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Original Article – Comparative Study

IntRoductIon

Craniofacial growth and development is a complex process 
involving many molecular aspects.[1,2] The growth process of 
the maxilla and other midfacial bones is associated with the 
growth of the mandible and the cranial base.[3,4] Variations 
in craniofacial growth lead to different sagittal and vertical 
morphological patterns.[5-7] Sagittal patterns are most frequently 
classified into skeletal malocclusion Class I, II, and III,[8] 
whereas vertical patterns are differentiated into mesofacial, 
dolichofacial, and brachyfacial facial growth patterns.[9]

Many molecular and genetic factors are responsible for 
triggering the growth process.[1,2,4] Among them, runt-related 
transcription factor 2 (RUNX2) and bone morphogenetic 
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protein 2 (BMP2)[2] should be highlighted due to their important 
role in the craniofacial development.
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RUNX2 is a gene that encodes a transcription factor essential 
for bone formation and skeletal morphogenesis. This protein 
plays a role in the regulation of factors involved in skeletal 
gene expression, such as the expression of bone sialoprotein, 
collagen type 1 α (COL1A1), and osteocalcin (BGLAP2).[9]

BMP2 is a gene that encodes ligands of the transforming 
growth factor-beta superfamily of proteins.[2,10] These ligands 
are responsible for bone and cartilage formation due to its role 
in osteoblast and chondroblast differentiation.[9] BMP signaling 
pathway is associated with the fusion of facial patterns.[2,11]

Single nucleotide polymorphisms (SNPs) have the potential 
to alter all steps of gene expression depending on their 
genomic location. When they are within transcriptional 
regulatory elements, SNPs can affect mRNA (messenger 
RNA) expression,[12] impacting the phenotype. SNPs in 
many genes have been associated with different sagittal and 
vertical craniofacial patterns in humans,[5-7,13] including SNPs 
in RUNX2 and BMP2, which were associated with different 
maxillary and mandibular phenotypes.[13]

Although many studies have been evaluating the association 
between SNPs in genes with different craniofacial patterns, 
the interplay among SNPs, gene expression and craniofacial 
pattern has not been explored yet. Therefore, in this study, we 
evaluated if SNPs in RUNX2 (rs59983488 and rs1200425) and 
BMP2 (rs235768 and rs1005464) are associated with different 
craniofacial patterns in patients presenting for orthognathic 
surgery. Furthermore, we also investigated if RUNX2 and 
BMP2 expression (mRNA) in the maxilla and mandible are 
differently expressed according to facial patterns and are 
influenced by the SNPs in their encoding genes. Thus, SNPs 
as well as the relative gene expression of RUNX2 and BMP2 
in bone samples from the maxilla and mandible were explored 
in patients submitted to orthognathic surgery.

MateRIals and Methods

Ethical considerations
This study was approved by the ethical committee of the 
Federal University of Parana (26502919.6.0000.0093). 
All procedures performed in the study were conducted 
in accordance with the ethics standards given in 1964 
Declaration of Helsinki, as revised in 2013. All the 
participants provided written informed consent for the 
participation in the study.

Sample selection and study design
Patients with finalized orthodontic preparation were invited 
to participate consecutively during a 2-year period. This 
cross-sectional study followed three steps: (1) Gene expression 
analysis using maxillary and mandibular bone samples from 
21 patients to explore if RUNX2 and BMP2 are differentially 
expressed according to craniofacial patterns; (2) Functional 
analysis to evaluate, if SNPs in RUNX2 and BMP2 are 
potentially involved in the expression variations of RUNX2 
and BMP2 within the maxilla and mandible; (3) Genotyping 

analysis of DNA samples from 129 patients to evaluate, if SNPs 
in RUNX2 and BMP2 are associated with craniofacial patterns.

Adult patients referred to orthognathic surgery were included. 
Patients were invited to participate at universities and a private 
office (Curitiba, PR, Brazil). The oral and maxillofacial surgeon 
invited the patients to participate. Participants’ systemic 
condition was classified according to the American Society 
of Anaesthesiologists (ASA) Physical Status Classification 
System. Syndromic patients and patients with ASA III or 
higher were excluded.

Cephalometric analysis
All patients presented a pretreatment digital lateral cephalometric 
radiograph, which was analyzed by a single expert surgeon. 
Radiographs were taken in the centric jaw relationship. Dolphin 
2D® software (Dolphin Imaging software, Microsoft) was traced 
for the following angular measurements:
• Facial axis (Ricketts’) (NBa‑PtGn°): angle between 

Nasion-Basion (NaBa) and Pterygomaxil lary 
fissure‑Gnathion (PtGn) lines

• ANB° (Steiner) (ANB°): angle formed between A 
point-Nasion (AN) and Nasion-B point (NB) lines.

Patients were classified according to the ANB° as Class I (0°–
4°), Class II (>4°) and Class III (<0°), and according to 
NBa‑PtGn° as mesofacial (87°–93°), dolichofacial (<87°), or 
brachyfacial (>93°).

Sample collection for relative gene expression analysis of 
runt‑related transcription factor 2 and bone morphogenetic 
protein 2
Bone samples (surgical waste) were collected from maxilla 
and/or mandible, depending on the surgical plan (i.e., 
mono-or-bimaxillary surgery). Maxillary samples were 
collected from any region in the area of the Le Fort I 
osteotomy (as long as they were interfering with maxillary 
adaptation) after the downfracture. In the mandible, samples 
were collected from the bilateral sagittal split osteotomy 
region. The samples were stored in tubes containing RNAlater 
solution and frozen immediately after surgery.

Relative gene expression analysis are described in the 
Supplementary Material and was previously reported by 
Olsson et al.[14]

Briefly, the target genes RUNX2 (Hs00231692_m1) 
and BMP2 (Hs00154192_m1) and the reference genes 
ACTB (Hs01060665_g1) and GAPDH (Hs02758991_g1) were 
used. The 2‑∆ Cycle Threshold method was used to determine 
the relative levels of mRNA expression.

Sample collection for genotyping analysis
Saliva samples were collected for DNA extraction following a 
previously described method.[15] The SNPs described in Table 1 
were blindly genotyped (described in the Supplementary 
Material) as previously reported.[16] An internal consistency of 
100% was obtained by randomly repeating 10% of all samples.
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Statistical analysis
Statistical analysis was performed using the Prism GraphPad8.2 
package (GraphPad Software, Inc., San Diego, CA-USA). Data 
normality was assessed with the Kolmogorov − Smirnov and 
Shapiro − Wilk tests.

One-way analysis of variance or t-test was used to compare the 
mean and standard deviation (SD) relative gene expression. 
The Chi-square test was used to compare the SNPs according 
to the phenotypes. A correlation of gene expressions was tested 
using the Spearman’s correlation test. An established alpha of 
0.05 was adopted.

Results

A total of 129 individuals were included: 86 (66.7%) 
females and 43 (33.3%) males. Thirty‑two (24.8%) 
were Class I, 24 (18.6%) were Class II, and 73 (56.6%) 
were Class III. Regarding NBa‑PtGn°, 70 (54.3%) were 
brachyfacial, 37 (28.7%) mesofacial, and 22 (17.1%) 
dolichofacial.

Bone samples from 14 mandibles and 17 maxillas from 21 
individuals (8 males and 13 females) were used in this analysis. 
Regarding skeletal malocclusion, 7 participants were Class I, 

4 were Class II, and 10 were Class III. Eight participants were 
mesofacial, 7 dolichofacial, and 6 brachyfacial.

Figure 1 shows the RUNX2 and BMP2 expression in the 
mandible and maxilla (P = 0.783).

Figure 2 demonstrated the relative RUNX2 and BMP2 
expression according to the skeletal malocclusions. 
A statistically significant difference was observed for 
BMP2 expression in mandibular bone from Class I and III 
participants (P = 0.042).

Table 1: Characteristics of the single nucleotide polymorphisms studied

Gene Chromosome Reference sequence Position/function Base change (context sequence) Global MAF
RUNX2 6 rs59983488 Intron variant GGG[G/T] AGT 0.1787

rs1200425 Intron variant TTT[G/A] GAA 0.4297
BMP2 20 rs235768 Missense R (Arg)>S (Ser) CAG[A/T] CTT 0.2332

rs1005464 Intron variant GCC[A/G] GCC 0.2232

Figure 1: Relative mRNA expression according to each dental 
arch (mandible and maxilla). (a) Mean and standard deviation of 
runt‑related transcription factor 2. (b) Mean and standard deviation of 
bone morphogenetic protein 2

ba

Table 2: Mean mRNA levels in the mandible and maxilla according to single nucleotide polymorphisms genotypes

Arch SNPs Genotypes and mean (SD) relative mRNA expression P§

Mandible RUNX2
rs59983488 GG GT TT

1.58 (1.02) 0.31 (0.27) - 0.036*
rs1200425 AA AG GG

1.30 (1.52) 0.95 (0.63) 1.28 (0.71) 0.874
BMP2

rs235768 AA AT TT
10.7 (4.50) 12.71 (15.98) 28.21 (19.75) 0.230

rs1005464 AA AG GG
3.73 (-) 21.36 (23.81) 17.60 (15.03) 0.686

Maxilla RUNX2
rs59983488 GG GT TT

1.74 (1.50) 1.23 (0.61) - -
rs1200425 AA AG GG

0.96 (0.56) 1.38 (0.81) 3.17 (2.15) 0.038*
BMP2

rs235768 AA AT TT
13.98 (17.94) 19.68 (16.84) 13.34 (17.07) 0.789

rs1005464 AA AG GG
40.96 (-) 15.90 (15.83) 13.37 (14.86) 0.258

§ANOVA or t‑test were used, *Means statistically significant difference. SNPs: Single nucleotide polymorphisms
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Figure 3 demonstrated the relative RUNX2 and BMP2 expression 
according to the facial growth patterns (P > 0.05). Mean and SD 
for each comparison are presented in Supplementary Table 1.

There was no correlation between RUNX2 and BMP2 
expression neither in the mandible (r = 0.227; P = 0.379) nor 
in the maxilla (r = 0.389; P = 0.574).

Figure 2: Relative mRNA expression according to the skeletal malocclusions. (a) Runt‑related transcription factor 2 expression in the 
mandible. (b) Runt‑related transcription factor 2 expression in the maxilla. (c) Bone morphogenetic protein 2 expression in the mandible. (d) Bone 
morphogenetic protein 2 expression in the maxilla

dc

ba

Figure 3: Relative mRNA expression according to the facial growth patterns. (a) Runt‑related transcription factor 2 expression in the 
mandible. (b) Runt‑related transcription factor 2 expression in the maxilla. (c) Bone morphogenetic protein 2 expression in the mandible. (d) Bone 
morphogenetic protein 2 expression in the maxilla

dc

ba
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In RUNX2, the genotype distribution in rs59983488 was: 
GG = 14, GT = 6 and TT = 0; while in rs1200425 was: AA = 6, 
AG = 10, and GG = 4. In BMP2, in the rs235768 was: AA = 5, 
AT = 8 and TT = 6, while in rs1005464 was: AA = 1, AG = 6 
and GG = 13.

Table 2 demonstrates the RUNX2 and BMP2 expression 
according to the genotypes. A statistical significance was 
observed in rs59983488 (P = 0.036) and in rs1200425 (GG 
vs. GA, P = 0.038).

Due to associations and borderline associations observed in the 
first steps of this study, a genotyping analysis was performed 
in the total sample of 129 individuals. Table 3 shows genotype 
frequencies according to the phenotypes. No association was 
observed (P > 0.05).

dIscussIon

In the past years, there was an increase in SNP-phenotype[5-7] 
and genome-wide association studies (GWAS),[16,17] in 
which many genes/SNPs were linked to some craniofacial 
phenotypes, including RUNX2 [16‑18] and BMP2 . [19-21] 
However, the understanding of the functional impact of 
SNPs on gene expression within craniofacial tissue is still 
largely unexplored. Here, we provide novel findings of 
the impact of RUNX2 and BMP2 SNPs on their maxillary 
and mandibular gene expression in different craniofacial 
patterns.

In our study, BMP2 was differentially expressed in the 
mandible according to the skeletal malocclusion. Mandibular 
bone samples from skeletal Class III patients showed 
a lower BMP2 expression, when compared to skeletal 
Class I. Interestingly, SNPs in BMP2 are associated with 
mandibular retrognathism.[13] BMP2 is an essential regulator of 
osteogenesis, which directly regulates target gene expression[22] 
crucial for proper development. In osteoblasts, the target 
genes of BMP2 encode many transcription factors, including 
RUNX2,[23] known as highly important for the determination 
of craniofacial pattern.

RUNX2 function in osteoblast differentiation is affected 
by many regulatory genes.[24] RUNX2 also interacts 
with several coregulatory transcription factors, forming 
complexes that regulate the transcription of many 
bone-related factors in osteoblasts.[24] Mutations in RUNX2 
and expression levels of RUNX2 may be involved in the 
development of several craniofacial defects.[25] SNPs in 
RUNXs are involved in different craniofacial patterns.[13] 
Although our results of RUNX2 expression in the bone 
were not statistically different across skeletal patterns, the 
gene expression distribution conforms to previous evidence 
in the literature suggesting that RUNX2 is worth further 
investigation. Therefore, we performed a functional analysis 
in our study and found that the GG genotype of rs59983488 
was associated with a higher expression of RUNX2 in the 
mandible.

It is important to highlight that although our study did not 
demonstrate an association between the SNPs in BMP2 and 
RUNX2 and the craniofacial pattern, it does not mean that 
they are not involved in craniofacial phenotypes. Genetic 
variants in RUNX2 produce a deficient RUNX2 protein 

Table 3: Genotype frequencies according to the 
respective craniofacial pattern

Phenotype Genotypes, n (%) P

RUNX2 rs59983488

GG GT TT
Skeletal malocclusion

Class I 21 (72.4) 8 (27.6) 0 Reference
Class II 12 (57.1) 7 (33.4) 2 (9.5) 0.189
Class III 41 (63.1) 24 (36.9) 0 -

Growth pattern
Mesofacial 16 (55.2) 13 (44.8) 0 Reference
Dolichofacial 14 (66.7) 5 (23.8) 2 (9.5) 0.104
Brachyfacial 44 (67.8) 21 (33.2) 0 0.243

Phenotype Genotypes, n (%) P

RUNX2 rs1200425

AA AG GG
Skeletal malocclusion

Class I 8 (25.8) 14 (45.2) 9 (29.0) Reference
Class II 6 (28.6) 8 (38.1) 7 (33.3) 0.878
Class III 13 (18.5) 34 (48.6) 23 (32.9) 0.707

Growth pattern
Mesofacial 7 (20.6) 14 (41.2) 13 (38.2) Reference
Dolichofacial 8 (38.1) 8 (38.1) 5 (23.8) 0.314
Brachyfacial 12 (17.9) 34 (50.7) 21 (31.1) 0.657

Phenotype Genotypes, n (%) P

BMP2 rs235768

AA AT TT
Skeletal malocclusion

Class I 4 (12.9) 14 (45.2) 13 (41.9) Reference
Class II 2 (9.5) 8 (38.1) 11 (52.4) 0.752
Class III 8 (11.9) 30 (44.8) 29 (43.3) 0.987

Growth pattern
Mesofacial 4 (12.1) 13 (39.4) 16 (48.5) Reference
Dolichofacial 1 (4.8) 8 (38.1) 12 (57.1) 0.476
Brachyfacial 9 (13.8) 31 (47.7) 25 (38.5) 0.542

Phenotype Genotypes, n (%) P

BMP2 rs1005464

AA AG GG
Skeletal malocclusion

Class I 2 (6.4) 11 (35.5) 18 (58.1) Reference
Class II 3 (14.3) 5 (23.8) 13 (61.9) 0.500
Class III 3 (4.2) 23 (32.9) 44 (62.9) 0.848

Growth pattern
Mesofacial 2 (6.1) 11 (33.3) 20 (60.6) Reference
Dolichofacial 4 (19.0) 4 (19.0) 13 (61.9) 0.235
Brachyfacial 2 (2.9) 24 (35.3) 42 (61.8) 0.874

χ2 was used
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leading to cleidocranial dysostosis,[26] which affects dental 
arches.[27] Furthermore, disruptions in BMP signaling 
cause Treacher-Collins syndrome, which clinically 
presents remarkable craniofacial alterations.[2] Adhikari 
et al., (2016) performed a GWAS for facial features (using 
photographs) in Latin Americans and observed that SNPs 
in RUNX2 affected nose morphology. Recently, Küchler 
et al. (2021) performed a SNP-phenotype association study 
in Brazilians, also using cephalometrics to determine the 
phenotypes, and observed that SNPs in RUNX2 and BMP2 
were involved in a variety of craniofacial phenotypes, 
including skeletal Class II, mandibular retrognathism, 
mandibular protrusion, and dolichofacial phenotype.[13] 
It is possible that our sample led to a type II error in the 
genotype analysis, as some phenotypic groups presented 
a small sample size.

In the general population, skeletal Class I is more prevalent 
than Class II, followed by Class III.[28,29] Our sample was 
mainly composed by Class III individuals due to the fact that 
only patients seeking orthognathic surgery were included.[30] 
This might also explain the difference between the results 
observed here and in a previous study[13] evaluating orthodontic 
patients, in which SNPs in RUNX2 and BMP2 were associated 
with different craniofacial patterns.

conclusIon

BMP2 is expressed differently in the mandible of Class I and 
Class III participants. SNPs in RUNX2 and BMP2 are involved 
with their relative gene expression in the mandible and maxilla, 
respectively.
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Supplementary Table 1: Mean and standard deviation for 
each analysis

Gene Arch Mean (SD) P

Gene expression in maxilla and mandible [data from 
Figure 1]

Runx2 Mandible 1.14 (0.99) 0.346
Maxilla 1.55 (1.26)

BMP2 Mandible 16.57 (16.93) 0.783
Maxilla 14.95 (15.58)

Gene Arch Mean (SD) P

Gene expression in the maxilla and mandible according 
to skeletal malocclusion [data from Figure 2]

RUNX2 Mandible
Class I 0.89 (0.79) >0.05
Class II 1.52 (1.42)
Class III 1.12 (1.00)

Maxilla
Class I 1.79 (1.94) >0.05
Class II 1.95 (0.49)
Class III 1.21 (0.78)

BMP2 Mandible
Class I 28.59 (20.37) >0.05
Class II 12.09 (11.22)
Class III 6.79 (6.12)

Maxilla
Class I 20.57 (14.31)** 0.042
Class II 25.63 (21.55)
Class III 5.56 (9.48)*

Gene Arch Mean (SD) P

Gene expression in the maxilla and mandible according 
to the facial pattern [data from Figure 3]

RUNX2 Mandible
Mesofacial 1.08 (0.71) >0.05
Dolichofacial 1.01 (1.24)
Brachyfacial 1.38 (1.12)

Maxilla
Mesofacial 1.60 (1.88) >0.05
Dolichofacial 1.32 (0.71)
Brachyfacial 1.97 (0.36)

BMP2 Mandible
Mesofacial 23.06 (21.93) >0.05
Dolichofacial 18.10 (16.23)
Brachyfacial 6.16 (6.26)

Maxilla
Mesofacial 10.78 (13.61) >0.05
Dolichofacial 23.68 (16.49)
Brachyfacial 3.42 (2.07)

SD: Standard deviation; * Means statistically significant difference

PcR Method

Relative gene expression analysis of runt‑related 
transcription factor 2 and bone morphogenetic protein 2
For relative gene expression analysis, mirVana miRNA isolation 
kit (Ambion/Life TechnologiesTM) was used to perform RNA 
isolation. The spectrophotometer NanoDropTMOne (Thermo 
Fisher Scientific, Massachusetts, USA) was used to assess 
purity and RNA concentration. The High-Capacity® cDNA 
Reverse Transcription Kit (Applied Bio-systems, Foster City, 
CA, USA) was used. For the reaction, 400 ng of RNA, 0.8 μL 
of dNTP Mix ×25, 2.0μL of RT Buffer ×10, 2 μL of ×10 RT 
Random Primers and 1.0μL of MultiScribe® enzyme (50 U/
μL) were used in a final volume of 20μL.

Both the gene expression and the reverse transcription reaction 
were run in a StepOnePlus Real-Time Polymerase Chain 
Reaction System (Applied Biosystems). The target genes 
runt‑related transcription factor 2 (Hs00231692_m1) and 
bone morphogenetic protein 2 (Hs00154192_m1) TaqMan™ 
Gene Expression Assay primers and probes were used. 
As reference genes we used ACTB (Hs01060665_g1) and 
GAPDH (Hs02758991_g1). Amplification was performed 
under the following conditions: 95°C for 2 min, followed by 
40 cycles of 95°C for 1s and 60°C for 20s. The 2‑∆ Cycle 
Threshold method was used to determine the relative levels 
of mRNA expression.

Genotyping analysis
The spectrophotometer NanoDropTMOne (Thermo Fisher 
Scientific, Massachusetts, USA) was used to assess purity 
and DNA concentration. The SNPs were blindly investigated 
using TaqMan™ technology (Applied Bio-systems, Foster 
City, CA, USA) in the same real-time PCR system described 
above, following the reaction: 4 ng DNA/reaction, 1.5μL 
Taqman PCR master mix and 0.075μL SNP assay (Applied 
Biosystems, Foster City, CA, USA) in a total volume of 3 
μL. The thermal cycle was 10 min hold‑cycle at 95°C and 
40 amplification cycles of 15 s at 92°C and 1 min at 60°C. 
An internal consistency of 100% was obtained by randomly 
repeating 10% of all samples.
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