
1Scientific RepoRts | 7: 5625  | DOI:10.1038/s41598-017-05631-3

www.nature.com/scientificreports

Phonon Surface Scattering and 
Thermal Energy Distribution in 
Superlattices
Kartik Kothari1 & Martin Maldovan1,2

Thermal transport at small length scales has attracted significant attention in recent years and 
various experimental and theoretical methods have been developed to establish the reduced thermal 
conductivity. The fundamental understanding of how phonons move and the physical mechanisms 
behind nanoscale thermal transport, however, remains poorly understood. Here we move beyond 
thermal conductivity calculations and provide a rigorous and comprehensive physical description of 
thermal phonon transport in superlattices by solving the Boltzmann transport equation and using 
the Beckman-Kirchhoff surface scattering theory with shadowing to precisely describe phonon-
surface interactions. We show that thermal transport in superlattices can be divided in two different 
heat transport modes having different physical properties at small length scales: layer-restricted and 
extended heat modes. We study how interface conditions, periodicity, and composition can be used 
to manipulate the distribution of thermal energy flow among such layer-restricted and extended heat 
modes. From predicted frequency and mean free path spectra of superlattices, we also investigate the 
existence of wave effects. The results and insights in this paper advance the fundamental understanding 
of heat transport in superlattices and the prospects of rationally designing thermal systems with 
tailored phonon transport properties.

The understanding and manipulation of thermal transport at reduced length scales is crucial to improve the 
efficiency of energy materials, modern day lasers, microelectronics, and nanofabricated devices1, 2. The inde-
pendent control of heat and charge carriers (i.e. phonons and electrons) enables efficient thermoelectric energy 
conversion since a reduction in thermal conductivity, while maintaining electrical conductivity, results in the 
enhancement of the thermoelectric figure of merit ZT = S2σT/κ, where S is the Seebeck coefficient, T the tem-
perature σ the electrical conductivity, and κ the thermal conductivity3. In addition, ineffective heat dissipation 
is currently a limitation on efficiency of nano and micro optoelectronic devices. The most consequential mecha-
nism affecting thermal transport at the nanoscale is the interaction of phonons with interfaces and boundaries4. 
Ubiquitous systems wherein these interactions significantly modify thermal transport are layered structures such 
as superlattices. Superlattices are periodic systems constituted of two materials in which the periodicity induces 
different physical properties than those of the constituents. Their ease of manufacture and tunability has made 
superlattices a standard platform for semiconductor devices with applications in energy conversion5, electronics6, 
photonics7, and phononics8. The thermal conductivity of superlattices is considerably affected by the scattering 
of phonons at interfaces and thus differs from the conductivity of a layered system of the same materials at the 
bulk/macro scale. Phonons with relatively short wavelengths are scattered diffusely by the superlattice interfaces 
and they contribute negligibly to the in-plane thermal conductivity after scattering (Fig. 1)4. In contrast, phon-
ons with large wavelengths are scattered specularly and allowed to transmit and reflect, contributing to heat flux 
after scattering9. Despite significant advances in the last decades, current approaches are not able to determine 
how thermal phonons are transported in realistic superlattices and to establish the amount of phonons that are 
diffusely or specularly scattered at interfaces. This is in part due to the lack of rigorous physical descriptions of 
phonon surface scattering phenomena, which fail to include realistic and measurable surface features (e.g. surface 
roughness and correlation lengths). Importantly, this limitation has prevented the understanding and control of 
thermal transport processes in superlattices and the design of novel thermal transport phenomena such as coher-
ent interference and heat mirrors10.
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Theoretical methods to study thermal transport in superlattices can be divided into atomistic (e.g. molecu-
lar dynamics MD, density-functional-theory DFT) and continuum (e.g. Boltzmann transport) approaches each 
having its own advantages and drawbacks. MD techniques provide useful insights on the dependence of thermal 
conductivity on different physical variables and first-principle approaches allow to study the thermal conductivity 
based on DFT techniques. The detailed nanostructure surface features and their impact on thermal conductivity, 
however, are difficult to be incorporated. On the other hand, Boltzmann Transport Equation BTE approaches 
require the bulk phonon mean-free-path as input, which needs to be obtained using other methods (DFT) or 
fitting parameters. Once the bulk phonon mean-free-path is known, the thermal conductivity of multiple nano-
structures (including surface characteristics) can be readily obtained without using fitting parameters. Another 
contrast between atomistic and continuous approaches is the length scale range; atomistic simulations are com-
putationally intensive at large scales preventing the prediction of nano-to-bulk thermal properties, while the BTE 
allows bulk-to-nanoscale predictions but requires incorporation of wave effects (e.g. coherent interference and 
confinement) at very small length scales.

Using molecular dynamics, Daly et al.11 studied thermal transport in a simplified model for GaAs/AlAs super-
lattices. They found that for superlattices having smooth interfaces, the cross-plane thermal conductivity shows a 
minimum as a function of the superlattice period. The existence of such minimum was previously predicted using 
wave theory and indicates the presence of phonon wave effects12. In contrast, for superlattices with interfacial 
species mixing, the thermal conductivity increased with period length as observed in experiments13, 14. Trends in 
cross-plane thermal conductivity in superlattices were also investigated by Chen et al.15. They found that a min-
imum in thermal conductivity occurred if the mean free path MFP is close to or larger than the period and the 
lattice constants are similar. From MD simulations11–19, it is clear that a minimum in thermal conductivity exists 
if the superlattice interfaces are perfect and they vanish for interfaces with species mixing. The precise determi-
nation of phonon wave effects and their relation to surface features (i.e. roughness and correlation lengths) is 
however difficult to obtain with current MD models.

Using first-principles, Garg et al.20 analyzed the thermal conductivity of Si/Ge superlattices with relatively 
smooth surfaces and found that, for increasing period, the in-plane conductivity increases monotonically while 
a minimum was observed for the cross-plane configuration. More recently, the cross-plane thermal conductivity 
in Si/Ge superlattices via ab initio calculations was investigated and compared with experiments by Chen et al.21, 
and found that surface segregation and intermixing of atoms may further reduce thermal conduction. In addition, 
Garg et al.22 predicted using DFT that short-period superlattices with perfect interfaces could have high conduc-
tivity due to reduced availability of scattering channels. Tian et al.23 also calculated the cross-plane thermal con-
ductivity using atomistic Green’s functions and found an optimum period length which minimizes the thermal 
conductivity. Detailed surface features and their effects are difficult to include in first-principle approaches while 
Green’s function methods approximate thermal conduction by considering ballistic transport.

In addition to atomistic models, the Boltzmann transport equation (BTE) was employed by Chen24–26 to study 
in-plane and cross-plane thermal conductivity in GaAs/AlAs and Si/Ge superlattices, respectively. It was found 
that accounting for frequency dependent internal scattering and partially diffuse and partially specular interfaces 
was fundamental to obtain agreement between theory and experiments. Liu et al.27 evaluated the cross-plane 

Figure 1. Schematic representation of phonon transport in superlattices. (a) A superlattice made of materials 
A and B in which a temperature gradient is applied along the x direction. (b) Phonons originating at point O 
within the superlattice can travel within a single layered, i.e. layer-restricted (red) or they can cross multiple 
interfaces and propagate in different layers, i.e. extended (blue).
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thermal conductivity of Si/SiGe superlattices theoretically using BTE and experimentally by the 3ω technique. 
The thermal conductivity was found to decrease with decreasing ratio of layer thickness, specularity and period 
length. These BTE models consider frequency independent phonon-surface interactions and the interface spec-
ularity is thus incorporated as an empirically adjusted parameter. More recently, Aksamija et al.28 proposed a 
simplified BTE model to calculate the thermal conductivity of SixGe1−x/SiyGe1−y superlattices using a surface 
specularity parameter dependent on wavevector and interface roughness. The model was employed to obtain 
the anisotropy, temperature, and period variation of the thermal conductivity. Building up on this model, Mei 
et al.29 recently calculated the in-plane and cross-plane thermal conductivities of III-V superlattices. Being an 
improvement with respect to constant specularity models, the proposed BTE approach does not consider phonon 
reflections and transmissions at the interfaces, which is the fundamental principle that give rise to phonon coher-
ent interference and significantly influence the superlattice thermal conductivity.

Experimental measurements of superlattice thermal conductivity have shown a variety of trends. Lee et al.14 
showed that the cross-plane thermal conductivity of Si-Ge superlattices increased with increasing period length 
and suddenly decreased due to formation of dislocations. On the other hand, Capinski et al.30 measured the 
cross-plane thermal conductivity of GaAs/AlAs superlattices and found that it increases with increasing period 
length. Furthermore, Huxtable et al.31 observed that the thermal conductivity of Si/SiGe alloy superlattices 
increased with increasing period while that of SixGe1−x/SiyGe1−y superlattices was weakly dependent on period. 
More recently, experiments on epitaxial oxide superlattices by Ravichandran et al.32 exhibited a minimum in the 
thermal conductivity as a function of period length, thereby demarcating a transition from coherent to incoherent 
phonon surface scattering. In terms of the temperature dependence, experiments show that the thermal conduc-
tivity of Si/Ge superlattices increase up to a temperature of ~200 K, after which it remains fairly constant14, 31, 33–35.

Due to increased surface-to-volume ratios, a critical mechanism determining the thermal conductivity of 
nanostructures is phonon-surface scattering. Current theoretical approaches however do not incorporate a rig-
orous treatment of surface scattering phenomena that allows to describe realistic phonon-surface interactions 
and account for relevant physical variables such as phonon momentum and angle of incidence as well as surface 
roughness and correlation lengths. A fundamental understanding of superlattice thermal transport requires not 
only to establish the thermal conductivity but also to elucidate how phonons move within the system. Developing 
such deep understanding necessitates the establishment of the amount of phonons that are specularly and dif-
fusely scattered at the interfaces, the amount of heat that is channeled within a single superlattice layer, and 
the amount of heat that is transported across multiple layers. Such a thorough insight can only be achieved by 
theoretical approaches that accurately couple phonon transport within the layered materials and phonon scat-
tering phenomena at the interfaces. The approaches would allow to design and manipulate heat transport in 
superlattices and exploit their unique thermal transport properties such as layer-guided thermal transport and 
the coherent interference of thermal phonons. Here, we provide a rigorous thermal transport analysis using the 
Boltzmann Transport Equation to predict and study various physical mechanisms behind thermal transport pro-
cesses in superlattices, including phonon coupling between layers, reflection and transmission conditions, and 
specular and diffuse scattering of thermal energy at interfaces. We extend the electromagnetic wave scattering 
theory developed for rough surfaces by Beckmann and Spizzichino36 to accurately model reflection and transmis-
sion at rough interfaces as well as phonon coupling between the layers by accounting for all the relevant physical 
variables such as phonon properties (e.g. momentum, incident angle) and surface characteristics (roughness, 
correlation lengths, and shadowing)37. By directly calculating the reduction in phonon relaxation times due to 
surface scattering through the rigorous solution of the Boltzmann transport equation, our analysis moves beyond 
the Mattheissen rule approximation for modelling surface scattering. Importantly, using our model, we provide 
a detailed description of the amount of heat that is restricted within the constituent layers (layer-restricted pho-
nons) and that which is specularly transmitted across interfaces and propagates across different layers (extended 
phonons). In addition, we present a thorough study of the heat spectrum which allows to predict the relative 
proportion of heat carried by phonons of different frequencies and mean-free-paths. We also show how various 
components of thermal transport (layer-restricted and extended) are dependent on period length, different sur-
face conditions, and volume fraction of the constituents. Our predictions for variation of thermal conductivity 
with temperature show good agreement with experimental measurements. We also discuss the possibility of wave 
effects due to surface scattering for phonons that are restricted to propagate in individual layers and those that 
propagate among different layers in the superlattice.

Results and Discussion
To obtain a precise physical description of phonon transport in superlattices it is important to understand first 
how thermal energy flow is spatially distributed within the system (Fig. 1b). Phonons originating at point O 
within a superlattice can follow different paths depending on their frequency and incident angle. Some phonons 
can reach an interface and undergo specular transmission into the adjacent layer and continue to propagate in 
the different layers of the superlattice. We call these “extended phonons”. Phonons can also reach an interface 
and undergo total reflection due to two different physical principles: total internal reflection or band structure 
mismatch (i.e. no accessible frequency on the adjacent layer). Since these phonons move within a single layer, 
they are called “layer–restricted phonons”. Note that if the reduced phonon MFP is less than the distance needed 
to reach an interface in the direction of its wavevector, the phonons will also be layer restricted. Our goal is to 
move beyond calculation of thermal conductivity and to establish how thermal phonons are transported within 
superlattices. To achieve this goal, we first predict the amount of heat carried by extended and layer-restricted 
phonons and provide insights on the effects of periodicity and surface scattering. As we discuss in the next sec-
tions, extended and layer-restricted phonons constitute different heat conduction modes with distinct physical 
properties that can give rise to different wave-interference phonon effects on thermal energy transport.
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Role of periodicity on thermal energy distribution among superlattice layers. We show in Fig. 2 
the effects of superlattice period on the thermal conductivity and energy distributions for Si/Ge superlattices 
under different interface conditions at room temperature. The different contributions to thermal conductivity 
arising from extended (e-Si, e-Ge) and layer-restricted (r-Si, r-Ge) phonons are shown separately with blue and 
red lines respectively while black lines show the total in-plane superlattice thermal conductivity κSL. Note that e-Si 
refers to phonons that are extended and originating in Si, while e-Ge refers to extended phonons originating in 
Ge. Bulk phonon mean-free-paths and dispersion relations for Si and Ge are taken from existing values in the 
literature38–41. We observe that κSL decreases as the period length decreases, which is attributed to increased pho-
non interface scattering due to an increased interface density and the absence of wave effects (see Wave effects). 
Figure 2a quantitatively shows how κSL varies with period for different surface roughnesses (η = 0.1, 0.5, and 
1 nm) at the interfaces. While κSL is significantly reduced for larger η values at small length scales, for large peri-
ods κSL saturates to the bulk value κ κ κ= . + = . . + . = . .− − W0 5( ) 0 5(1 56 0 60) 1 08 /cm KSL bulk Si bulk Ge  inde-
pendently of the surface condition. This trend confirms to the physical concept that at large periods, superlattices 
behave as bulk multilayers and κSL does not depend on interface features. We found in Fig. 2a that, with increasing 
period, the contribution of extended phonons (i.e. those moving across different layers) undergoes a maximum 
and then vanishes asymptotically. The increase in contribution is due to the reduced interface density as the 
period increases, whereas the decline is due to the fact that as period lengths approach bulk values, the number of 
incident phonons on the interfaces reduces since phonon MFPs become much smaller than the layer thicknesses. 
That is, due to the limited extent of the bulk phonon mean-free-paths there are no extended phonons for large 
superlattice periods. Contrarily, the contribution of layer-restricted phonons (i.e. those moving in a single layer) 
increases monotonically with increasing period lengths and, similarly to κSL, reach the bulk values 0.5 κbulk−Si and 
0.5 κbulk−Ge for large periods. This is consistent since at large periods phonons do not see the interfaces and move 
within a single layer while carrying the heat. In Fig. 2b, we also analyze the relative contributions of the compo-
nents of conductivity, i.e. their percentage contribution to the total conductivity, as a function of the period length 
and for different surface conditions. We found that with increasing period length, the relative contribution of 

Figure 2. (a) Distribution of thermal energy carried by for layer-restricted phonons (red), extended phonons 
(blue), and total thermal conductivity (black) as a function of superlattice period length for surface roughness 
η = 0.1 nm, 0.5 nm, and 1.0 nm. (b) Variation of percentage contribution of extended and layer-restricted 
phonons in Si and Ge to the total superlattice thermal conductivity.
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phonons restricted to Si shows a minimum (correlated to the maximum in e-Si) while that of those restricted to 
Ge decreases. The relative contributions of phonons extended across layers also exhibit maxima before tending to 
negligible amounts at large period lengths. The contribution of different phonon transport modes to the thermal 
conductivity is dependent on the superlattice period and surface conditions and, in particular, we found that there 
exist a specific period for which the amount of heat carried by extended phonons is maximized.

Influence of superlattice volume fraction. Next we investigate the phonon energy distributions within 
the superlattices as a function of the volume fraction f of the constituent materials. We consider two vastly dif-
ferent SiGe superlattice conditions by choosing fSi = 0.75 and fSi = 0.25 and show in Figs 3 and 4 the variation of 
the thermal conductivity with period for different surface conditions. For a fixed period length, decreasing fSi 
decreases the thermal conductivity κSL, which is analogous to the bulk case, since κbulk−Si > κbulk−Ge. For fSi = 0.75 
(Fig. 3), the contribution to conductivity of phonons restricted to Si is increased with respect to fSi = 0.50 due to 
its higher volume fraction. Note that the contribution of extended phonons originating from Si and the maxi-
mum is also more pronounced than fSi = 0.50 and for period lengths d < 104 nm the contribution is larger than 
that of those restricted in Ge. For larger periods, however, a reversed behavior is observed due to the zero-limit 

Figure 3. (a) Variation of thermal conductivity of layer-restricted and extended phonons as a function of 
period length for Si/Ge superlattices having volume fraction of fSi = 0.75, with roughness values of 0.1 nm and 
0.5 nm. (b) Relative contribution of extended and layer-restricted phonons in the corresponding superlattices.
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contribution of extended phonons at large periods. In terms of relative contributions, phonons restricted to Si 
still exhibit a minima with increasing period length (Fig. 3b) which is in agreement with the trend found for 
fSi = 0.50. The relative contributions of layer-restricted phonons in Ge are weakly dependent on the period length. 
On the other hand, a maximum is still found in the relative contribution of extended phonons from Si and Ge. For 
fSi = 0.25 (Fig. 4), we observe that the contribution to conductivity of layer-restricted phonons in Ge is the largest 
(due to the large Ge volume fraction) followed by that of phonons restricted to Si and thereafter that of extended 
phonons originating from Si and Ge. This feature is maintained across all period length scales. In terms of relative 
contributions, the relative contribution of phonons restricted to Ge decreases while that of phonons restricted to 
Si increases with increasing period. Importantly, by comparing Figs 2, 3 and 4, we found that reducing the volume 
fraction of Si does not alter the existence of a maximum for extended phonons but the amount of heat carried by 
these phonons is significantly reduced. Note that all the aforementioned maxima and minima for the distribution 
of thermal energy are more pronounced in the case of small interface roughness as reduced interface scattering 
allows for larger mean free paths and thus a larger proportion of extended phonons.

Figure 4. (a) Variation of thermal conductivities with period length for Si/Ge SLs, having volume fraction of 
fSi = 0.25, with surface roughness η = 0.1 nm and η = 0.5 nm. (b) Relative contribution of extended and layer-
restricted phonons.
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The impact of interface roughness. Since interface conditions are a critical aspect for superlattice ther-
mal transport, we investigate in detail the variation of energy distribution and thermal conductivity with respect 
to surface roughness in superlattices fSi = fGe = 0.50. Figure 5 shows κSL when the interface roughness is varied 
from η = 0 nm to 1 nm. We quantitatively show how κSL reduces and converges to a constant value as the rough-
ness increases. This behavior is observed in restricted and extended components of the conductivity and across 
different period lengths. This is attributed to the fact that as we increase interface roughness, the fraction of pho-
nons that are specularly scattered diminishes asymptotically. Very rough surfaces lead to complete diffusive scat-
tering and that gives the lowest value of conductivity for a specific period length. On the other hand, we observe 
that κSL increases at η = 0. This is due to the absence of diffuse interface scattering in the superlattice. In this case, 
it is only the impedance mismatch which modulates the amount of heat carried in different constituent elements. 
Since impedance mismatch is non-vanishing in Si/Ge SLs, we note that κSL does not tend to bulk values at η = 0 
in the quasi-ballistic regime.

From the previous discussions, it is clear that the amount of thermal energy carried by layer-restricted and 
extended phonons can be tailored by manipulating the structural features of the superlattice such as period, vol-
ume fraction, and surface roughness. This means that it is possible to rationally design superlattices with maximal 
or minimal proportions of heat carried by extended or layer-restricted phonons. These different heat transport 
processes can give rise to different physical properties and wave effects as we discuss later.

Heat frequency spectrum in superlattices. One important aspect in nanoscale heat transport is the 
establishment of the amount of heat carried by phonons with different frequencies. The prediction of the heat 
frequency spectrum allows to determine whether heat is carried by low, middle, or high frequency phonons, 
which can be utilized to rationally design thermal materials and devices42–44. Next, we study the heat frequency 
spectrum in Si/Ge superlattices. Figure 6 shows the normalized cumulative conductivity and relative cumula-
tive conductivity at room temperature as a function of frequency for period lengths d = 10 nm and 100 nm, and 
fSi = fGe = 0.5. Two different surface roughnesses were considered for both superlattices, η = 0.1 nm and 0.5 nm. 
Note that when the period decreases, the proportion of heat carried by high frequency phonons increases. For 
instance, for d = 10 nm, η = 0.1 nm, approximately 50% of the heat is carried by phonons with frequencies less 
than 3 THz, while this proportion is increased to 60% for d = 100 nm. This is due to reduced phonon scattering 
at the boundaries (due to lower interface density) in longer period length superlattices, which allows for larger 
mean-free-paths. Thus, a lower frequency phonon can carry more heat in a longer period superlattice. Figure 6a 
also quantitatively establishes the shift in the frequency spectrum with change in interface roughness. We note 
that with increase in roughness, the total superlattice conductivity spectrum shifts towards the right i.e. higher 
frequencies (or blue shift). This suggests that increase in interface roughness scatters lower frequencies more 
significantly (due to larger MFPs), thus higher frequencies carry more heat. The kink around 5 THz is due to 
the existence of only longitudinal modes at high frequencies. In Fig. 6b, we present the relative cumulative con-
ductivity as a function of phonon frequency. The plots indicate the fraction of heat carried by layer-restricted 
and extended phonons up to a certain frequency for different periods and surfaces roughnesses. For example, at 
d = 100 and η = 0.5 nm, approximately 65% of the heat conduction is layer-restricted and the remaining ~35% 
is extended for phonons up to 3 THz in frequency. Figure 6b shows that with increasing interface roughness 
the fraction of heat that is layer-restricted is increased. This is consistent with the limiting case of fully diffuse 
interfaces wherein there will be no thermal conductivity contribution of extended modes and all heat will be 
layer-restricted. This observation provides a mechanism that can be utilized to control the proportion of thermal 
conductivity which is layer-restricted and extended by manipulating the roughness. We provide further verifica-
tion of this trend in the next section. We also note that as frequency increases more phonons tend to be restricted. 
This is attributed to the larger mean-free-paths of low-frequency phonons which allow them to reach the inter-
faces to a larger extent. Also, low-frequency phonons have large wavelengths and are more specularly reflected at 
the interfaces, enabling transmission across different layers.

Figure 5. Effects of interface roughness on the amount of heat carried by layer-restricted and extended 
phonons in superlattices with periods d = 10 nm, 100 nm, and 1000 nm. Black, red and blue curves represent 
total, layer-restricted and extended components of conductivity respectively.
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The phonon mean-free-path spectrum. In addition to the frequency spectrum, a critical thermal trans-
port property is the phonon mean-free-path spectrum, which allows to determine how far phonons move while 
carrying heat. In superlattices, the reduced phonon MFPs in each layer i depend on the z-coordinate of the point 
where the phonon originates and the wavevector 



k , and are given by the solutions of the BTE (See Methods). We 
consider superlattices of period lengths 100 nm and 10 nm and surface roughness of 0.1 nm and 0.5 nm 
(fSi = fGe = 0.50). Figure 7a gives the normalized cumulative conductivity at room temperature as a function of the 
MFP. The normalized cumulative conductivity tends to saturate starting at MFPs approximately 1 μm for period 
d = 10 nm. This implies that phonons having MFP larger than the saturation MFP do not carry significant portion 
of heat. We note that for all the components of conductivity, the saturation MFP shifts to higher values as the 
period length increases to d = 100 nm i.e. the curves shift to the right. This is consistent, since a shorter period 
length would imply shorter MFPs due to higher influence of boundary scattering. We observe that, in agreement 
with the frequency spectrum, more heat is layer-restricted than extended between the layers. This is due to the 
following reasons – (1) high frequency phonons of Si having frequency higher than the maximum frequency 
allowed in Ge (for either polarization – longitudinal or transverse) carry significant amount of heat and (2) pho-
nons that are restricted in Ge via total internal reflection (due to the large acoustic impedance between Si and Ge) 
also carry substantial heat. Also, in agreement with the previous section, we observe that with increasing rough-
ness, a larger fraction of heat conduction is restricted to a layer.

Temperature dependence and comparison with experiments. Figure 8a shows the comparison 
between theoretical predictions and experimental measurements of superlattice thermal conductivity as a func-
tion of temperature. We note that measurements of in-plane thermal conductivity of SiGe superlattices in the 
literature are scarce. The theoretical (solid lines) and experimental (symbols) plots show the temperature varia-
tion of in-plane thermal conductivity in a Si/Ge superlattice with period d = 4 nm and fSi = fGe = 0.50. We observe 
that κSL initially increases with increase in temperature, reaches a maximum and then shows a weak dependence 
with increase in temperature. The observed reduction of κSL at low temperatures is a result of decreasing phonon 
occupation as the temperature is reduced. At higher temperatures, phonon occupation does not change signifi-
cantly, and the weak dependence of κSL on temperature is a consequence of the dominance of interface scattering 

Figure 6. (a) Frequency spectrum for Si/Ge SL of period lengths d = 10 nm and d = 100 nm at roughness values 
of η = 0.1 nm and η = 0.5 nm (solid and dashed curves respectively). (b) Relative cumulative contribution 
of extended and layer-restricted phonons (purple and brown respectively) as a function of frequency in the 
corresponding SLs.
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Figure 7. (a) Mean-free-path spectrum for Si/Ge SL of period lengths d = 10 nm and 100 nm at roughness 
values of 0.1 nm and 0.5 nm (solid and dashed curves respectively). (b) Relative cumulative contribution of 
extended and layer-restricted phonons (purple and brown respectively) as a function of mean-free-path in the 
corresponding SLs.

Figure 8. (a) Comparison between the theoretical predictions and experimental data for a 50-50 Si-Ge SL of 
period length 4 nm. (b) Temperature variation of thermal conductivity for Si-Ge SL of periods length d = 10 nm, 
100 nm, and 1000 nm (dotted, dashed and solid curves respectively) at roughness values η = 0.1 nm, η = 0.5 nm 
and fully diffuse scattering (green, orange and black curves respectively).
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over phonon-phonon scattering due to the small superlattice period. We see that our predictions can explain the 
trends by providing a match with the experimental data35. In addition, Fig. 8a shows the sensitivity of κSL with 
respect to surface roughness where a small decrease in η leads to a slight increase in κSL. We provide in Fig. 8b the 
dependence of κSL on temperature for a vast range of structural features, where periods are increased by orders of 
magnitude from d = 10 nm to d = 1μm, and three surface roughness conditions η = 0.1 nm, η = 0.5 nm, and fully 
diffusive interfaces are considered. Note that at high temperatures (>100 K), with increasing period length, there 
is a reduction of thermal conductivity with temperature due to phonon-phonon scattering, in contrast to a nearly 
constant dependence for small periods due to the dominance of phonon-surface scattering.

Phonon wave effects. In this section, we analyze the possibility of wave effects, which is an emerging 
research area that has captured significant interest in recent years. For certain structures and temperatures, wave 
effects can modify phonon dispersion relations, opening opportunities to control phonon group velocities and 
density of states, which are critical transport properties affecting the thermal conductivity10. The coherent inter-
ference of multiple reflected phonons at interfaces is the basic mechanism for the appearance of wave effects. 
It is important to highlight that thermal phonons are incoherent in the sense that they are formed by random 
vibrations of the atomic lattice. Although thermal phonons are incoherently generated, wave effects due to coher-
ent interference refer to wave effects arising from the coherent interference of phonons with themselves after 
reflection and transmission at multiple surfaces or interfaces. In what follows, we explain why wave effects are 
difficult to obtain for room temperature in-plane thermal transport in Si/Ge superlattices and provide guidelines 
to achieve wave effects for thermal phonons in superlattices. There exist two wave effects that can develop in 
superlattices: (1) for layer-restricted phonons, multiple reflections at the surface boundaries of the layer can inter-
fere coherently and given rise to “quantum confinement” effects; (2) for extended phonons, multiple reflections 
at the interfaces between the layers of the superlattice can interfere coherently and give rise to “phononic band 
gaps”. We note that in both cases the net effect is the modification of the phonon dispersion relations and thus the 
velocities and density of states of thermal phonons. The specific conditions for development of phonon quantum 
confinement effects in terms of film thickness, roughness and temperatures have been analyzed in ref. 45. In this 
paper, we focus our analysis on the development of coherent interference for extended phonons.

Extended phonons propagate through different layers in the superlattice. Figures 2, 3, 4 and 5 show that the 
amount of heat they carry is dependent on the superlattice structural features and in general is smaller than 
that carried by layer-restricted phonons. For period d = 100 nm, roughness η = 0.1 nm, and fSi = 0.75 − fGe = 0.25, 
however, the relative amount of heat carried by extended phonons is close to 30%. This is therefore the most 
favorable superlattice for the development of coherent interference in the sense that 30% of the heat is carried by 
phonons that see multiple interfaces. We note, however, that for strong coherent interference effects in SiGe pho-
nons must see at least ten interfaces46, 47. We calculated the fraction of heat carried by phonons that travel through 
five superlattice periods (i.e. 10 interfaces) and found that it is reduced to 16%. This small amount is one reason 
why strong wave effects and a minimal thermal conductivity are not observed for in-plane transport. We would 
like to clarify that bulk phonon mean free paths in Si and Ge can be relatively long but they are strongly reduced 
in superlattices due to surface scattering. As a result, only a reduced fraction of phonons can travel across multi-
ple layers when the Si-Ge superlattice interfaces are rough. Since coherent interference of extended phonons can 
lead to wave effects, having a small fraction of those, leads to negligible wave effects and bulk material parameters 
can therefore be used. This is also in agreement with the literature as strong wave effects have been demonstrated 
only for cross-plane phonon transport with smooth interfaces. In fact, in-plane phonon transport is not the ideal 
case since phonons that see the largest number of interfaces (before thermalizing) propagate normally to the 
temperature gradient and therefore do not conduct a significant amount of heat. Although coherent interference 
effects for in-plane phonon transport in Si/Ge superlattices at room temperature are small, phonon wave effects 
can be achieved by releasing the constraints as follows. Cross-plane phonon transport: When the temperature gra-
dient ∇T is normal to the layers, layer-restricted phonons travel perpendicularly to ∇T while extended phonons 
(which can be subject to coherent interference) move along ∇T. This is in direct contrast to in-plane phonon 
transport. As a result, for cross-plane phonon transport, phonons that can be subject to coherent interference 
carry a more significant part of the heat, and wave effects may become significant. Cross-plane phonon wave 
effects have been reported theoretically using wave theory12 and molecular dynamics18, 19 and experimentally in 
oxide superlattices32. Alloying: In alloys, the mass-difference in the atomic lattice gives rise to diffuse scattering 
of short-wavelength phonons, restricting their ability to carry heat43, 44, 48. As a result, the relative amount of heat 
carried by long-wavelength phonons increases with respect to the pure materials. Phonons with long wavelengths 
(i.e. low frequencies) have large mean-free-paths and are more prone to undergo specular interface scattering, 
which increases the likelihood of developing extended modes and wave effects10. Low temperature: At low tem-
peratures, the proportion of heat carried by long-wavelength phonons increases but for reasons different to those 
in alloying. In this case, high-frequency phonons are not thermally excited and therefore do not carry heat. The 
heat spectrum is thus made of long-wavelength phonons, which are likely to scatter specularly at interfaces and 
develop extended modes and wave effects. Wave effects at low temperatures have been recently demonstrated 
experimentally in two-dimensional periodic porous materials49, 50. It is important to highlight that wave effects 
would appear for certain structures under certain conditions, and full characterization of the structures in terms 
of periodicity and interface roughness as well as temperature needs to be investigated to clearly establish when 
wave effects on thermal transport can develop in engineered nanosystems.

Summary
In summary, we studied thermal phonon transport in Si/Ge superlattices using a rigorous Boltzmann trans-
port model that includes the effects of phonon coupling between layers, superlattice periodicity, and interface 
surface conditions while also considering the dependence of surface specularity on phonon wavelength, angle 
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of incidence, and roughness. Our model thus incorporates all relevant physical properties relevant to heat con-
duction in superlattices. We provided a detailed description of the amount of thermal energy carried by phonons 
restricted to a layer and those which are extended over multiple layers in the superlattice. We predicted the varia-
tion of thermal conductivity with varying period length, roughness and volume fraction for both layer-restricted 
and extended phonons. The results provide new tools to manipulate the proportion of heat that is conducted in 
a single or multiple layers and can be utilized for the rational design of thermal systems. For in-plane phonon 
transport at room temperature we found that, in general, heat is primarily carried by phonons restricted within 
the layers. Based on the detailed model developed, we also computed the frequency and mean-free-path spec-
trum for superlattices of different period lengths and surface conditions. The frequency and MFP spectra can be 
utilized to design thermal devices based on superlattices as material platforms, as they allow to determine ballistic 
vs. diffusive and coherent vs. incoherent heat conduction regimes. Wave effects for Si/Ge in-plane phonon trans-
port at room temperature were found to be small but they can be increased by considering cross-plane transport, 
alloying or low temperatures. The fundamental understanding of thermal phonon transport processes in superla-
ttices holds the promise of rational design of thermal materials and devices with unprecedented heat flux control.

Methods
Thermal conductivity. The in-plane thermal conductivity of superlattices is calculated by using the well-es-
tablished Fourier’s law of heat conduction, which is given by

κ= − ∇
�� ��
j T (1)

where 
��
j  is the heat flux, κ is thermal conductivity and ∇

��
T  is the temperature gradient. Kinetic theory establishes 

that the heat flux4 
��
j  is given by the product of the energy ω carried by phonons, their distribution functions f and 

their velocities v . Integration over all possible phonons with wavevectors 


k  gives the thermal flux as

∫∑
π

ω= ��� � � �j f v d k1
(2 ) (2)p

k p k p k p3 , , ,
3

where the subscript p denotes the different polarizations of phonons (i.e. longitudinal and transverse). The ther-
mal conductivity κ of the superlattice is calculated by combining Eqs (1) and (2) and integrating the flux along 
the superlattice period t0 as

∫κ− ∇ =
�� ��

T
t

j dl1
(3)0

The calculation of the thermal conductivity using Eqs (2) and (3) requires the distribution of phonons f k p,  for 
the superlattice, which is determined by the Boltzmann Transport Equation (BTE).

Boltzmann transport equation. The generalized form of the Boltzmann Transport Equation, which 
allows to obtain the phonon distribution functions f k p, , is given by ref. 4

∂

∂
+ . ∇ =






∂

∂







� ���
� �

�f

t
v f

f

t (4)

k p
k p k p

k p
scatt

,
, ,

,

Since we are interested in solving the BTE for phonons in the steady-state case, i.e. constant heat flux, the first 
term vanishes. Using the single-mode relaxation time approximation4, the scattering term on the right-hand side 
of Eq. (4) is given by 

τ
−f f0

, where f 0 is the equilibrium phonon distribution function given by the Bose-Einstein 
distribution function and τ τ=



k p T( , , ) is the phonon relaxation time, which is a function of the wavevector 


k , 
polarization p, and temperature T. Given that the above equation is applicable for each polarization p and each 



k
-mode, subscripts will be omitted. Expanding f = f 0 + g, where g is the deviation function from the equilibrium, 
Eq. (4) reduces to

τ
. ∇ = −� ��v f g

(5)

In general f is a function of the position vector r . We define our coordinate system such that the superlattice is 
periodic in the z-direction, while being uniform in the x and y directions (Fig. 1). The thermal gradient is applied 
in the x-direction so the equilibrium distribution f 0 is dependent only on the x-coordinate and the distribution f 
is independent of the y coordinate due to continuous translation symmetry. Assuming that the deviation from 
equilibrium is small, i.e. g ≪ f 0, we can neglect the x-derivative of g and transform Eq. (5) into

τ
∂
∂

∂
∂

+
∂
∂

= −v f
T

T
x

v g
z

g
(6)x z

0

By considering the general solution of the differential equation (6), g can be written as a function of the z coor-
dinate and an arbitrary function ϕ 

k
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The function ϕ 

k determining the phonon distribution function is rigorously calculated in the next section by 
applying the boundary conditions of the superlattice, which are implemented after a careful analysis of phonon 
surface scattering at the interfaces. Once ϕ 

k (and therefore g k) is calculated, Eqs (1)–(3) allow to obtain the result-
ant thermal conductivity of the superlattice.

Phonon scattering at rough surfaces. For infinitely periodic superlattices, the boundary conditions are 
given by an energy balance upon scattering of phonons at the rough interfaces. We use a rigorous statistical analy-
sis to study the scattering of thermal phonons from rough surfaces. The scattering of electromagnetic waves from 
rough surfaces has been studied in detail by Beckmann and Spizzichino36. This analysis however is limited to free 
surfaces (e.g. solid-air interfaces) preventing the study of phonon scattering at surfaces between two different 
solid materials. We employ a generalized analysis of surface scattering51, where the Beckmann-Kirchhoff theory 
has been extended to include forward scattering i.e. the reflection and transmission of phonons at a rough inter-
face between two homogeneous and isotropic solids. We outline below the main points to obtain a generalized 
solution for scattering between two interfaces and subsequently extend it to the case of superlattices.

Consider the height z of an interface between two media 1 and 2 (with respect to a middle plane) given by the 
function z = ζ(x, y), where the average value of z, i.e. 〈ζ(x, y)〉 with respect to the plane is zero. The region for 
media 1 is given by z > ζ(x, y) and that for media 2 is given by z < ζ(x, y). Assuming that ζ is a random variable 
representing the heights of the surface, the roughness of the surface η is defined as the standard deviation of ζ. 
Without losing generality, we assume that the incident wavevector 



k  lies in the x-z plane. To describe the interac-
tion of phonons with an interface, consider ω= . −



i k r tu exp[ ( ) ] be the displacement phonon field which is the 
solution of the Helmholtz equation Δu + k2u = 036. When the radius of curvature of the interface is much larger 
than the wavelength, the Kirchhoff boundary conditions apply36

= +
∂
∂

= − .
ζ ζ

. .

+ +� �

� ��� � � �
R Ru e u

n
i k n e(1 ) , (1 )( )

(8)z

ik r

z

ik rs s

=
∂
∂

= .
ζ ζ

. .

− −� �

�� ���
� �� � ��

I I( )u e u
n

i k n e,
(9)z

ik r

z

ik rs s

where ��n  denotes the unit vector normal to the surface z = ζ(x, y) at point ζ→ = + +
ˆ ˆr xx yy x y z( , )s  and 

��
�k  is the 

local refracted wave vector. Also, R and I denote the standard reflection and transmission coefficients from a 
perfectly smooth surface, respectively. The solution of the Helmholtz equation at a distance R from the surface, at 

′
��
R  and ″

���
R  in medium 1 and 2, respectively, gives

∫π
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where ′
��
k  is the reflected wave vector, ″

��
k  is the overall reflected wave vector, k1 is the magnitude of the incident and 

reflected wavevector, and k2 is the magnitude of the refracted wave vector. Carrying out a rigorous statistical 
analysis51, one can obtain the reflection Pij and transmission Qij coefficients from a rough interface, where i and j 
denote the two solid media across the surface, which are given by

η θ= −RP kexp( 4 cos ) (12)ij ij i i
2 2 2 2

η θ θ= − − −R( ) ( )Q k k1 exp ( cos cos ) (13)ij ij i i j j
2 2 2

where

ρ θ ρ θ

ρ θ ρ θ
=







−

+






R

v v

v v

cos cos

cos cos (14)
ij

i i i j j j

i i i j j j

2

2

In these equations, ρi, θi, and vi denote density (ρSi = 2.33 g/cm3, ρGe = 5.32 g/cm3), incident angle, and group 
velocity νi = ∇kωi(k), where ωi(k) is the phonon dispersion relation in medium i, respectively. Since =R Rij ji

2 2 , 
we have Qij = Qji, which is the principle of detailed balance for phonons. Independent of the nature of the bound-
ary conditions, the law of reflection and refraction states that the tangential component of the wavevector is 
conserved. That is
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θ θ=k ksin sin (15)i i j j

For incident angles larger that the critical angle, =R 1ij
2  and phonons are subject to total internal reflection 

and therefore restricted to propagate within a layer. Importantly, the surface scattering model described above 
thus allows to obtain the phonon thermal energy reflected and transmitted at rough interfaces in superlattices.

Boundary conditions and energy balance at interfaces. Due to translational symmetry along the 
z-direction, the BTE needs to be solved only within a single unit cell of the superlattice, which when repeated in 
the z-direction reproduces the entire superlattice. In our calculations, the unit cell begins halfway through a layer 
of material B and extends halfway into the next layer of material B as illustrated in Fig. 9.

We write the general solution of g given by Eq. (7) as follows52
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where the subscript i denotes a particular layer in the superlattice and the superscript ‘+’ or ‘−’ denotes the direc-
tion of kz, where ‘+’ denoted a positive kz and vice versa. We define lx,i = vx,iτi and lz,i = |vz,i|τi. To exploit the trans-
lational symmetry of the superlattice, we consider (for each layer) translated versions of the general solution of g
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Note that since the phonon frequency remains constant during reflection and transmission, we can simplify 
the expressions in Eq. (17) and omit the term ∂

∂
∂
∂

f

T
T
x

i
0

 when applying the boundary conditions. By considering the 
mirror symmetries, the following boundary conditions apply for the superlattice52

Figure 9. Diagram for the unit cell of a superlattice with rough interfaces and period d = a + b, where a and b 
are the thicknesses of the layers along the z direction. The symbols g correspond to the deviation functions from 
equilibrium for phonons propagating with wavevectors kz along the +z direction (+) and −z direction (−) in 
the three superlattice regions: (1) 0 < z < b/2, (2) b/2 < z < a + b/2, and (3) a + b/2 < z < a + b.
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= =+ −g g at z 0 (18)1 1

= = ++ −g g at z a b (19)3 3

In addition, at the interfaces between different materials, energy balance for phonon reflection and transmis-
sion establishes that

− = + − ′ =− + −g k P g k Q g k atz b( ) ( ) ( ) /2 (20)z z z1 12 1 12 2

′ = − ′ + =+ − +g k P g k Q g k atz b( ) ( ) ( ) /2 (21)z z z2 21 2 12 1

− ′ = ′ + − = +− + −g k P g k Q g k atz a b( ) ( ) ( ) /2 (22)z z z2 23 2 23 3

= − + ′ = ++ − +g k P g k Q g k atz a b( ) ( ) ( ) /2 (23)z z z3 32 3 23 2

Note that the primed notation is to emphasize that while in medium 1 the wavevector is 


k , the wavevector in 
medium 2 is ′

��
k . The solution of the system of Eqs (20)–(23) fully determines the functions ϕ ± 

k( )i  which establish 
the distribution of phonons ±gi  deviated from equilibrium for each layer [Eq. (17)]. Calculation of the distribution 
functions ±gi  allows us to determine the thermal conductivity using Eqs (2) and (3). Note that all variables in our 
theoretical framework depend on the wavevector 



k , allowing to perform a full frequency-dependent analysis of 
all phonon transport properties, including a rigorous treatment of phonon scattering at the interfaces and phonon 
coupling between superlattice layers.
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