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Abstract: Two novel applications using a portable and wireless sensor system (e-nose) for 

the wine producing industry—The recognition and classification of musts coming from 

different grape ripening times and from different grape varieties—Are reported in this 

paper. These applications are very interesting because a lot of varieties of grapes produce 

musts with low and similar aromatic intensities so they are very difficult to distinguish 

using a sensory panel. Therefore the system could be used to monitor the ripening 

evolution of the different types of grapes and to assess some useful characteristics, such as 

the identification of the grape variety origin and to prediction of the wine quality. Ripening 

grade of collected samples have been also evaluated by classical analytical techniques, 

measuring physicochemical parameters, such as, pH, Brix, Total Acidity (TA) and 

Probable Grade Alcoholic (PGA). The measurements were carried out for two different 

harvests, using different red (Barbera, Petit Verdot, Tempranillo, and Touriga) and white 

(Malvar, Malvasía, Chenin Blanc, and Sauvignon Blanc) grape musts coming from the 

experimental cellar of the IMIDRA at Madrid. Principal Component Analysis (PCA) and 

Probabilistic Neural Networks (PNN) have been used to analyse the obtained data by  

e-nose. In addition, and the Canonical Correlation Analysis (CCA) method has been 

carried out to correlate the results obtained by both technologies.  
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1. Introduction 

The wine industry generates millions of dollars in sales annually and there is much new and 

interesting research currently being done to promote wine quality. Grape control and monitoring are 

very important since grape quality at harvest is the main factor that conditions future wine quality [1]. 

There are extensive studies on wine regarding the vinification process and the final product (measuring 

defects, aromatic qualities, etc.). In these studies though the musts, grape juice prior to fermenting, are 

mostly ignored. 

The composition of grapes at the time of picking is an important parameter during wine production, 

which may be considered the most crucial in winemaking. While grapes ripen, some complex 

physicochemical and biochemical processes occur, such as the continuous rising and lowering of sugar 

concentrations and acid levels, respectively, and the increase and evolution of aromatic compounds 

(terpenes, norisoprenoids, benzene compounds and alcohols), which are influenced not only by the 

cultivar but also by genetic, climatic and geographical factors and by cultivation practices [2,3]. 

The factors defining the ripeness process determine grape quality and the optimal time of harvesting 

for winemaking. Traditionally, harvesting date indicators have been determined by parameters such as 

berry weight or must density. Nowadays, Near Infrared Spectroscopy (NIRS) has also been reported as 

a suitable technique capable of measuring parameters such as sugar content, pH value and acidity in 

grapes, but it requires expensive instrumentation and complex calibration [4]. In fact, even one of the 

simplest traditional systems to determine harvesting date, i.e., the determination of sugar content 

(°Brix) and Total Acidity, requires the use of a refractometer and a titration system, which employs 

chemical products [5]. Therefore, the possibility of designing simple, rapid and of low cost alternative 

methods to monitor grape ripeness is of great interest. It is necessary to find a fast and cheap method in 

contrast with the conventional analytical methods to analyse the volatile compounds of musts.  

An electronic nose is a device that produces a signal that when properly calibrated can be correlated 

with the composition of an aromatic/gaseous mixture. There are many electronic noses capable of 

identifying and classifying food samples (through the headspace method), and of quantifying the 

concentration of particular volatile compounds or organoleptic attributes [6]. Therefore, the aroma 

composition of berry destined for winemaking may provide useful information for predicting wine 

quality [7]. 

Electronic noses are usually composed of an array of chemical sensors coupled with a pattern 

recognition analysis. Another aim in electronic nose development is to design easy-to-use reduced-in-size 

systems applicable for in-situ and on-line monitoring. Besides, attempts have also been made to 

correlate electronic nose data with traditional human sensory perceptions of wine attributes, and with 

gas chromatography-mass spectrometry results [8–11]. Few studies on the potential use of electronic 

noses for grape ripeness monitoring, converted to musts, have been reported [12–16], and none 
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comparing the results to a sensory analysis. This is surely due to the similar and low aromatic intensity 

of musts that making it difficult to distinguish by a tasting panel. 

Following our interest in the development of sensing systems and given our experience in designing 

electronic nose devices for wine applications [17–24], we report herein the design and development of 

an e-nose, realized in our laboratory, as an useful tool for this kind of analysis. In this work a wireless 

and portable e-nose (WiNOSE 2.0) has been used to monitor the volatile organic compounds (VOCs) 

of musts of different grape varieties and different grades of ripeness for several harvests, and to relate 

its responses with the physicochemical parameters which are traditionally used to determine the 

harvesting date. 

2. Experimental Section  

2.1. Samples Measured 

Musts of eight different grape varieties: four white ones (Chenin Blanc, Sauvignon Blanc, Malvar 

and Malvasia) and four red ones (Tempranillo, Barbera, Touriga and Petit Verdot) and with different 

grape ripening times, have been measured. Tables 1 and 2 show the dates of the samples for each 

variety, used for the measurements of the physicochemical parameters and for the measurements of the 

electronic nose respectively. All these grape varieties were grown in the IMIDRA (Madrid, Spain) 

during the years 2011 and 2012. More details of these varieties are given in [25,26]. 

Table 1. Grape collection date of the different varieties used for the physico-chemical 

parameter measurements. 

Grape Varieties Month-Day Year 

Barbera 8-16, 8-22, 8-16, 8-29, 9-12 2011 
Petit Verdot 8-22, 8-29, 9-5, 9-12, 9-19 2011 
Tempranillo 8-11, 8-16, 8-22, 8-29, 9-5, 9-12 2011 

Touriga 8-16, 8-22, 8-29, 9-5, 9-12 2011 
Malvar 8-16, 8-22, 8-29, 9-1 2011 

Malvasía 8-16, 8-22, 8-29, 9-6 2011 
Chenin Blanc 8-16, 8-22, 8-29, 9-5, 9-12 2011 

Sauvignon Blanc 8-11, 8-16, 8-22 2011 
Barbera 8-21, 9-10, 9-17, 9-25 2012 

Petit Verdot 9-3, 9-10, 9-17, 9-24 2012 
Tempranillo 8-14, 8-21, 8-27, 9-3 2012 

Touriga 8-21, 8-27, 9-3, 9-10, 9-17 2012 
Malvar 8-14, 8-21, 8-27, 9-3, 9-12 2012 

Malvasia 8-14, 8-21, 8-27, 8-30 2012 
Chenin Blanc 8-28, 9-3, 9-10 2012 

Sauvignon Blanc 8-14, 8-21, 8-27, 9-5 2012 
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Table 2. Grape collection date of the different varieties used for the electronic  

nose measurements. 

Grape Varieties Month-Day Year 

Barbera 8-16, 8-22, 9-5, 9-14 2011 
Petit Verdot 8-22, 9-12, 9-22 2011 
Tempranillo 8-16, 8-22, 9-5, 9-14 2011 

Touriga 8-16, 8-28, 9-5, 9-14 2011 
Malvar 8-16, 8-22, 9-1 2011 

Malvasía 8-16, 8-22, 9-6 2011 
Chenin Blanc 8-16, 8-22, 9-5, 9-12 2011 

Sauvignon Blanc 8-16, 8-22, 9-25 2011 
Barbera 8-21, 9-10, 9-17, 9-25 2012 

Petit Verdot  9-10, 9-18, 9-24 2012 
Tempranillo 8-14, 9-3 2012 

Touriga 8-21, 9-10, 9-17 2012 
Malvar 8-14, 9-3 2012 

Malvasia 8-14, 8-31 2012 
Chenin Blanc 9-3, 9-10 2012 

Sauvignon Blanc 8-14, 9-4 2012 

The grape sampling in field was done by collecting 3–4 bunches on 100 strain berries, alternating 

bunches shaded and exposed to light, at different heights on the vines and on bunches up to 1.5–2 kg, 

approximately between 1000–2000 berries. Then, they were crushed and centrifuged at a controlled 

temperature (10 °C) to obtain the musts. 

2.2. Physicochemical Parameters 

Different characteristic chemical and physical parameters of the grapes of these musts have  

been measured. Grade Brix (Bx), percentage of sucrose dissolved in the must, was measured by 

refractometry (Ataio PR-100). Probable alcoholic grade (PAG) is calculated by the approximation of 

dividing the sugar concentration (SU) in gr·L−1 by 17 (being 17 the amount of sugar the yeast needs to 

make an alcoholic grade). pH and Total Acidity (TA) in gr·L−1 of tartaric acid by potenciometry 

through a Crison Compact Titrator. Technology maturity index (TMI) is calculated by SU/TA, weight 

of 100 berries (W100) and number of berries in 100 grams (#100B).  

2.3. System of Measurement with Electronic Nose 

The measurement system is displayed in Figure 1 and is formed by: (1) Volatile organic compound 

extraction method; (2) Peltier cooler; (3) WiNOSE 2.0 with a resistive sensor array and control system. 

(1) Volatile organic compound extraction method 

The extraction method used is head space with dynamic injection of the volatile compounds onto 

the multisensor using air as carrier gas. 
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(2) Peltier cooler 

To keep the sample temperature at 15 °C and thus to minimise the oxidation of the compounds a 

Peltier system is used. 

(3) WINOSE 2.0 with a resistive sensor array 

The core of the electronic nose is a commercial MSGS-4000 microsensor array (Silsens, Newchatel, 

Switzerland). It consists of four thin nanocrystalline tin oxide layers deposited over micromechanised 

silicon hot plates. One of the microsensors is doped with platinum. Every individual sensor operates at 

a temperature between 200 °C and 350 °C.  

 

Figure 1. Experimental system of measurement. 

The whole system is controlled by a digital signal controller (model dsPIC33FJ128GP306, DSC 

Microchip, Chandler, AZ, USA). It is a 16 bit microcontroller with 16 Kb of RAM and 128 Kb of 

FLASH memory. It has several analogue to digital converter (A/D) inputs for sensor measurements 

and several pulse width modulation (PWM) outputs for sensor heating. The main measurement 

parameters are shown in a LCD. Wireless communications are provided by a ZigBee IEEE 802.15.4 

transceiver. Beneath the electronic board two 4500 mA·h batteries are placed. The instrumentation is 

controlled by a programme developed in Testpoint. See details in [27]. 

One of the gas inlets has a carbon filter to provide clean air as a reference baseline. The humidity 

and temperature sensors (SHT15, Sensirion, Staefa, Switzerland), the pump (model 2002,  

Rietschle Thomas, Fürstenfeldbruck, Germany) and the flowmeter (PFMV5, SMC, Tokyo, Japan) are 

located downstream. 

2.4. Measurement Procedure 

The bottles with the must samples were frozen as they were taken and then defrosted for 15 min. 

before starting the measurement process. 10 mL of must were put into vials and kept at 15 °C. To 
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transfer the headspace to the sensors the flow of air was set at 55 mL/min during the sampling and at 

200 mL/min during the recovery. The sampling and recovery times were 1 and 14 min, respectively, to 

reach equilibrium. Resistance and other operating parameters (humidity, flow and temperature) were 

measured every two seconds. The system showed an excellent response, reproducibility and stability.  

2.5. Data Treatment 

The response of the sensor is calculated by dividing the resistance of the sensor after the vapour 

exposure by the resistance of the sensor in air. The measurement process consisted of the repetition of 

ten measurements in succession. Several of these measurements were made with different aliquots in 

order to check for repeatability. 

Principal component analysis (PCA) is a statistical method for reducing the number of dimensions 

of numerical dataset. Mathematically, PCA projects the data onto a new coordinate base formed by 

orthogonal directions, which contains a growing amount of the variance of the data. The principal 

components are ordered, thus the greatest variance is on the first coordinate (called first principal 

component, PC1), the second greatest variance is on the second coordinate, PC2, and so on. PC1, PC2 

and PC3 allow the visualisation of dataset main information in 2-D and 3-D representation.  

A probabilistic neural network (PNN) was applied to the PC1, PC2 and PC3 in order to recognize 

the type of VOCs patterns under study. Neural networks are mathematical models that process 

information by means of an adaptive system that changes its structure based on external or internal 

information that flows through the network during the learning phase. Thus, a neural network creates a 

function to capture and represent complex input/output relationships. The PNN is a type of neural 

network with radial basis transfer functions that measures the distance between an input vector and the 

training vectors. A PNN was trained, and the performance was evaluated with the leave-one-out 

validation method [28]. This method consists of training N distinct nets (in this case, N is the number 

of the measurements) with all the data minus a vector excluded from the training set but used as a 

validation test This procedure is repeated N times until all the vectors are validated.  

Canonical correlation analysis consists of a correlation of two groups of variables. The method 

searches linear combinations on one group that best correlates with a linear correlation on the other 

group. To do this it selects an axis in each group that maximises the variance in that group while it tries 

to maximise the amount of covariation between the two variable groups. High correlations mean that 

both groups share common information and it is usually measured by the r coefficient and the 

assessment of statistical significance with Wilk’s lambda test. The coefficients of each linear 

combination give us information of what variables are correlated. A high coefficient on a variable 

marks that variable as correlated with the other group while a low coefficient (in absolute value) on a 

variable means a lower correlation. 

3. Results and Discussion 

Two representative chemical parameters (°Bx and TA) have been plotted against the different grape 

ripening stages for each of the grape varieties collected during the harvests of 2011 and 2012. See 

Figures 2–5. In general, we can observe that these parameters follow the typical trend of ripening in 
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terms of the physiological ripeness of grapes, i.e., an increase in the sugar content and a decrease in 

the total acidity, showing the evolution of the musts with the ripening time. 

 

Figure 2. Evolution of TA for musts of 2011 harvest. (a) Red musts; (b) White musts. 

 

Figure 3. Evolution of TA for musts of 2012 harvest. (a) Red musts; (b) White musts. 

 

Figure 4. Evolution of ºBrix for musts of 2011 harvest. (a) Red musts; (b) White musts. 

 

Figure 5. Evolution of °Brix for musts of 2012 harvest. (a) Red musts; (b) White musts. 
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Figure 6 shows the PCA plot for different grades of grape ripening for 2011 must samples of 

Chenin Blanc and Barbera. This data analysis shows that the e-nose can differentiate the different 

grape ripening grades for different grape varieties. It is important to note that one of the stages that 

more influences the wine aromatic characteristics of a given variety is the ripening of the grape, since 

both free and glycosylated forms of varietal compounds accumulate in the grape during ripening [29]. 

Terpene content may decrease once optimal sugar levels are attained, although this may be influenced 

by temperature and water availability during ripening [30]. For the samples collected in September, 

three different aliquots have been taken in order to see if the results were reproducible. In this case 30 

measurements were realised (Figure 6). 

 

Figure 6. PCA plot for different grades of grape ripening in 2011. (a) Chenin Blanc;  

(b) Barbera. 

Then we did another PCA analysis for all the samples collected on 22 of August of 2011. Figure 7 

shows the PCA plot of the different grape varieties. We check that the e-nose can differentiate the 

varieties of white and red grape musts even at this early stage of the grape ripening.  

 

Figure 7. PCA analysis for the samples collected on 22 of August of 2011. (a) White 

varieties; (b) Red varieties. 

We repeated the same analysis for the year 2012 with the samples available. Figures 8 and 9 show 

the PCAs carried out for this year, and it is possible to observe that for the harvest 2012, the e-nose can 

also discriminate the different grape ripening grades for the different white and red varieties and the 

varieties of white and red grape musts for the samples collected on 14 and 10 of September 

respectively, in this case, for a late stage of the grape ripening. The Probabilistic Neural Network 

(PNN) validated by the leave-one-out method gives a good ripening grape classification for each 

variety from the 2011 harvest, showing that the ripening process can be detected by the sensor system. 
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See Table 3. The PNN analysis was repeated for all the samples collected on 22 of August 2011. The 

classification of the validated PNN (red varieties 98.1% and white varieties 93.6%) shows that there is 

a clear differentiation, and therefore the e-nose system could be used to assess some of the 

characteristics corresponding to the different varieties. 

 

Figure 8. PCA plot for different grades of grape ripening in 2012. (a) Chenin Blanc;  

(b) Barbera.  

 

Figure 9. PCA analysis for the samples collected in 2012. (a) 14 of September for white 

varieties; (b) 10 of September for red varieties. 

Table 3. Classification by a PNN for samples collected in 2011. 

Red Grape 
Varieties 

Classification 
White Grape 

Varieties 
Classification  

Barbera 98.8% Malvar 95.5% 
Petit Verdot 85.5% Malvasía 98.0% 
Tempranillo 98.9% Chenin Blanc 94.8% 

Touriga 99.1% Sauvignon Blanc 92.5% 

Again by repeating the process for the 2012 harvest, similar results were obtained. The separation 

for the grape ripening grade is even better. The classification task is easier due to the lowest number of 

classes in the experiments. Table 4 summarises the results.  

We also apply the PNN analysis to the samples collected on 10 and on 14 of September for different 

red and white varieties available. A 100% classification result was obtained for the white musts and a 

98.7% was achieved for the red ones. 
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Table 4. Classification by a PNN for samples collected in 2012. 

Red Grape 
Varieties 

Classification 
White Grape 

Varieties 
Classification 

Barbera 91.9% Malvar 100% 
Petit Verdot 99.7% Malvasía 100% 
Tempranillo 100% Chenin Blanc 100% 

Touriga 98.6% Sauvignon Blanc 90% 

Finally, a Canonical Correlation Analysis (CCA) was carried out. Figures 10 and 11 show the 

regression plot of this analysis for the white grape must and the red grape must sensor responses and 

all analytical parameter values measured for the 2011 harvest and 2012 harvest, respectively. 

 

 

Figure 10. r values for the canonical correlation between grape must parameters and 

sensor responses for grape must varieties of 2011. (a) Red varieties; (b) White varieties. 
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Figure 11. r values for the canonical correlation between grape must parameters and 

sensor responses for grape must varietiesof 2012. (a) Red varieties; (b) White varieties. 

Tables 5–8 show the correlation coefficients for the physicochemical parameters of interest for the 

white and red grapes for both harvests for up to four correlations found. The analysis and the  

r coefficients obtained show that there is a correlation between the sensor responses and some of the 

physicochemical parameters measured. There is also a statistical significance with Wilk’s lambda test 

that produced p values that are less than 0.01 for all correlations thus showing that the results  

are statistically significant. For the highest correlation CCA r values, the parameters of total acidity 

(TA) and pH had the greatest coefficients showing that they were the best correlated with the  

sensor responses. 

Table 5. CCA coefficients of the first four canonical correlations for red musts of 2011. 

Can.Correl. No. r Brix pH AT Az g/L IMT 

1 0.84 0.11 ‒4.90 ‒1.31 ‒0.02 0.43 
2 0.74 0.37 1.98 ‒1.53 0.04 ‒0.14 
3 0.40 0.83 ‒9.76 6.09 ‒0.20 0.87 
4 0.15 0.98 ‒2.97 9.23 0.40 0.25 
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Table 6. CCA coefficients of the first four canonical correlations for white musts of 2011. 

Can.Correl. No. r Brix pH AT Az g/L IMT 

1 0.85 0.11 3.67 ‒0.30 ‒0.16 ‒0.36 
2 0.66 0.40 0.07 ‒0.36 ‒0.07 ‒0.06 
3 0.51 0.69 6.50 ‒7.52 0.24 ‒0.52 
4 0.26 0.93 ‒1.22 3.79 1.13 0.05 

Table 7. CCA coefficients of the first four canonical correlations for red musts of 2012. 

Can.Correl. No. r Brix pH AT Az g/L IMT 

1 0.97 0.00 ‒0.17 ‒3.07 0.09 0.01 
2 0.93 0.03 ‒0.03 1.28 ‒0.13 0.04 
3 0.84 0.24 ‒0.17 4.65 ‒0.18 0.02 
4 0.46 0.79 ‒0.98 ‒1.27 ‒0.49 0.04 

Table 8. CCA coefficients of the first four canonical correlations for white musts of 2012. 

Can.Correl. No. r Brix pH AT Az g/L IMT 

1 0.97 0.01 ‒2.89 6.23 0.34 0.22 
2 0.89 0.11 ‒2.52 7.67 1.47 0.21 
3 0.69 0.52 1.87 ‒20.53 1.63 ‒0.14 
4 0.10 0.99 ‒0.52 0.30 0.79 0.07 

The sensor signal depends on the aromatic composition of the must. Traditionally, to follow berry 

ripening, classical parameters based on the percentage of soluble solids, sugar, acidity, pH and colour 

are used [31]. However, in order to trace more specifically the varietal characteristics and to achieve a 

better product quality, an analysis of phenolic, carotenoids and volatile compounds should be carried 

out [32]. The existence of a correlation between the classical parameters and the response of the 

sensors is useful for the determination of must quality which is similar to the classic analysis method, 

but the electronic nose has also into account aromatic properties and, in addition, it is a faster, cheaper 

and simpler method. 

4. Conclusions 

In this work, it has been possible to demosntrate a complex and new application related to the grape 

musts which are of the utmost interest for the wine producing industry due to the fact there is a great 

relation between the grape ripening grade and wine quality. In this case, red and white grape variety 

musts with different grades of ripening, which cannot be discriminated easily by a sensory panel due to 

their similar and low aromatic intensity, have been identified through the measurement of must 

samples with a portable and wireless e-nose. The e-nose measurements for musts made with different 

grape ripening grades and different red and white varieties have been analysed by PCA and PNN 

showing that the e-nose can differentiate and classify the different ripening grades of the grape, 

converted in musts, when correctly trained. It has also been achieved the application of discriminating 

the different white (Malvar, Malvasía, Chenin Blanc, and Sauvignon Blanc) and red (Barbera, Petit 

Verdot, Tempranillo, and Touriga) grape varieties. For both applications, the results have been 
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repeated for the samples from the harvest of 2011 and of 2012 collected during the August and 

September months. Therefore it is possible to concludethat the results obtained by the e-nose are 

consistent and repeatable.  

Different physico-chemical parameters (°Bx, PGA, pH and TA) have been measured, for the same 

ripening samples tested by the e-nose, through traditional analytical methods used to monitor the 

changes of these parameters during the grape ripening process. 

It is seen that both the analytical parameter obtained values and the PCA plots of the responses of 

sensors show a clear evolution with the ripening stages of the musts and are correlated as shown by the 

CCA analysis, mainly with the TA and pH. This correlation implies that there is information shared 

between the analytical parameters and sensor responses. In the same way, a commercial electronic 

nose was also used to discriminate grape ripening grades but, in this case, one unique variety of red 

grape (Cabernet Sauvignon) was tested [12], Hence the electronic nose technology is an alternative 

method to monitoring grape ripeness and, thereby to evaluate the optimal time to carry out harvesting 

in order to achieve a better quality wine. 
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