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Integrative processing of untargeted metabolomic
and lipidomic data using MultiABLER

Ian C.H. Lee,1,2 Sergey Tumanov,3,4 Jason W.H. Wong,1,5 Roland Stocker,3,6 and Joshua W.K. Ho1,2,5,7,*

SUMMARY

Mass spectrometry (MS)-based untargeted metabolomic and lipidomic ap-
proaches are being used increasingly in biomedical research. The adoption and
integration of these data are critical to the overall multi-omic toolkit. Recently,
a sample extraction method called Multi-ABLE has been developed, which en-
ables concurrent generation of proteomic and untargeted metabolomic and lipi-
domic data from a small amount of tissue. The proteomics field has a well-estab-
lished set of software for processing of acquired data; however, there is a lack
of a unified, off-the-shelf, ready-to-use bioinformatics pipeline that can take
advantage of and prepare concurrently generated metabolomic and lipidomic
data for joint downstream analyses. Here we present an R pipeline called
MultiABLER as a unified and simple upstream processing and analysis pipeline
for both metabolomics and lipidomics datasets acquired using liquid chromatog-
raphy-tandem mass spectrometry. The code is available via an open-source li-
cense at https://github.com/holab-hku/MultiABLER.

INTRODUCTION

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a common analytical tool for untar-

geted metabolomic and lipidomic studies in biomedical research. LC-MS/MS data analysis typically in-

volves raw data pre-processing, feature annotation, and statistical analysis.1 There are many existing

software and algorithms to perform different steps in the analysis pipeline, including XCMS,2 OpenMS,3

MS-DIAL,4 LipidFinder,5 and MZmine26 for MS data processing, LipidMS,7 LipidMatch from LipidMatch

Flow,8 METLIN,9 and metID10 for feature annotation, ProteoMM11 and CRMN12 for data normalization,

and limma13 and MetaboAnalyst14 for statistical analysis and data visualization. However, these tools often

operate as standalone programs for specific tasks such that there is a lack of a single workflow from raw data

to statistical analysis. In particular, there are different normalization methods available to prepare the data.

These include baseline approaches such as median normalization and quantile normalization, classifica-

tion-based approaches such as EigenMS, and internal-based approaches such as NOMIS and CRMN.

Some existing bioinformatics pipelines try to tackle this problem, such as a metabolomic analysis pipeline

on KNIME15 with OpenMS; however, that platform is not commonly used by biomedical researchers, and

the OpenMS pipeline does not incorporate lipidomic annotations. LipidMatch Flow can perform upstream

lipidomic processing; however, it is limited to an outdated R version (R V3.3.3). MS-DIAL and

MetaboAnalyst provide raw spectra processing and statistical analysis; however, they lack the feature

annotation function for either lipidomic or metabolomic data. Finally, multi-omics integration programmes

such as mixOmics16 and Paintomics17 provide multivariate methods for downstream integration and statis-

tical analysis but require a processed feature table as input. There are also commercially available pipelines

by the mass spectrometer vendors; however, these are usually only able to process data generated by spe-

cific instruments. The lack of a simple, easily reproducible, and unified workflow that can run on R and py-

thon for both LC-MS/MS lipidomic and metabolomic research in particular makes it difficult to compare

results from studies that used a dual metabolomic and lipidomic extraction method.

With the advancement in sample extraction techniques, researchers have developed concurrent omic sam-

ple extraction methods to study the metabolomic and lipidomic profile from a single sample.18–20 By per-

forming dual extraction using a specific solvent mixture, researchers can extract sufficient hydrophilic me-

tabolites and hydrophobic lipids from the aqueous and organic phase for LC-MS/MS analyses in a single

extraction. This greatly reduces the volume of samples required for the experiment design and allows re-

searchers to investigate the profile of tiny samples such as the atherosclerotic plaque in a mouse or tissue

1School of Biomedical
Sciences, Li Ka Shing Faculty
of Medicine, The University of
Hong Kong, Pokfulam, Hong
Kong SAR, China

2Laboratory of Data
Discovery for Health Limited
(D24H), Hong Kong Science
Park, Hong Kong SAR, China

3Heart Research Institute, 7
Eliza Street, Newtown, NSW
2042, Australia

4Faculty of Medicine and
Health, The University of
Sydney, Sydney, NSW 2006,
Australia

5Centre for PanorOmic
Sciences, LKS Faculty of
Medicine, The University of
Hong Kong, Pokfulam, Hong
Kong SAR, China

6School of Life and
Environmental Sciences, The
University of Sydney, Sydney,
NSW 2006, Australia

7Lead contact

*Correspondence:
jwkho@hku.hk

https://doi.org/10.1016/j.isci.
2023.106881

iScience 26, 106881, June 16, 2023 ª 2023 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:jwkho@hku.hk
https://doi.org/10.1016/j.isci.2023.106881
https://doi.org/10.1016/j.isci.2023.106881
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.106881&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


biopsy.19,20 The Multi-ABLE method developed by Talib et al.19 is a sample extraction method using a bar-

ocycler to generate a single lysate of the biological tissue suitable for subsequent proteomic, lipidomic,

and metabolomic analyses and multi-omic data generation. By pressurizing the tissue sample in the bar-

ocycler, sample liquification can be achieved in a very small volume of buffer (between 10 and 50 mL),

and proteomic, metabolomic, and lipidomic extraction can be done using aliquots of the same sample.

Therefore, there is a greater need in the informatics part of the metabolomic pipeline to have a simple

and unified processing pipeline to accompany the data acquisition method and perform the data analysis

for the concurrently extracted omic data.

Here, we present MultiABLER as a data analysis workflow for metabolomic and lipidomic data analysis to

accompany the Multi-ABLE extraction described by Talib et al.19 We compare the performance of different

normalization methods to evaluate which is best suited for the analysis pipeline. The workflow is imple-

mented in the MultiABLER package available on GitHub. The package integrates with LipidFinder for

raw data processing to perform the MultiABLER workflow and provides the functionality to normalize

and analyze the LC-MS/MS data. The schematic overview for the pipeline is shown in Figure 1. The data

analysis pipeline is reproducible for both metabolomic and lipidomic studies, providing an easy and fair

comparison for metabolomic and lipidomic data collected using the Multi-ABLE extraction.

RESULTS

Evaluation of the normalization methods

To decide which normalizationmethod wasmost appropriate for theMultiABLER pipeline, we analyzed the

lipidomic profiles of liver tissue from 19 apolipoprotein gene knockout (Apoe�/�) mice wild-type (WT) for

the biliverdin reductase a gene (Brva+/+) and 16 Apoe�/�Brva�/� Bvra double gene knockout (DKO) mice

collected by Chen et al.21 Lipidomic data were collected on LC-MS/MS in positive mode. The raw data were

first processed using the runXCMS function fromMultiABLER and then cleaned using LipidFinder, using the

parameters described in Table S1. Features present in at least three samples were retained and imputed

the data using half of the global minimum. The data were finally log transformed using base 2.

Figure 1. Schematic overview of MultiABLER

Multi-ABLE is a sample collection method that enables simultaneous generation of proteomics (not shown), lipidomic

(Lx), and metabolomics (Mx) data from small amounts of tissues. After sample collection, omics data are collected using

liquid chromatography-tandem mass spectrometry (LC-MS/MS). The raw mass spectrometry (MS) data are subjected to

peak identification using XCMS. Peaks are annotated against HMDB and LipidMaps using metID. LipidFinder is used to

normalize and filter the data against the solvent blank control, and the feature table is normalized using EigenMS and

subsequently median normalization. Peak identification, feature annotation, and feature table normalization are all

packaged in the MultiABER package that enables the lipidomic and metabolomic data to be processed and analyzed

jointly. Figure created with BioRender.com.
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To decide which normalizationmethod should be used for theMultiABLER pipeline, we compared the clas-

sification performance of median normalization, EigenMS, and the internal standard-based methods

CRMN and NOMIS with the data before normalization. The performance of the normalized data was

measured by performing 5-fold cross-validations on each dataset using ClassifyR (Figure 2). Without using

any normalization, the performance was very low (median balanced accuracy [BA] = 0.40; area under the

receiver operating characteristic (ROC) curve [AUC] = 0.35). Except for median normalization, all normali-

zation showed an increase in performance compared with the data before normalization. Comparing AUC

and the BA, EigenMS performed the best (median BA = 0.68; AUC = 0.75). Although internal standard was

used in the experiments, both NOMIS and CRMN had a lower performance compared with EigenMS

(NOMIS: median BA = 0.48, AUC = 0.48; CRMN: median BA = 0.38, AUC = 0.37). Furthermore, using me-

dian normalization after EigenMS normalization showed a performance similar to using EigenMS alone

(median BA = 0.69; AUC = 0.76). Running median normalization after EigenMS normalization allowed all

features across different omics to share the same median for fair comparison. Based on the comparison,

EigenMS and median normalization were implemented in the MultiABLER pipeline.

Application case study

Multi-omics investigation of arterial lesions in a mouse model of atherosclerosis

To examine the functionality of MultiABLER, we analyzed the metabolomic and lipidomic profile of arterial

tissue from 9 WT (Apoe+/+) and 11 Apoe�/� mice collected and analyzed using the multi-ABLE method.19

Metabolomic and lipidomic data were collected on LC-MS/MS in both positive and negative mode. Raw

data were converted into mzML files usingMSConvert. The data were then processed and annotated using

theMultiABLER pipeline, using the parameters described in Table S1. Briefly, the raw LC-MS/MS data were

processed with XCMS and filtered with LipidFinder. The lipidomic andmetabolomic peaks were annotated

with metID. Features were then filtered and normalized. Features with less than 3 representations were

filtered out from the data, and the missing values were imputed using half of the global minimum value.

The data were log transformed using base 2, and EigenMS and median normalization were used to

normalize the feature table. In total, 1,650 unique lipids and 1,314 metabolites were found in the data

(Table S2).

Figure 2. Evaluation of different normalization methods

(A–C) Re-sampled k-fold cross-validation was used to classify liver cells according to WT/KO label measured by

(A) balanced accuracy for each sample by 5-fold cross-validation, (B) balanced accuracy for all samples in each repetition

by 5-fold cross-valildation, and (C) area under the receiver operating characteristic (ROC) curve.

ll
OPEN ACCESS

iScience 26, 106881, June 16, 2023 3

iScience
Article



Toevaluate theperformanceof thepipeline,weperformeddifferential analysis to identifydifferentially expressed

lipids andmetabolites, sparse partial least squares (sPLS) projection to produce a multivariatemodel, and regu-

larized canonical correlation analysis (rCCA) to identify correlation between the lipidomics and metabolomics.

Differential analysis wasperformedusing limma, while sPLS and rCCAanalyseswere performed usingmixOmics.

rCCA demonstrated that running the normalization increased the correlation of lipidomics and metabolomics

data (Figures 3A and 3B). sPLS analysis using the normalized data also identified two distinct networks of lipids

andmetabolites (Figure S1). Using a limmamodel, 903 lipids and 601metabolites were identified as differentially

expressedbetween arterial tissue ofApoe+/+ andApoe�/�mice (adjustedp< 0.05), with 414 lipids and334me-

tabolites having a log-fold change (base 2) > 1 (Figure 3D, Table S2). Pathway analysis using MetaboAnalyst

showed that glycerophospholipid metabolism was affected between lesion and non-lesion tissue. The results

demonstrated the ability of MultiABLER to process lipidomic and metabolomic data and to produce statistical

validated results for biological interpretation. To verify the results of the differential analysis and multivariate

Figure 3. Application of the MultiABLER pipeline to jointly analyze metabolomics and lipidomic data from mouse

arterial tissue

(A-B) rCCA analysis before and after the normalization. Arrow plot was used to visualize the agreement of the

metabolomic and lipidomic data. The empty circle of the arrowhead indicates the sample in the space associated with the

lipidomic components, and the arrowhead indicates the location of the sample associated with the metabolomic

components L: lesion; NL: non-lesion.

(C) sPLS analysis after normalization. Arrow plot is used to visualize the agreement of the metabolomic and lipidomic

data.

(D) Differential analysis using limma model. Vertical dotted line indicates logFC at �1 and 1. Horizontal dotted line

indicates the p value at 0.05. logFC: log-fold change; Lx: Lipidomic; Mx: Metabolomic.

(E and F) Comparison of different analysis methods to the data using ClassifyR. 5-fold cross-validation was performed

using differentially expressed features identified before and after normalization (all features), sPLS components identified

after normalization, and rCCA canonical variates identified before and after normalization. The performance of each

method was assessed using the balanced accuracy and ROC.
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analysis, cross-validation was used to evaluate the different methods. Differentially expressed features, sPLS

latent components, and rCCA canonical variates were used to classify the samples in 5-fold cross-validation,

and the performance was measured using the balanced accuracies and AUC. Cross-validation classification

result showed that the normalization we used in MultiABLER improved the BA and AUC in both differential

expression and rCCA analysis (Figures 3E and 3F). Computational time for each step in the pipeline is included

in Table S3.

DISCUSSION

MultiABLER provides a simple analytic framework formetabolomic and lipidomic data collected from theMulti-

ABLE extraction and LC-MS/MS. The pipeline is light weighted and provides clear steps to analyze concurrent

metabolomic and lipidomic data. Moreover, as the pipeline is highly modularized, MultiABLER can also be

used toanalyze individualmetabolomic and lipidomicprofiles. However,MultiABLERcurrently does not provide

functions to analyze proteomicdata, which is another important output from theMultiABLERextractionmethod.

Integration for proteomic analysis is planned for future development.

Using the output of MultiABLER, multiple statistical analyses can be performed on the normalized feature

table of the metabolomic data. Cross-validation results in different downstream integrated analyses

showed that the feature table generated from MultiABLER is suitable for various statistical analyses,

including differential expression analysis, sPLS, and rCCA. The use of dimensionality reduction methods

can help identify potential underlying latent variables in the model. Cantini et al.22 have demonstrated

how different joint dimensionality reduction (jDR) methods such as RGCCA, MOFA, and intNMF can

improve performance in multi-omic studies involving genomics, transcriptomics, and proteomics in classi-

fication and clustering, biomarkers identification, and biological annotation identification. Our results

demonstrate that the output of MultiABLER can be used in different contexts for different downstream

analysis applications.

Limitations of the study

In our analyses, we identified EigenMS to be the best suited normalization method for MultiABLER. As

such, other data manipulation and normalization methods, such as k-nearest neighbours (kNN) imputation,

mean normalization, and quantile normalization,23–25 were not implemented in MultiABLER. These

methods may be implemented into MultiABLER in the future to expand its flexibility to suite different

LC-MS/MS experimental design. Finally, a recent package TidyMass26 was published on R with a similar

intent to simplify the process for LC-MS/MS analyses. While TidyMass has a strong focus on object-ori-

ented pipeline and covers a large number of existing methods for LC-MS/MS data analysis, MultiABLER

provides a specific workflow for Multi-ABLE-generated metabolomic and lipidomic analysis.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be provided by

the lead contact, Joshua W. K. Ho (jwkho@hku.hk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The data used in this study was derived from mouse liver samples collected by Chen et al.21 and mouse

arterial tissue collected by Talib et al.19 The liver data is available at EMBL-EBI BioStudies (accession

number EBI-BioStudies: S-BSST1038) and arterial tissue data is available at EMBL-EBI BioStudies (acces-

sion number EBI-BioStudies: S-BSST1039) (see key resources table).

d The workflow is implemented as an R package named MultiABLER which is available at the GitHub re-

pository (https://github.com/holab-hku/MultiABLER). A tutorial to run the analysis is also included in

the repository (https://htmlpreview.github.io/?https://github.com/holab-hku/MultiABLER/blob/main/

tutorials/tutorial.html). A video tutorial is available on YouTube (https://youtu.be/7qnLvJaVU-I). Informa-

tion on how to access the GitHub repository is provided in the key resources table. The packages used

are: R packages (xcms V3.20.0, CAMERA V1.54.0, metid V1.2.25, ProteoMM V1.16.0, crmn V0.0.21, Clas-

sifyR V3.3.10, limma V3.54.0), Python packages (LipidFinder V2.0.2).

d Any additional information required to reanalyse the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study represents computational research and does not utilize experimental models.

METHOD DETAILS

To generate an easily reproducible workflow for Mult-ABLE, we first compared the different normalization

methods for the data. Median normalization, CRMN, NOMIS, and EigenMS were compared and chosen for

their easy implementation or availability from established packages in R. The lipidomic profile of liver tissue

collected by Chen et al.21 was used to evaluate the normalization methods. After identifying the best

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

LC-MS lipidomic dataset containing 35 mouse

liver tissue sample collected by Chen et al.

(2021), https://doi.org/10.1016/j.redox.

2021.102152

EMBL-EBI Biostudies Database https://doi.org/10.1016/j.redox.2021.

102152

Biostudies accession nubmer: S-BSST1038

LC-MS lipidomic and metabolomic dataset

containing 19 arterial tissue sample collected

by Talib et al. (2019), https://doi.org/10.

1021/acs.analchem.9b01842

EMBL-EBI Biostudies Database https://doi.org/10.1021/acs.analchem.

9b01842

Biostudies accession nubmer: S-BSST1039

Software and Algorithms

LipidFinder Github repository https://github.com/ODonnell-Lipidomics/

LipidFinder

MultiABLER Github repository https://github.com/holab-hku/MultiABLER
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normalization method, the workflow was implemented in R with the packageMultiABLER. The functionality

of the package was demonstrated using the lipidomic and metabolomic profile of data from arterial tissue

collected by Talib et al.19

Overview of the MultiABLER bioinformatics workflow

MultiABLER enables metabolomic and lipidomic data to be processed and analyzed in a common set of

software packages. The overall workflow is shown in Figure 1. The MultiABLER workflow includes data

pre-processing using XCMS, normalization and filtering against blank samples using LipidFinder, feature

annotation using metID, and data normalization using EigenMS followed by median normalization.

XCMS, metID and EigenMS have been implemented in the MultiABLER package, together with support

functions to automatically read and write LipidFinder input and output. As such, all functions in the

MultiABLER package are single-lined, and compatible for both lipidomic and metabolomic analyses,

thus providing the user with a concise and unified workflow between metabolomic and lipidomic data,

without the need of looking for individual programmes for each steps in the workflow, among a plethora

of programmes. The functions and output of MultiABLER also follow the tidyverse27 format and use the

tidyverse packages, allowing easy data frame manipulation. These steps are described in detail in the

following sections. An R workflow and tutorial on each function and their input and output can

also be found at (https://htmlpreview.github.io/?https://github.com/holab-hku/MultiABLER/blob/main/

tutorials/tutorial.html), and a video tutorial can be found at (https://youtu.be/7qnLvJaVU-I).

Data pre-processing

MSConvert28 was first used to convert raw LC-MS/MS data into mzML files. XCMS was then used to identify

and align the LC-MS/MS peaks. The MultiABLER package performed XCMS analysis by the runXCMS func-

tion. Briefly, runXCMS performed XCMS peak detection using the centWave algorithm,29 alignment of

chromatograms based on retention time usig the Obiwarp method,30 chromatographic peak grouping

based on peak density, and CAMERA adduct annotation. The output of runXCMS is an aligned and

adduct-annotated feature table.

Feature annotation

Feature annotation is performed using metID provided by the metid_annotate function. MultiABLER in-

cludes two databases for metabolomic and lipidomic data. HMDB V5.0 is obtained using metID. HMDB

entries that are found in LipidMaps Structure database (LMSD) are labeled lipidome, and the remaining

non-lipid entries are grouped as metabolome. Both databases are included in the MultiABLER package.

Based on the database, metID uses the mass-to-charge (m/z) ratio to annotate the features.

Data processing and normalization using MultiABLER

As the XCMS output includes mass spectrometry artifacts, contaminants and adducts, and XCMS lacks a

function to filter these adducts and normalize the data against solvent blanks and quality control samples,

LipidFinder31 was used to filter the sample data for contaminants and normalize it to the controls. Because

LipidFinder is implemented in Python, this was the only step of the pipeline that requires an external pro-

gram that was not packaged in MultiABLER. The peakfilter module of LipidFinder was used to normalize

the solvent blank controls and filter the artifacts and contaminants. The MultiABLER package provides

read and write functions for producing LipidFinder compatible input and reading LipidFinder output

back into R.

After the data was processed by LipidFinder, the feature table was imported back into R and

MultiABLER was used to continue processing the data, including feature filtering, data imputation

and log transformation. Features with a large number of missing values (set by the user) were removed,

and the missing values were imputed using half of the global minimum. Finally, the data was log-trans-

formed using base 2. Normalization was then performed using EigenMS32 and median normalization.

Finally, for features found in both the positive and negative mode from LC-MS/MS, the feature row

with the highest median across the sample was used as the representation of that annotated features.

Each step of the data manipulation and normalization was modularized in MultiABLER and made

available as a function.
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QUANTIFICATION AND STATISTICAL ANALYSIS

The normalized feature table was used for different statistical analyses. To analyze the output, we per-

formed differential analysis using limma, sparse partial least squares projection (sPLS), and regularized ca-

nonical correlation analysis (rCCA) using mixOmics.16 To build the limma model, mouse arterial tissue was

grouped into non-lesion (NL) and lesion (L) containing tissue to build the design matrix. The limma model

was then used to perform differential analysis. For sPLS projection, annotated lipidomic and metabolomic

profiles were set as canonical variables and used to identify the PLS components in the data. Arrow plots

and cluster image maps of the model were generated to visualize the results using mixOmics. rCCA was

performed using the shrinkage approach to calculate the ridge penalties. Arrow plots were used to visu-

alize results using mixOmics.

Evaluation using k-fold cross-validation

To examine the potential suitability of different normalization approaches for MultiABLER, and to evaluate

the statistical analysis results from limma and mixOmics, we used 5-fold cross-validation to fit the data to a

classification model and compared their classification performance using ClassifyR.33 Briefly, each dataset

underwent 5-fold cross-validation which was randomly repeated 20 times. Within each round of 5-fold

cross-validation, internal feature selection was performed by selecting the top n features using ranked

t-test, where n was tuned automatically by ClassifyR. The selected features were used to train amodel using

Diagonal Linear Discriminant Analysis (DLDA). The 5-fold cross-validation results were summarized using

balanced accuracy and the area under the receiver operating characteristic (AUC) scored.

ADDITIONAL RESOURCES

MultiABLER tutorial: https://htmlpreview.github.io/?https://github.com/holab-hku/MultiABLER/blob/main/

tutorials/tutorial.html.

MultiABLER YouTube tutorial: https://youtu.be/7qnLvJaVU-I.
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