-
not be phosphorylated (27). Here, the rationale was that S334 is
also the only putative PKG phosphorylation site, and the chan-
nel could not distinguish which kinase has phosphorylated it. We
hypothesized that PKG would decrease Po if it acts directly on
the channel. For direct comparison with our earlier PKA study, we
used the same experimental system: HEK293 cells transfected with
human KCNN4 (hKCa3.1). This system offered several advantages.
HEK293 cells lack endogenous KCa3.1 current but after transfec-
tion, there were more active channels than in microglia (larger
whole-cell currents), which made it easier to find channels in a
patch, and the current was readily activated by 1 µM Ca2+ with-
out requiring a gating modifier such as riluzole (27). That is, for
human KCNN4 (hKCa3.1), the threshold for current activation is
~100 nM Ca2+, the EC50 is ~270 nM, and the current is essentially
fully activated at 1 µM Ca2+ (6, 7).

Inside-out patches were excised into a bath (intracellular) solu-
tion containing 100 µM ATP and free Ca2+ concentrations of
120 nM, 500 nM, or 1 µM (Figure 2). The intracellular and extra-
cellular solutions contained symmetrical high K+ (140 mM) to
set the Nernst potential to 0 mV, increase the unitary inward cur-
rent amplitude, and expose the innate inward rectification of the
single-channel current. One to three channels were usually active
in each patch, their activity was stable for several minutes, and
channel activity was recorded at –100 mV. Channel activity was
quantified as NPo: the number of active channels, N, times the
open probability, Po. Using representative 2 min-long segments of
each recording, thresholds were set for the closed level and each
open level (based on amplitude histograms; see Methods).

As expected for KCa3.1, channel activity (NPo) increased
with increasing free Ca2+ (Figures 2A–D; summarized in
Figure 2E), and the current was fully blocked by 1 µM TRAM-
34 (Figures 2A,E). For the 500 nM Ca2+ concentration, both
inward (at –100 mV) and outward (at +80 mV) currents are
shown to illustrate the inward rectification in symmetrical high K+

solutions (~32 pS at –100 mV, ~12 pS at+ 80 mV in our record-
ings) that is characteristic of this channel (3, 4, 7). Overall, the
channels were identified as KCa3.1 from their Ca2+ dependence,
voltage-independent activity (–100 to +80 mV tested), inward

rectification, reversal at ~0 mV (not shown), and block by 1 µM
TRAM-34. Sequential addition of 100 µM cGMP [required for
PKG activation (46)] and the PKG holoenzyme (1 U/µL) did not
affect the channel activity or Ca2+ dependence (Figures 2B–D). As
summarized in Figure 2E, there were no differences in NPo values
with or without cGMP or cGMP+PKG at any Ca2+ concentra-
tion. At 120 nM Ca2+, NPo was 0.23± 0.05 in control solution,
0.22± 0.06 after adding cGMP, and 0.21± 0.04 after adding PKG
(n= 5). At 500 nM Ca2+, NPo was 1.18± 0.28 in control solu-
tion, 1.20± 0.32 after adding cGMP, and 1.17± 0.36 after adding
PKG (n= 5). At 1 µM Ca2+, NPo was 1.89± 0.21 in control solu-
tion, 2.01± 0.23 after adding cGMP, and 2.00± 0.24 after adding
PKG (n= 6).

These results on isolated channels show that cGMP and PKG
did not change the number or activity of the channels or their Ca2+

dependence, and amplitude histograms (not illustrated) showed
that the unitary current amplitude was unaffected. This is in con-
trast to our recent finding that activated PKA directly reduced Po

by ~45%, and required the channel’s PKA phosphorylation site
(27). The present results provide strong evidence against direct
channel phosphorylation by PKG.

PKG INCREASES ROS PRODUCTION, WHICH ACTIVATES KCa3.1
CURRENT THROUGH A CaMKII-MEDIATED PATHWAY
The lack of effect of cGMP and PKG on excised patches (Figure 2)
suggested that intracellular signaling was required for the cur-
rent enhancement in MLS-9 cells (Figure 1). Therefore, we used
perforated-patch recordings to maintain intracellular signaling
when conducting experiments on native channels in MLS-9 cells
and primary microglia. We first considered ROS because PKG
increases ROS production in cardiac cells and neurons (28–30).
Treating MLS-9 cells with db-cGMP increased ROS production by
38± 5% (Figure 3A; n= 5; p < 0.001), an effect that was prevented
by the PKG inhibitor, KT5823. ROS can activate CaMKII (21,
47) and, as described in the Introduction, CaMK regulates native
KCa3.1 channels in T lymphocytes (8). Intriguingly, CaMKII can
be activated by ROS without elevated intracellular Ca2+ (21) or in
a long-lasting Ca2+-independent manner after a transient Ca2+

elevation (47).
Acute application of db-cGMP to MLS-9 cells evoked a mod-

est rise in intracellular Ca2+, which peaked at ~15 min and
began to decline despite the continued presence of db-cGMP
(Figure 3B). The calibrated Fura-2 signal indicates that basal
Ca2+ was 88± 4 nM (n= 37) [consistent with our earlier studies
(23, 31)], and the peak after applying db-cGMP was 242± 12 nM
(n= 19), which was not sufficient to activate the KCa3.1 current
(n= 6 cells tested; example in Figure 3B). In a separate experiment
(Figure 3C), MLS-9 cells were treated with db-cGMP to increase
the KCa3.1 current (activated by riluzole, as in Figure 1), and
simultaneously with a membrane-permeant CaMKII inhibitor
(1 µM; myristolated autocamtide-2 related inhibitory peptide;
mAIP) or a ROS scavenger (500 µM; MPG). MPG is a synthetic
oxyradical scavenger that is effective for superoxide (O2

−), hydro-
gen peroxide (H2O2), and hydroxyl radical (OH−) (48). Effects
of MPG directly implicate ROS, which is important because the
probe used to measure ROS production (CM-H2DCFDA) can
also detect peroxynitrite (42). As summarized in Figure 3D, the
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FIGURE 2 | cGMP-protein kinase (PKG) did not directly affect KCa3.1
channel activity. Inside-out patches were excised from HEK293 cells
that had been transfected with wild-type human KCNN4 (KCa3.1). The
bath and pipette solutions both contained 140 mM potassium, and
unless otherwise indicated, inward single-channel currents were
recorded at a membrane potential of −100 mV. (A) KCa3.1 channel
activity was recorded with intracellular solutions containing ATP and
120 nM, 500 nM, or 1 µM free Ca2+, sequentially perfused into the bath.
At the end of the recording, the KCa3.1 selective blocker, 1 µM
TRAM-34, was perfused in. Patches usually contained multiple channels,
and the dashes indicate the closed level and opening of 1, 2, or 3

channels. (B–D) At each Ca2+ concentration (120 nM, 500 nM, 1 µM), the
bath was sequentially perfused with cGMP (100 µM), and cGMP+PKG
holoenzyme (1 U/µL). (E) Summarized data show NP o in control bath
solution and 4–6 min after adding cGMP or cGMP+PKG. Data are
expressed as mean±SEM for the number of patches indicated on the
bars. The dashed lines indicate the NP o value in control bath solution at
each Ca2+ concentration. A two-way ANOVA with Tukey’s post hoc test
shows that activity increased with intracellular Ca2+ (**p < 0.01 for
500 nM Ca2+, and ***p < 0.001 for 1 µM Ca2+) and was significantly
reduced by 1 µM TRAM-34 (only data for 1 µM Ca2+ shown; ###p < 0.001).
There were no differences with cGMP or cGMP/PKG treatments.
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FIGURE 3 | PKG increases production of reactive oxygen species (ROS),
which activates KCa3.1 current through a Ca2+ and CaMKII-mediated
pathway. (A) Summarized data showing ROS production by unstimulated
MLS-9 microglial cells (control), and after treatment (20 min; 37°C) with
db-cGMP (100 µM), with or without the PKG inhibitor, KT5823 (1 µM).
Values are expressed as mean±SEM (n=5), and compared using a
one-way ANOVA with Tukey’s post hoc test. ***p < 0.001 treatment versus
control; †††p < 0.001 with and without PKG inhibitor. (B) Acute application of
db-cGMP increases intracellular Ca2+ in MLS-9 cells but does not activate
KCa3.1 current. Upper panel : Representative Fura-2 recording, in which
100 µM db-cGMP was bath applied during the period marked by the

(Continued )

FIGURE 3 | Continued
horizontal bar. The inset shows calibrated free intracellular Ca2+

concentration as mean±SEM, n=19 cells (***p < 0.001, Student’s t -test).
Lower panel : Representative time course of current in a perforated-patch
recording (same solutions and voltage protocols as Figure 1) in which
db-cGMP (100 µM) was bath applied as indicated by the horizontal bar.
(C) KCa3.1 current potentiation by db-cGMP is prevented by the ROS
scavenger, MPG, and the CaMKII inhibitor, mAIP. Each set of three traces
shows representative currents before and after adding 300 µM riluzole,
with or without 1 µM TRAM-34. Upper panel : Representative recording
from an MLS-9 cell pre-treated with 100 µM db-cGMP and the ROS
scavenger, MPG (500 µM), for 20 min at room temperature. Lower panel :
Cells were pre-treated with 100 µM db-cGMP and the CaM kinase II
inhibitor, mAIP (1 µM) for 20 min at room temperature. (D) Summarized
data from a population study with treatments as in panel C. The
TRAM-34-sensitive KCa3.1 current is expressed as mean±SEM for the
number of cells indicated on each bar, and was compared using a one-way
ANOVA with Tukey’s post hoc test; ***p < 0.001.

current density was 23.4± 0.9 pA/pF (n= 8) after db-cGMP addi-
tion alone, and reduced by MPG to 11.1± 0.8 pA/pF (n= 4;
p < 0.001) and by mAIP to 11.5± 2.2 pA/pF (n= 4; p < 0.001).
Together, these data provide evidence that the enhancement in
KCa3.1 currents by PKG requires both ROS and CaMKII.

APPLICATION OF H2O2 INCREASES KCa3.1 CURRENT THROUGH A
CaMKII-DEPENDENT PATHWAY, NOT THROUGH DIRECT ACTIVATION OF
THE CHANNEL
To further analyze the ROS-mediated increase in KCa3.1 current,
we tested acute application of the relatively stable hydrogen per-
oxide (1 mM H2O2) molecule. Treating MLS-9 cells with H2O2

evoked a moderate, transient rise in intracellular Ca2+ (Figure 4A)
that peaked at 456± 33 nM (n= 18) by 11.6± 0.1 min after
treatment. The peak elevation in Ca2+ evoked by H2O2 was
higher than for db-cGMP and occurred ~5 min sooner. Again,
it was insufficient to activate the KCa3.1 current in MLS-9 cells
(n= 6 cells tested; example in Figure 4A), which requires supra-
micromolar concentrations (described above). In contrast, in
perforated-patch recordings from cells that were pre-incubated
with 1 mM H2O2, the KCa3.1 current was more than twofold
larger (21.5± 1.6 pA/pF; n= 6; p < 0.0001) than in control cells
(10.3± 0.5 pA/pF; n= 4; Figures 4B,C). The potentiation of the
current was prevented if cells were simultaneously pre-treated with
the ROS scavenger (500 µM MGP) or the CaMKII inhibitor (1 µM
mAIP). The current density remained at 9.5± 1.4 pA/pF in MGP-
treated cells and 9.2± 1.8 pA/pF in mAIP-treated cells. These data
show that KCa3.1 function can be enhanced by this identified,
stable ROS species through a similar pathway involving CaMKII.

Next, inside-out patches from transfected HEK293 cells were
exploited to ask whether H2O2 can directly affect channel activity
(NPo; calculated as in Figure 2). There were 1–3 active channels
in each patch, channel activity increased with increasing Ca2+

(Figure 5), and the NPo values were the same as in Figure 2.
Perfusing 1 mM H2O2 into the bath did not affect channel activ-
ity at any of the Ca2+ concentrations (Figure 5A, summarized
in Figure 5B). At 120 nM Ca2+, NPo was 0.21± 0.05 (n= 4)
and 0.23± 0.04 after adding H2O2. In 500 nM Ca2+, NPo was
1.17± 0.19 (n= 4) and 1.09± 0.21 after adding H2O2. At 1 µM
Ca2+, NPo was 1.79± 0.26 (n= 4) and 1.88± 0.31 after adding
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FIGURE 4 | Direct application of H2O2 increases the KCa3.1 current
through a CaMKII-mediated pathway. (A) Hydrogen peroxide elevates
intracellular Ca2+ but does not directly activate KCa3.1 current in MLS-9
cells. Upper panel : Representative Fura-2 recording, in which 1 mM H2O2

was bath applied during the period marked by the horizontal bar. The inset
(Continued )

FIGURE 4 | Continued
shows calibrated free intracellular Ca2+ concentration as mean±SEM,
n=18 cells (***p < 0.001, Student’s t -test). Lower panel : Representative
current in a perforated-patch recording (same solutions and voltage
protocols as Figure 1) with 1 mM H2O2 bath applied as indicated.
(B) Representative KCa3.1 current traces in perforated-patch recordings,
representative currents before and after adding 300 µM riluzole, with or
without 1 µM TRAM-34. From top to bottom: control cell, cell pre-treated
with 1 mM H2O2 for 10 min at room temperature, cell pre-treated with both
1 mM H2O2 and the ROS scavenger, MPG (500 µM; 10 min, room
temperature), cell pre-treated with 1 mM H2O2, and the CaMKII inhibitor,
mAIP (1 µM; 10 min, room temperature). (C) Summarized data from a
population study with treatments as in panel (B). The TRAM-34-sensitive
KCa3.1 current is expressed as mean±SEM for the number of cells
indicated on each bar and was compared using a one-way ANOVA with
Tukey’s post hoc test; ****p < 0.0001.

H2O2. Thus, treatment with this ROS did not directly affect KCa3.1
activity, number of active channels, or their Ca2+ sensitivity; nor
was the amplitude of single-channel currents affected (amplitude
histograms; not shown). This supports the view that, in order
to exert their modulatory effects on KCa3.1 channels, H2O2 and
CaMKII require intact cells and possibly another mediator.

IN ALTERNATIVE-ACTIVATED RAT MICROGLIA, INCREASED ROS
PRODUCTION POTENTIATES THE KCa3.1 CURRENT THROUGH A PKG-
AND CaMKII-DEPENDENT PATHWAY
The above results on MLS-9 cells show that ROS and cGMP
increase KCa3.1 current through a pathway requiring PKG and
CaMKII. It was important to determine whether the same pathway
regulates KCa3.1 in primary cultured microglia. For these exper-
iments, we used alternative-activated (IL-4 treated) rat microglia,
which have upregulated KCNN4 expression and a much larger
KCa3.1 current than resting microglia (20), and in which KCa3.1
contributes to Ca2+ signaling (27) and migration (20). Here, we
found that at 24 and 48 h after IL-4 treatment, ROS production
was increased by 93± 31% (p < 0.01) and 78± 21% (p < 0.01),
respectively (Figure 6A). The PKG inhibitor, KT5823, decreased
this induced ROS production by 53% at 24 h and 73% at 48 h after
IL-4 treatment, but did not significantly affect resting microglia.
The enhanced ROS production in alternative-activated microglia
was moderately dependent on KCa3.1 channels, as TRAM-34
reduced it by 29% at 24 h and 31% at 48 h after IL-4 treatment.

Perforated-patch recordings from alternative-activated rat
microglia were used to assess KCa3.1 regulation. For all recordings,
the bath contained 100 nM apamin to block the KCa2.3 channels
(41), KCa3.1 was activated by riluzole, and 1 µM TRAM-34 was
added at the end of each recording to quantify the TRAM-34-
sensitive KCa3.1 component. This subtraction procedure was used
because primary rat microglia have a voltage-dependent Kv1.3
current, which can be seen in control traces before riluzole was
added to activate KCa3.1. Note, however, that riluzole reduces
the microglial Kv1.3 current (20). As for MLS-9 cells, riluzole-
activated a KCa3.1 current in every microglia cell that was exam-
ined. Again, the current activation was not voltage-dependent; it
reversed near the K+ Nernst potential, and was fully blocked by
1 µM TRAM-34 (Figure 6B). The only differences from MLS-9
cells were that the current was several-fold larger in IL-4-treated
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FIGURE 5 | H2O2 did not directly affect the KCa3.1 channels.
(A) HEK293 cells transfected with hKCa3.1 were used to assess channel
activity in inside-out patches in intracellular (bath) solutions containing
120 nM, 500 nM, or 1 µM free Ca2+ (as in Figure 2), with or without
perfusing in 1 mM H2O2. Inward single-channel currents were recorded at
−100 mV. (B) Summarized data show NP o in control bath solution, and
4–6 min after adding H2O2. Data are expressed as mean±SEM from four
patches per Ca2+ concentration, and a one-way ANOVA with Tukey’s
post hoc test showed no differences following treatments.

primary microglia (compare with Figure 1) and pre-treatment
with db-cGMP did not further increase it. The current density
was 43.7± 1.4 pA/pF in control microglia and 39.9± 1.9 pA/pF
in cells pre-treated with db-cGMP, which raises the possibil-
ity that the current is already maximal in alternative-activated
microglia. The key finding was that the KCa3.1 current in primary

microglia was also regulated by ROS, PKG and CaMKII, as
it was in MLS-9 cells. The current density was reduced from
43.7± 1.4 pA/pF in control microglia to 29.8± 2.1 pA/pF by the
ROS scavenger (MPG), to 32.6± 2.2 pA/pF by the PKG inhibitor
(KT5823), and to 23.8± 2.7 pA/pF by the CaMKII inhibitor
(mAIP) (Figures 6C,D). Evidence for a common regulatory
pathway was that combining all three inhibitors did not fur-
ther reduce the current, as it would have for separate, addi-
tive pathways. Together, these results suggest that in alternative-
activated microglia, the KCa3.1 current is maximally activated
through a regulation pathway involving endogenous PKG, ROS,
and CaMKII.

DISCUSSION
Figure 7 summarizes our results and presents a model of KCa3.1
post-translational regulation based on our observations and the
literature. Elevating cGMP activates PKG, which increases ROS
production, evokes Ca2+ release from intracellular stores, which
binds to CaM, and opens the KCa3.1 channel. CaM also acti-
vates CaMKII, which enhances the KCa3.1 current through an
unknown mechanism. This is the first report of KCa3.1 regula-
tion by cGMP/PKG and ROS. In comparing the present results
with the literature, it is important to note several experimental
considerations.

One major consideration is the patch-clamp configuration.
When studying signaling pathways that regulate ion channel func-
tion, diffusible regulators can be lost or compromised in whole-cell
recordings or excised patches. Therefore, we performed all record-
ings of native channels in the perforated-patch configuration to
maintain the cytoplasmic integrity, allow intracellular Ca2+ to
“free-run,” and prevent loss of soluble mediators. We applied
all modulators by pre-incubation (10–60 min) before recordings
were established; i.e., db-cGMP with or without KT5823 (PKG
inhibitor), MPG (ROS scavenger), or mAIP (CaMKII inhibitor);
H2O2 with or without MPG or mAIP; or in alternative-activated
(IL-4 treated) primary microglia with or without KT5823, MPG or
mAIP. Results can differ in excised patches (e.g., our observed lack
of effect of PKG in inside-out patches) or in whole-cell record-
ings. For instance, we showed that cAMP/PKA increased activity
of Kv1.3 channels in intact human T lymphocytes but this regula-
tion was lost in whole-cell recordings (49). In a pilot study using
whole-cell recordings from MLS-9 cells, acute application of db-
cGMP (data not shown) did not increase the KCa3.1 current, and
this provided the first evidence for loss of a soluble mediator.

Another concern is whether the channels have been convinc-
ingly identified as KCa3.1. Following cloning of KCNN4 [the
gene coding for KCa3.1 (5–7)], KCa3.1 currents were identi-
fied by their requirement for Ca2+ (EC50 200–700 nM); voltage-
independent gating; reversal near the Nernst potential for K+

(–85 mV with physiological internal and external K+), an inward-
rectifying single-channel conductance in symmetrical high K+

solutions (~10 pS at positive potentials and 25–35 pS at very neg-
ative potentials); block by TRAM-34 (selective at≤1 µM) and the
less selective blockers, charybdotoxin (ChTx; IC50 ~5 nM), and
clotrimazole (IC50 < 70 nM). Here, and in several recent papers
on microglia, MLS-9 cells (20, 27, 31), we identified the KCa3.1
current by several of these criteria: (i) voltage-independent gating
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FIGURE 6 | In alternative-activated rat microglia, ROS production requires
and potentiates KCa3.1 channel activity through the ROS-PKG-CaMKII
pathway. To evoke alternative activation, primary rat microglia were treated
with rat recombinant interleukin-4 (IL-4); 20 ng/mL for 24 or 48 h.
(A) Summarized data show ROS production, detected by CM-H2DCFDA (see
Methods) in untreated versus IL-4 treated microglia. Under each condition,
separate batches of microglia were exposed to the PKG inhibitor (1 µM
KT5823) or the KCa3.1 blocker (1 µM TRAM-34) for 24 or 48 h at 37°C. Values
are expressed as mean±SEM (n=6 replicates experiments each), and
compared using a two-way ANOVA with Tukey’s post hoc test. **p < 0.01 and
***p < 0.001 for non-activated versus IL-4 treated cells; #p < 0.05 and
††p < 0.01, for drug treatments, as indicated. (B) KCa3.1 currents were
recorded in alternative-activated microglia 48 h after IL-4 treatment, using the
perforated-patch configuration and the same solutions and voltage protocols

as in Figure 1. (i) Representative currents from a cell before and after adding
the KCa3.1 activator, 300 µM riluzole, and the KCa3.1 blocker, 1 µM TRAM-34.
(ii) A cell pre-treated with 100 µM db-cGMP for 20 min at room temperature.
(iii) Summarized data from a population study, in which the TRAM-34-sensitive
KCa3.1 current amplitude is expressed as mean±SEM (n=4 cells each). The
difference was non-significant based on Student’s t -test. (C). KCa3.1 currents
were recorded from alternative-activated microglia, with and without the
activator, riluzole, as in panel B. All drug pre-treatments were for 1 h at 37°C.
From top to bottom, different microglia were treated with 1 µM KT5823; the
ROS scavenger, 500 µM MPG; the CaMKII inhibitor, 1 µM mAIP; KT5823,
MPG and mAIP. (D). Summarized data from a population study of experiments
as in panel (C). The TRAM-34-sensitive KCa3.1 current is expressed as the
mean±SEM (n=5 cells each), and was compared using a one-way ANOVA
with Tukey’s post hoc test; *p < 0.05, **p < 0.01, ***p < 0.001.

and thus, current seen at all voltages tested; (ii) a need for ele-
vated intracellular Ca2+ (although unusually high); (iii) current
enhancement by positive gating modulators (riluzole, 1-EBIO,
NS309); and (iv) essentially full block by 1 µM TRAM-34.

Four papers have implicated cGMP and/or PKG in activating
Ca2+-dependent K+ channels; two published before the channel
was cloned and two afterward. In the early study of vascular
smooth muscle cells (50), the type of K+ channel activated by
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FIGURE 7 | Summary of results and proposed model of KCa3.1
regulation in microglia. Elevating intracellular cGMP activates PKG, which
can then phosphorylate numerous downstream cellular targets, one of
which triggers mitochondrial production of ROS (proposed to be via the
“5-hydroxydecanoate-sensitive factor” that is likely the mitoKATP channel).
Intracellular ROS can then contributes to KCa3.1 regulation through its role
as a signaling intermediate; e.g., by evoking Ca2+ release from intracellular
stores on the ER, leading to CaM-dependent activation of CaMKII, which
then increases KCa3.1 activity (by an unknown mechanism). Activator
used : 100 µM db-cGMP (membrane-permeant cGMP analog) to activate
PKG. Inhibitors used : 1 µM KT5823 for PKG; 500 µM MPG as a general
ROS scavenger (including O2

–, H2O2, OH•); 1 µM mAIP for CaMKII.
Acronyms: CaMKII, Ca2+/CaM-dependent protein kinase II; cGMP, cyclic
guanosine monophosphate; db-cGMP, dibutyryl-cyclic guanosine
monophosphate; ER, endoplasmic reticulum; H2O2, hydrogen peroxide;
mAIP, myristolated autocamtide-2 related inhibitory peptide; mitoKATP,
mitochondrial ATP-sensitive potassium channel; MPG,
N -(2-mercaptopropionyl)glycine; O2

–, superoxide; OH•, hydroxyl radical;
PKG, cGMP-dependent protein kinase; ROS, reactive oxygen species.

cGMP was not identified, but is unlikely to be KCa3.1. That is,
the whole-cell current was depolarization-activated and blocked
by 10 mM tetraethylammonium (TEA) as well as 200 nM ChTx,
which is more consistent with large-conductance Ca2+-dependent
K+ (BK) channels. It is now well known that BK channels are acti-
vated by the NO-cGMP-PKG pathway [reviewed in Ref. (51–53)].
In the study on rat cortical collecting duct epithelial cells, inside-
out patches showed that two channel types (28 and 85 pS) were
activated by cGMP and this was prevented by the PKG inhibitor,
KT5823 (54). However, these recordings were made in the absence
of intracellular Ca2+ or a gating modifier, and thus neither is likely

to be KCa3.1. The two later papers reported that cGMP regulates
a clotrimazole-sensitive channel, and one concluded that it was
KCa3.1. We reported that the IC50 for KCa3.1 block by clotrimazole
was 40 and 56 nM for native channels in human T lymphoblasts
and hKCa3.1 expressed in CHO cells, respectively (8) and we
subsequently used 200 nM in functional studies (14). However,
clotrimazole also inhibits Ca2+ channels (55), and at micromolar
concentrations, it inhibits NMDA channels (56), TRPM2 channels
(57), and several K+ channels; i.e., transient outward, ultra-rapid
delayed-rectifier, hERG and KCNQ1/KCNE1 channels (58). The
third paper on potential KCa channel regulation by PKG showed
that a K+ current in interstitial cells of Cajal was activated by
Ca2+ and by the nitric oxide donor, sodium nitroprusside (SNP),
blocked by 1 µM clotrimazole, and had a single-channel conduc-
tance of ~38 pS (59), which are consistent with KCa3.1. However,
it exhibited a steeply voltage-dependent activation at –40 mV,
which is not consistent with KCa3.1. Finally, a study of single-
channel activity in human dermal fibroblasts showed that activity
was increased by the NO donor, S-nitroso-N -acetylpenicillamine
(SNAP) in cell-attached patches, and by applying cGMP+PKG
to the cytoplasmic face of inside-out patches (60). The channel
was blocked by 10 µM clotrimazole, was depolarization activated
at about –40 mV, and had a large single-channel conductance
(116 pS reported, >150 pS in some recordings); properties that
are inconsistent with KCa3.1.

We began this study by noting that KCa3.1 has a single con-
sensus motif for phosphorylation by PKG (331RKES334 in the
human gene), but our results rule out this mechanism. First,
applying PKG (with cGMP and ATP) to the cytoplasmic mem-
brane face had no effect on channel activity and second, when
S334 is phosphorylated by PKA the current is decreased, not
increased (27). Failure of a kinase to phosphorylate a potential
consensus motif is not unusual. For instance, PKG might have a
low affinity due to conformational considerations; activated PKG
(2 PKG monomers+ 4 cGMP molecules) is ~148 kDa compared
with the catalytic subunit of PKA (43.5 kDa). Our results instead
support a linear mechanism for enhancing the native KCa3.1 cur-
rent: elevating cGMP (by adding membrane-permeant db-cGMP)
activates PKG (inhibited by KT5823), evokes ROS production
(mimicked by H2O2 and inhibited by MPG), elevates intracellular
Ca2+ (but not high enough to directly activate the channel), and
activates CaMKII (inhibited by mAIP). Activation of KCa3.1 by
CaMKII is consistent with our earlier study in which this current
in human T lymphoblasts was inhibited by the CaMK antagonist,
KN-62 (8).

Several aspects would be worth considering in future studies.
(i) We do not know the mechanism by which CaMKII increases
the KCa3.1 current. One possibility is that it promotes channel
trafficking/insertion into the surface membrane or, conversely,
reduces endocytosis. CaM is involved in assembly and traffick-
ing of KCa3.1 (26) but there is no evidence that CaMKII is
involved. In expression systems, KCa3.1 turns over rapidly through
clathrin-mediated endocytosis and is then targeting for lysosomal
degradation (61). (ii) CaMK-dependent changes in gene tran-
scription can produce long-lasting cellular outcomes, such as
learning and memory [reviewed in Ref. (62, 63)] but we think
altered gene expression is unlikely. For instance, the CaMKII
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inhibitor, mAIP, was only applied for 1 h to alternative-activated
microglia. (iii) In alternative-activated microglia, ROS produc-
tion was increased, and dependent on both PKG signaling and
KCa3.1 channels. We previously found that KCa3.1 was neces-
sary for efficient ROS production in classical-activated microglia.
Because ROS increased the KCa3.1 current this might be a pos-
itive feedback mechanism to increase KCa3.1 contributions to
microglia functions under conditions of oxidative stress; e.g., after
acute injuries, such as stroke. (iv) When exposed to classical-
activation stimuli (e.g., LPS) or in conjunction with phagocytosis,
microglia produce ROS through an NADPH oxidase (NOX)-
mediated respiratory burst (64,65). While ROS play anti-microbial
roles, endogenously generated ROS can potentially feed back onto
physiological functions of microglia; e.g., activating NFκB and
synthesis of TNFα (66). In contrast, ROS can reduce classical acti-
vation of peritoneal macrophages (67), suggesting complex roles
in regulating immune cell functions. One question is whether
the source matters; i.e., ROS produced by NOX versus mito-
chondria. We think the long-lasting ROS production in IL-4-
treated microglia (elevated for at least 2 days) is likely mediated
by mitochondria, because PKG is known to stimulate mitochon-
drial ROS production in cardiomyocytes and a neuroblastoma
cell line (28–30). However, the IL-4 signaling pathway increased
ROS production through PI3K-dependent activation of NOX
enzymes in an epithelial cell line (68); thus, we cannot rule out
NOX contributions.

BROADER IMPLICATIONS
KCa3.1 is expressed in numerous cell types, including red blood
cells, some immune cells [see Introduction, and reviewed in Ref.
(69)], neurons (15–17), epithelia (70), vascular smooth muscle
and endothelial cells (71, 72), fibroblasts (73, 74), stem cells (75,
76), and cancer cells (77, 78). Because KCa3.1 plays diverse roles
in these cells (e.g., proliferation, volume regulation, migration,
cytokine production, and others) its post-translational regulation
by cGMP/PKG, ROS, and Ca2+/CaM/CaMKII is likely to have
broad consequences. There are many opportunities for KCa3.1
to be regulated by cGMP/PKG signaling because this pathway
can be activated through NO produced by nNOS (neurons),
eNOS (endothelial cells) and iNOS (innate immune cells), and
acting on soluble guanylate cyclase. In microglia, iNOS is upreg-
ulated and NO is produced in the classical-activated state. Pro-
inflammatory mediators are induced by LPS, and there is evidence
that atrial natriuretic peptide (ANP)-induced cGMP/PKG signal-
ing can reduce this (79). In microglia, the roles of PKG are not well
known but we found that PKG is involved in ROS production in
alternative-activated microglia. Further evidence for involvement
of PKG and ROS in alternative activation is that PKG increased
IL-4 production by Th2 lymphocytes (80), and ROS increased IL-
4 release by macrophages (81, 82). The widespread coincidence of
this channel and signaling pathway is reinforces the importance of
future studies addressing its regulation in other cell types.
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