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The intelligent monitoring and diagnosis of steel defects plays an important role in
improving steel quality, production efficiency, and associated smart manufacturing. The
application of the bio-inspired algorithms to mechanical engineering problems is of great
significance. The split attention network is an improvement of the residual network, and it is
an improvement of the visual attention mechanism in the bionic algorithm. In this paper,
based on the feature pyramid network and split attention network, the network is improved
and optimised in terms of data enhancement, multi-scale feature fusion and network
structure optimisation. The DF-ResNeSt50 network model is proposed, which introduces
a simple modularized split attention block, which can improve the attention mechanism of
cross-feature graph groups. Finally, experimental validation proves that the proposed
network model has good performance and application prospects in the intelligent
detection of steel defects.

Keywords: defect detection, target identification, attentionmechanism, feature extraction and fusion, split attention
networks

1. INTRODUCTION

The application of Bio-inspired computation and artificial intelligence technology is gradually taking
an important position in the field of mechanical engineering. More specifically, bio-inspired
algorithms can replace humans to a certain extent, through training and learning to complete
the tedious task of detecting steel surface defects (Chen et al., 2021a; Yang et al., 2021; Yun et al., 2021,
2022). Research on steel plate defect detection based on visual attention mechanisms and bionic
algorithms will help the steel industry move towards intelligence and information.

Currently, the detection of steel plate defects is still dominated by manual inspection, i.e., manual
visual inspection or random sampling of products (Tang et al., 2017; Yu et al., 2019, Yu et al., 2020;
Jawahar et al., 2020; Tian et al., 2020). However, manual inspection has problems such as strong
subjectivity, limited vision and low efficiency, which to a certain extent restrict the intelligent and
efficient production in the steel industry (Sun et al., 2020a; Sun et al., 2020b; Jiang et al., 2021b; Zhao
et al., 2021). Meanwhile, eddy current inspection, infrared inspection, leakage magnetic inspection,
laser scanning, and machine vision have facilitated the equipment-based inspection of steel, but there
are still problems such as low speed and accuracy of defect detection.
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For steel plate defects, the types of defects are complex and
diverse, and there are many influencing factors, and the shape of
defects will continue to change with factors such as process and
environment, which adds many challenges to steel defect
detection (Li et al., 2019a; Hao et al., 2021). Figure 1 shows
the four typical steel plate defects: (a) Pit defect, (b) Edge crack,
(c) Scratches, (d) Rolled-in scale.

The key contributions of this work are:

1) The steel plate defect dataset is masked using Run-Length
encoding, and the defect detection model is segmented using
multi-scale feature fusion.

2) Based on the visual attention mechanism in the bio-inspired
algorithms, combined with the feature pyramid network, on
the basis of the residual network, a simple modular split-
attention block is added, and the DF-ResNeSt50 network is
proposed.

3) DF-ResNeSt50 network adopts radix-major to realize the
block, the block is set to Cardinality � 2, Radix � 4, Width
of bottleneck � 40. The proposed DF-ResNeSt50 algorithm is
analyzed and compared with other classical algorithms. After
experimental comparison, the network has better steel defect
detection performance and detection efficiency.

The rest of this paper is organized as follows: Section 2
discusses the related work of steel plate surface defect
detection in recent years. Section 3 briefly analyzes the data
set, and proposes to use Run-Length encoding to compress the
data and perform data preprocessing. In addition, an improved
split-attention network based on the visual attention mechanism
in bionic computing is proposed for residual networks and
feature pyramid networks. Before network training, use mIou,
Dice and other related indicators to monitor, and use Adam to
dynamically adjust and optimize the learning rate. Section 4
compares and trains the proposed DF-ResNeSt50 network model
after setting up the experimental environment and

hyperparameters, and compared with other network models.
Section 5 concludes the paper with summary and future
research directions.

2. RELATED WORK

In the surface defect detection system, image processing and
analysis algorithms are important content. The usual process
includes image preprocessing, target area segmentation,
feature extraction and selection, and defect recognition and
classification (Weng et al., 2021). As the requirements for the
surface quality of steel plates become higher and higher, the
requirements for real-time detection and recognition
accuracy are also higher and higher. A large number of
algorithms appear in each processing flow, and these
algorithms have their own advantages and disadvantages
and their scope of adaptation (Doulgkeroglou et al., 2020;
Luo et al., 2020).

Compared with traditional manual features, the biggest
advantage of deep learning is that it can automatically learn
the performance of complex high-level features in the data,
reducing the complexity of manual feature design. In recent
years, deep learning has been successfully applied to speech
recognition, image recognition, image segmentation, defect
detection and other fields (Huang et al., 2020; Li et al., 2020).

In the application of deep learning, Çelik et al. (2014)
designed a defect detection method that applies wavelet
transform ideas to neural networks, and experiments have
proved that this method has excellent defect detection
performance (Long et al., 2015). Li et al. (2017) designed a
stack noise reduction autoencoder based on the Fisher criterion
and built a defect detection model based on this, which can
improve the recognition rate of defect types to a certain extent
(Xiao et al., 2021). Gu et al. (2019) established a detection and
recognition model for cold-rolled steel sheet surface defects

FIGURE 1 | Four typical steel plate defects. (A) Pit defect, (B) Edge crack, (C) Scratches, (D) Rolled-in scale.
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based on the deep learning target detection algorithm Faster
R-CNN (Jiang et al., 2021b). The accuracy of the model on the
verification set reached an average of 93%. He et al. (2020)
introduced a transfer learning method, using feature extraction
networks trained on large-scale data sets to greatly improve
training efficiency.

At present, deep learning algorithms are rarely applied to the
detection of steel surface defects. The above-mentioned
intelligent detection method for steel plate defects based on
deep learning still has problems such as low classification rate
and low accuracy of defect target detection. In a complex
environment, the stability and robustness of the neural
network detection system is difficult to guarantee (Chen et al.,
2021b; Duan et al., 2021).

With the widespread use of deep learning, convolutional
neural networks will have better defect feature recognition and
detection capabilities. In this paper, convolutional neural
networks are used to intelligently detect defects in steel plates
to improve the automation and intelligence of defect detection in
the steel industry.

3. DATA ANALYSIS AND NETWORK
DESIGN

3.1 Data Analysis and Processing
3.1.1 Dataset
The steel plate defect dataset studied in this paper comes from
the competition platform kaggle and the Russian steel giant
Severstal. The data set contains 12,568 pieces of test set data
and 1801 pieces of training set data. The vertical and
horizontal resolutions of the picture are 256 and 1600
respectively.

As shown in Figure 2, in the training data, there are 5902
images without defects and 6666 images with defects. In a

defective image, there are four types of defects, and the
numbers of the four types of defects are not equal. Among
them, 897 were pit defects, 247 were edge crack defects, 5,150
were scratch defects, and 801 were oxide scale defects. And,
there are 6239 images containing 1 type of defect, 425 images
containing two types of defects, 2 images containing three
types of defects, and no images containing four types of
defects.

As shown in Figure 3, in the test set data, there are 858 images
without defects and 943 images with defects. In a defective image,
there are four types of defects, and the numbers of the four types
of defects are not equal. Among them, 141 were pit defects, 49
were edge crack defects, 706 were scratch defects, and 97 were
oxide scale defects. In each image, there are 893 images
containing one defect, 50 images containing two types of
defects, and no images containing three or four defects at the
same time. As shown in Figure 3.

From the analysis of the data set, the number of defective and
non-defective images is roughly the same. The number of
different types of defects is unbalanced, but the corresponding
proportions of defects in the training set and the test set are the
same. And most images have no defects or only contain one type
of defect. This brings great difficulties and challenges to neural
network construction and network training.

3.1.2 Run-Length Encoding
Because the defect image has a resolution of 256 × 1600, the size is
too large to limit the computing power and neural network
model, and it also has a great impact on the detection of small
defects. This paper uses Run-Length Encoding (RLE) algorithm
to compress the data.

RLE is a simple lossless compression method, which is
characterized by very fast compression and decompression (Li
et al., 2021). This method uses repeated bytes and the number of
repetitions to simply describe the repeated bytes, that is, a series of

FIGURE 2 | Training set analysis. (A) Number of four types of defects (B) The number of types of defects contained in a picture.
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consecutive identical data is converted into a specific format to
achieve the purpose of compression.

Meanwhile, in order to reduce the amount of calculation and
compress the deep learning model, this paper uses the parameter
quantization method to train the network, and uses FP32 and
uint8 mixed training to reduce the memory usage and training
time of the model.

3.1.3 Data Preprocessing
Data preprocessing is an essential step before neural network
training and testing. The quality of preprocessing will
directly determine the training results. Based on pytorch,
this paper uses torchvision graphics library to process
data sets.

The data were processed and enhanced by ColorJitter
(modifying brightness, contrast and saturation),
RandomVerticalFlip (flipping vertically around X axis
according to probability), RandomHorizontalFlip (flipping
horizontally around Y axis according to probability). Finally,
the data were regularized [mean � (0.485, 0.456, 0.406), std �
(0.229, 0.224, 0.225)] and normalized.

The data preprocessing settings are shown in Table 1.
In this section, the necessary analysis of the data set is carried

out, and the data set is coded, decoded and processed to provide
help for network training.

3.2 Model Evaluation Indicators and
Parameter Settings
3.2.1 Evaluation Index
In the field of semantic segmentation, IoU(Intersection over
Union), mIoU (mean Intersection over Union) and Dice are
important evaluation indicators to measure the accuracy of image
segmentation.

mIoU, i.e., calculating the IoU values on each category and
then averaging them. It is calculated as TP (number of true
samples)/[TP (number of true samples) + FN(number of false
negative samples) + FN(number of false positive samples)
numbers] (He et al., 2019; Cheng et al., 2020, 2021).

MIoU � 1
k + 1

∑k
i�0

pii∑k
j�0pij + ∑k

j�0pji − pii

(1)

Equivalent to:

MIoU � 1
k + 1

∑k
i�0

TP

FN + FP + TP
(2)

In which, i represents the true value, j represents the predicted
value, represents the prediction of the i-type pixel as the j-type
pixel, and k is the total number of categories. TP (True
Positive) means that the prediction is correct and the
prediction result is correct. FP (False Positive) means that
the prediction is wrong and the prediction result is correct. FN
(False Negative) means that the prediction is correct, but the
prediction result is wrong.

Dice(X,Y) � 2|X ∩ Y|
X + Y

(3)

Where, Dice is a common indicator in medical images. X
represents the real result, Y represents the predicted result,
and X ∩ Y represents the correct result of the prediction.

FIGURE 3 | Test set analysis. (A) Number of four types of defects (B) The number of types of defects contained in a picture.

TABLE 1 | Data enhancement method.

Image enhancement method Probability

ColorJitter 0.5
RandomVerticalFlip 0.5
RandomHorizontalFlip 0.5
Normalize 1
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3.2.2 Weighted Loss Function
In deep neural networks, the loss function is used as an
important indicator to evaluate the accuracy of the model,
which provides a reference for the network model to
approach the high-precision direction (Zhang H. et al.,
2021). Decreasing the Loss value of the network model can
make the model more and more accurate and improve the
robustness of the model. Common loss functions include
logarithmic loss function, mean square error loss function
(MSE), cross entropy loss function, and exponential loss
function.

In the multi-label classification problem, the binary cross
entropy loss function (BCE Loss) is the most common. BCE
Loss is defined as follows:

LBCE(ŷ, y) � −1
n
∑n
i�1
(yi logŷi + (1 − yi)log(1 − ŷi)) (4)

In which, n represents the total number of samples in the training
set, yi represents the true label of the ith sample, and ŷi represents
the model prediction value of the ith sample.

Sigmoid is a differentiable bounded function with non-
negative derivatives at every point. It is often used in binary
classification problems, as well as the activation function of neural
networks (Ma et al., 2020), that is, to convert linear input into
non-linear output.

S(x) � 1
1 + e−x

(5)

The form of the Sigmoid function is shown in Eq. 5. When
x → ∞, S(x) → 1 ; when x → −∞ , S(x) → 0.

This paper will use BCEWithLogitsLoss as the loss function for
the intelligent detection of steel defects. BCEWithLogitsLoss
combines the BCELoss and Sigmoid functions into one
category, which is numerically more stable than using
ordinary BCELoss and Sigmoid.

3.2.3 Learning Rate Adjustment and Its Optimizer
If the initial learning rate is too large, it will cause oscillation; the
initial learning rate is too small, resulting in slow convergence; the
later learning rate is too large, it will cause overfitting. Therefore,
in the training process, a dynamically changing learning rate is
generally set according to the number of training rounds. The
ideal strategy is to start with a large learning rate and
gradually decay.

In this paper, the ReduceLROnPlateau method is used to
dynamically update the learning rate, which is based on the
number of epoch training times and some measurement
values (loss, accaurcy, etc.) to dynamically decrease the
learning rate.

Adaptive Moment Estimation (Adam) is an optimizer that
converges quickly and is often used. Adam uses the first-order
moment estimation and the second-order moment estimation of
the gradient to dynamically adjust the learning rate (Liao et al.,
2020; Liao et al., 2021; Jiang et al., 2019a). It is an optimisation
method of adaptive learning rate. This paper uses Adam
optimization method to continuously optimize the learning rate.

3.3 Defect Detection Network Structure
3.3.1 Backbone
He and others proposed residual network (ResNet; He et al.,
2016), which has become one of the most widely used CNN basic
feature extraction networks in the field of computer vision by
introducing the concept of residual learning into CNN (He et al.,
2014). The residual block introduced in ResNet solves the
problem of network performance degradation caused by
gradient dispersion in the process of continuous deepening of
the network. The residual module structure of ResNet is shown in
Figure 4.

During forward propagation, due to the existence of short-
circuit connections, the deep and shallow features satisfy the
relationship:

xL+1 � xL + F(xL,WL) (6)

xM � xL + ∑M−1

i�L
F(xi,Wi) (7)

In which, xL and xL+1 represent the input and output features
of the Lth layer residual unit, F(xL,WL) represents the
residual mapping learned by the network, and xM
represents the input feature of the Mth layer residual unit.
Based on the chain derivation rule, the gradient during
backpropagation is:

zloss
zxL

� zloss
zxM

· zxM

zxL
� zloss

zxM
·⎛⎝1 + z

zxL
∑M−1

i�L
F(xi,Wi)⎞⎠ (8)

It can be seen that the residual module establishes a short-
circuit connection between the input and output of the module
through identity mapping, so that the gradient can be
maintained during back propagation and the gradient
dispersion phenomenon can be alleviated (Li et al., 2019b;
Tan et al., 2020).

Meanwhile, ResNet uses a bottleneck structure to replace the
original two 3 × 3 convolutions of the residual module, with
significantly fewer parameters in the same input dimension. By
stacking the basic units of the residual module, the depth of the
network can break through the original limit and reach hundreds
of layers.

Good performance of ResNet on image recognition and
localization tasks showed that characterisation depth is of
central importance for many visual recognition tasks. In the
following years, excellent feature extraction networks such as
ResNeXt, DenseNet, RegNet, SEnet, SKNet, etc (Xie et al., 2017;
Liu X. et al., 2021; Liu et al., 2021b; Liu et al., 2021c; Liu et al.,
2021d; Sun et al., 2020c; Sun et al., 2020d). were successively
proposed, constantly refreshing the accuracy rate of tasks such
as image classification. However, most of these detection
algorithms have been studied based on ResNet for
improvement.

3.3.2 Architectures
Target detection tasks and semantic segmentation tasks often
need to detect small targets, and the data set in this article has
small defect targets that need to be detected. However, in the

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 8108765

Hao et al. Intelligent Detection of Steel Defects

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


deep learning model, after many layers of convolution, the
characteristics of small targets will become fewer and
smaller.

Feature Pyramid Networks (FPN) was proposed by Lin
Tsung-Yi and others in 2017 (Lin et al., 2017). FPN
introduces multi-scale in the feature pyramid network and
improves on the basis of the SSD multi-layer branching
method (Bai et al., 2021; Cui et al., 2021). Similar to the TDM
(Top-Down Modulation) method, FPN is a top-down feature
fusion method.

Feature pyramid networks is a multi-scale target detection
algorithm, that is, there is more than one feature prediction
layer. Although some algorithms also use multi-scale feature
fusion for target detection, they often only use the features of
one scale obtained after fusion. Although this approach can
combine the semantic information of the top-level features
and the detailed information of the bottom-level features, it
will cause some deviations in the process of feature

deconvolution, and only using the features obtained after
fusion for prediction will adversely affect the detection
accuracy (Huang et al., 2019; Jiang et al., 2019b). Starting
from the above-mentioned problems, the FPN method can
predict on multiple fusion features of different scales to
maximize the detection accuracy.

As shown in Figure 5, the branches corresponding to the left
half of the two networks in Figure 5 is the pre-trained network.
Since the whole flow is bottom-up, it is called a bottom-up
network. The entire flow of the branches corresponding to the
right half of the two networks is top-down. The so-called top-
down network is the core part of the FPN. The diagram shows
(a) predictions for each layer of the network, and (b) predictions
for the final layer after fusing the multi-scale features. In
general, the (a) graph structure is widely used for target
detection and semantic segmentation, while the (b) structure
is more often used for semantic segmentation (Sun et al., 2021;
Tao et al., 2022).

FIGURE 4 | Residual module structure of ResNet.

FIGURE 5 | FPN architecture.
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FPN uses a multi-feature fusion approach to improve the
accuracy of the model. In this paper, FPN is applied to ResNeSt
and improved and optimised accordingly to achieve better
segmentation of steel surface defects.

3.4 DF-ResNeSt50
In 2020, Split-Attention Networks (ResNeSt) was proposed
(Zhang M. et al., 2021). ResNeSt introduces the Split-
Attention block, which consists of a feature map group and
split attention operation.

The number of feature map groups is given by the cardinal
hyperparameter k. The network refers to the generated feature
map group as a cardinality array. And introduce a new base
number called hyperparameter r, which represents the number of
splits in the cardinal array. The total number of feature groups is
G = kr, as shown in Figure 6.

The layout of Figure 6 is a cardinality master implementation,
in which feature map groups with the same cardinality index are
physically adjacent to each other. The cardinal implementation is
simple and intuitive, but it is difficult to use standard operators
for modularization and acceleration. For this reason, an
equivalent base-first implementation has been introduced.

The combined representation of each cardinal group can be
obtained by summing and fusing the elements across multiple
splits. The representation of the kth cardinal group is:

Û
k � ∑kr

j�(k−1)r+1
Uj (9)

FIGURE 6 | ResNeSt block.

FIGURE 7 | Split attention module.
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Here the cth component is calculated as:

skc �
1

H ×W
∑H
i�1
∑W
j�1
Û

k

c(i, j) (10)

In which, each feature map channel is generated using a
combination of weighted splits. H, W and C are the size of
the block output feature map. The Eq. 10 for the cth
channel is:

vkc � ∑r
i�1
aki (c)Ur(k−1)+i (11)

Where aki (c) denotes a (soft) assignment weight given by:

aki (c) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

exp(ϑci (sk))∑r
j�1exp(ϑcj(sk)) if r> 1

1

1 + exp( − ϑci (sk)) if r � 1

(12)

Based on the weights of the global contextual information,
mapping ϑci denotes sk, representing the weight of the split
attention of the cth channel. As shown in Eq. 12 and
Figure 7, when r � 1, r-Softmax is sigmoid, and when r > 1,
r-Softmax is softmax.

Figure 7 outlines the split attention block in a radix-major
layout. The input feature map is first divided into kr groups,
where each group has a cardinality index and a radix index. In this
layout, groups with the same cardinality index are adjacent to
each other. The divisions of the different groups are then added
together to combine feature maps with the same cardinality index
but different cardinality indexes. The global pooling layer
aggregates in the spatial dimension, keeping the channel
dimensions separate, and performs global pooling on each
individual cardinal array. Finally, two consecutive fully-
connected (FC) layers with a group size equal to k are added
after the pooling layer to predict the attention weights for each
segmentation. The two FC layers are activated using BN and
ReLU in between, and the use of grouped FC layers makes it
identical to apply each pair of FCs to the top of each cardinal array
separately.

With this implementation, the first 1 × 1 convolutional layer
can be unified into a single layer, and the 3 × 3 convolutional layer
can be implemented with a single grouped convolution of the kr
number of groups. The Split attention module can therefore be

modularised using standard operators to improve network
efficiency easily and quickly.

In this paper, the FPN and ResNeSt are modified and fused to
complete the network construction, and named DF-ResNeSt50.
DF-ResNeSt50 uses Cardinality(k) � 2, Radix(r) � 4 and width of
bottleneck � 40.

State-of-the-art performance can be achieved on multiple
tasks using the improved ResNeSt backbone model, namely:
image classification, target detection, instance segmentation
and semantic segmentation (Huang et al., 2021; Jiang et al.,
2019c). ResNeSt outperforms all existing variants of ResNet
and has the same computational efficiency. Therefore, this
paper uses DF-ResNeSt50 for network training.

4. EXPERIMENTAL RESULTS AND
ANALYSIS
4.1 Experimental Environment
Configuration
The algorithm research and network training in this article are all
carried out in the laboratory server. The specific computer system
and experimental environment configuration used are shown in
Table 2.

Based on the good ecology and scalability of the Python
language and the open source framework PyTorch, this article
uses a series of open source libraries and toolkits to implement the
overall algorithm program (Neuhauser et al., 2020; Sun et al.,
2020). Such as: Numpy, Albumentations,
segmentation_models.pytorch semantic segmentation model
library, etc.

These open source tools greatly save the development time of
the defect detection and segmentation program in this article, so
that more time and energy can be invested in the research,
improvement and experiment of the algorithm.

4.2 Model Training
4.2.1 Hyperparameter Setting
Before model training, some parameters cannot be learned
from data and need to be set in advance, which are
hyperparameters. The setting of super parameters will
directly affect the training process and the final
performance of the model. In general, it is necessary to
optimize the hyperparameters and select a group of optimal

TABLE 2 | Experimental environment configuration.

Project Configuration

Operating system Windows10
CPU i7-9700k
GPU RTX2080 Ti
RAM DDR5 16 GB × 4
Programming language Python
Deep learning framework PyTorch

TABLE 3 | Hyperparameter setting.

Hyperparameter Set up—V1 Set up—V2

Size of the picture 256 × 1600 256 × 1600
Batch_size 4 4
Num_workers 4 6
Initial learning rate 0.01 0.005
Accumulation_steps 8 8

Except for DF-ResNeSt50-V2, the hyperparameters of other networks are all trained in
accordance with Set up—V1, in Table 3.
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hyperparameters for the model network to improve the
performance and effect of learning (Chen et al., 2021c; Liu
et al., 2021e; 2021f; 2022).

At the same time, under certain conditions, the larger the
batchsize, the better the training effect. Gradient accumulation
realizes the disguised expansion of batchsize. The setting of this
paper is accumulation_steps � 8.

DF-ResNeSt50 is divided into two versions, DF-
ResNeSt50-V1 and DF-ResNeSt50-V2. The DF-ResNeSt50-

V2 version is an improvement and optimization based on the
network structure of the V1 version, from post-mask
processing, data enhancement, hyperparameters, etc. to
improvements and optimizations. The different settings
are shown in Table 3.

This paper adopts ADAM optimizer to optimize learning rate
and gradient descent in time. The evaluation indexes such as
BCEwithLogitsloss, mIOU and DICE are introduced to evaluate
the network.

4.2.2 Comparison of Training Results
The experiment trained a total of 6 network models: PSP
(ResNeSt14), Unet (ResNeSt14), FPN (ResNet50), FPN
(ResNeSt50), DF-ResNeSt50-V1, DF-ResNeSt50-V2. Each
network is trained for 40 epochs (rounds), each epoch is
about 17–22 min, and each network is trained for about
12–15 h.

The detection results of steel plate defects by different
networks are shown in Table 4.

TABLE 4 | Comparison of training results.

Network IoU (%) mIoU (%) Dice (%)

PSP(ResNeSt14) 63.97 54.70 78.03
Unet(ResNeSt14) 67.69 56.95 80.73
FPN(ResNeSt14) 68.92 58.35 81.60
FPN(ResNeSt50) 72.18 61.49 83.84
DF-ResNeSt50-V1 75.89 65.03 86.29
DF-ResNeSt50-V2 77.15 65.87 87.10

Bold values indicates the highest values.

FIGURE 8 | Comparison of different network models.

FIGURE 9 | BCE Loss plot-V1.
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As shown in Table 4, among the 6 network models, the best
network model is DF-ResNeSt50-V2. And, the Dice comparison
of different network models is shown in Figure 8.

The BCE Loss, Dice and mIoU of DF-ResNeSt50-V1 and V2
are shown in Figures 9–14 respectively.

DF-ResNeSt50-V2 is in the 10th epoch reducing learning rate
of group 0–1.00e-04. Therefore, a mutation occurred in the 10th
epoch. In the training, we use the ReduceLROnPlateau method,
BCEwithLogitsloss optimizer and loss function, so this mutation
is normal.

In order to test the capability and effectiveness of the model,
the effect of defect segmentation on the surface of the steel plate
was visualised, with different defect types selected by different
colour boxes. Figure 15 shows the visualisation of the defects in
Figure 1.

After a series of network improvements and algorithm
optimisation, the DF model in this paper achieves a mIOU of
77.15% and a DICE of 87.10%. It better meets the needs of defect
detection in the actual steel production process and provides help
for the next intelligent and efficient detection of defects.

FIGURE 10 | BCE Loss plot-V2.

FIGURE 11 | Dice score plot-V1.

FIGURE 12 | Dice score plot-V2.
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FIGURE 13 | mIoU plot-V1.

FIGURE 14 | mIoU plot-V2.

FIGURE 15 | Defect detection segmentation effect. (A) Pit defect (B) Edge crack, (C) Scratches (D) Rolled-in scale.
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5. CONCLUSION

In order to solve the problem of steel defects with different sizes,
low contrast and different defect categories, this paper uses the
DF-ResNeSt50 network model to investigate steel defects. By
analyzing the surface defect data of the steel plate, the data is pre-
processed with ColorJitter, Random VerticalFlip, Normalize, etc.
Based on the visual attention mechanism in the bionic algorithm,
this paper combined with feature pyramid networks and split
attention network model, from the perspectives of data
enhancement, multi-scale feature fusion and network structure
optimization, etc., the DF-ResNeSt50 network model is proposed.
DF-ResNeSt50 uses the radix-major implementation block
(cardinality � 2, radix � 4, width of bottleneck � 40), which
has better detection performance and detection efficiency
compared with related networks. In the future, the correlation
optimisation of the network can be applied in the direction of
object detection, video detection, quality detection, scene
semantic understanding, etc., with broad application prospects.
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