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Whereas house dust mite (HDM) allergy results from a dysregulated Th2-biased

adaptive immune response, activation of innate immune signaling pathways is a critical

prerequisite for the initiation of HDM sensitizations. Such innate sensing is mainly

controlled by the airway epithelium and the skin. The resulting release of epithelial-

derived proinflammatory cytokines and innate alarmins such as GM-CSF, IL-25, IL-33

and TSLP mediates the activation of ILC2 cells and cDCs to promote Th2-biased

inflammation. Significant progress in the elucidation of HDM innate immune activation

has been made in the past decade and highlighted key roles of the LPS/TLR4 axis,

chitin-dependent pathways together with HDM protease allergens. However, the precise

mechanisms by which HDM allergens are sensed by the innate immune system remain

largely unknown. Such investigations are made difficult for several reasons. Among these

are (1) the natural association of HDM allergens with immunostimulators from the mite

exoskeleton as well as from environmental microorganisms/pollutants or endosymbiotic

bacteria; (2) the purification of individual HDM allergens from extracts in sufficient

amounts and devoid of anymicrobial and protein impurities; (3) the production of correctly

folded recombinant HDM allergens which could display the same biological activity

than their natural counterparts; (4) the accessibility to human epithelial samples with

cellular heterogeneities and inter-donor variations; (5) the translation of experimental

data from mouse models to humans is almost missing. The goal of the present mini-

review is to emphasize some important limitations and pitfalls in the elucidation of innate

immunostimulatory properties of HDM allergens.
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INTRODUCTION

The initiation of the HDM allergic response is dependent on skin/mucosal innate immune receptor
engagement(s) to install a Pro-Th2 environment mediated by epithelial-derived proinflammatory
cytokines and innate alarmins such as IL-25, IL-1b, IL-33, GM-CSF, TSLP (1). These mediators
orchestrate critical cross-talks between epithelium, innate lymphoid type 2 (ILC2) and conventional
dendritic (cDCs) cells to promote HDM-induced skin/airway inflammation (2).

The HDM allergome comprises at least 35 IgE-inducing allergen groups and
consolidated allergenicity studies evidenced the serodominance of mite allergen groups
1, 2, and 23 (3, 4). In contrast, the hierarchy of HDM allergens capable to activate
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innate immune signaling pathways remains to be fully elucidated.
In this context, we need to hypothesize that any HDM allergen
including the minor ones could participate to these events.
Whereas, key roles of LPS/TLR4 axis and PAR-2/PAR-4 signaling
by HDM protease allergens have been evidenced, the complete
elucidation of the innate immunemechanisms triggered byHDM
allergens is a grail difficult to achieve (5). One of the main reasons
is that HDM allergens are naturally associated with multiple
innate immune activators as chitin from the mite exoskeleton,
endosymbiotic bacteria together with microbial/environmental
(bacteria, fungi, pollutants, viruses, microparticles) compounds
present in the house dust.

The goal of the present narrative mini-review is to highlight
the pitfalls and the limitations associated with studies evaluating
innate immunomodulation by HDM allergens.

HDM ALLERGENIC MATERIALS

House Dust
HDM sensitizations are mediated by aerosolized mite feces or
fragmented bodies present into the household dust. Mite fecal
pellets, with a 20–30mm average diameter (6), can reach the
small airways following fragmentation as these airways are only
accessible to small particles in the size range 2–6µm (7). Analysis
of the particle-size distribution of airborne Der p 2 confirmed
substantial allergen association with small particles (<4.7µm)
(8). Household dust typically contains a large spectrum of
environmental factors/pollutants, such as bacteria, fungal spores,
particulate matter (as PM 2.5) (9, 10). All these components in
association with HDM allergens, elicit innate immune activation
and thus represent adjuvants to promote sensitization to HDM.

Experimental approaches based on chronic exposures of
epithelial cells/animals to house dust samples are technically
feasible. However, the low allergen concentration together with
the presence of contaminating immunostimulators in house dust
make them virtually impossible to elucidate the innate sensing
of specific HDM allergens. Large differences in allergen and
microbial/chemical component composition and concentration
are commonly observed in house dust samples as well (9,
10). Moreover, seasonal, environmental as well as geographical
variations in house dust composition negatively affect the
data interpretation.

HDM Allergen Extracts
The use of commercial or in-house HDM allergen extracts
provided key insights into fundamental mechanisms of HDM
allergic response (1, 5). Whole mite, mite bodies or feces extracts
are prepared from in-vitro HDM exhausted cultures. Large
variabilities in allergen composition, contaminating microbial
and environmental components as well as mite microbiome
are observed between extracts, introducing reproducibility
and data interpretation issues (11, 12) (Figure 1). A recent
study evaluating several commercial HDM allergen extracts
highlighted the importance to provide the lot characteristics,
the concentration of major HDM allergens and LPS as well as

the methods used for dosing normalization in order to compare
results across different publications (13).

Proteomic analysis identified large differences between
the allergen content of mite fecal pellets and mite bodies.
Serodominant allergens Der p 1, Der p 2 and Der p 23 together
with Der p 3, Der f 6 like allergen, Der p 9, Der p 15 and Der
p 28 accumulated in mite feces mainly (3). As fecal particles
penetrate more efficiently the lower lung tissues than fragmented
mite bodies, mite fecal allergens must represent the first ones
sensed by innate immune receptors in the lungs. Interestingly,
Der p 1, 2, 5, 14 and Der f 6 like allergen were identified as the
most abundant allergens in house dust, confirming that HDM
allergens restricted to mite bodies as Der p 5 and Der p 14 are
released from mite bodies degradation (3).

The complexity of the HDM allergen extract composition
makes challenging investigations on the role to a given allergen
in the activation of innate immune signals. To our knowledge,
only the key roles of Der p 1, Der p 10 and Der p 13 were directly
evidenced in experiments using HDM extracts treated with Der p
1-specific cysteine protease inhibitor, depleted in Der p 10 or Der
p 13 or incubated with Der p 10/Der p 13-specific neutralizing
antibodies, respectively (14–16).

Purified Natural or Recombinant HDM
Allergens
The use of purified natural or recombinant HDMallergensmakes
more accessible the elucidation of their immunomodulatory
properties. Their purity is of course of paramount importance to
discard any interfering contaminating activators. Recombinant
allergens need to adopt the conformation of their natural
counterpart which must be consistent from batch-to-batch
(Figure 1). However, with the exception of the most abundant
HDM allergens which can be isolated from extracts (Der p 1,
Der p 2, Der p 3), comparative folding studies of natural and
recombinant HDM allergens are unfeasible.

Whereas, a large collection of studies was focused mainly
on the interactions of HDM protease allergens and Der p 2
with airway epithelium [reviewed in (5)], such investigations
continually faced experimental issues and challenges to
interpret the results as shown by the following examples from
the literature.

Previously, the cysteine protease Der p 1, due to residual
contamination by HDM serine protease allergens (Der p 3,
Der p 6, Der p 9) after its purification, was considered by
error to display dual serine/cysteine protease activities and
to directly activate protease-activated receptor-2 (PAR-2), a
receptor typically activated by serine but not cysteine proteases
(17, 18). To study the effects of HDM protease allergens on
the epithelial cells (activation, permeability or degradomics
experiments), assays must be performed under serum-free
conditions to prevent any proteolytic inhibition by serum
proteins. Although such culture conditions mimic the airway
surface liquid (ASL) composition, the cell viability and the
expression of cellular proteins targeted by proteases could be
affected (19). To maintain the cysteine residue of the Der p 1
active site under reducing form, Der p 1 needs to be treated with
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FIGURE 1 | Limitations of the current in-vitro and in-vivo human and animal models to assess the innate immune activation by HDM allergens. The elucidation of

innate immune receptor engagement by individual HDM allergens require reproducible batches of highly purified natural or correctly folded recombinant HDM allergens

and devoid of any interfering microbial components. Interventional human studies are made difficult by interindividual variability of human innate immune response and

would require GMP-grade purified HDM allergens together with bioethical justifications. Consequently, these allergenic molecules are mainly tested in mouse models

of HDM-induced airway or skin inflammation or in in-vitro activation assays using multiple cellular systems (primary epithelial cells from HDM-allergic patients, epithelial

cell lines or reporter cells expressing a specific innate sensor). Important limitations and pitfalls are associated with the experimental settings of these different assays,

leading to reproducibility and data interpretation issues. AA, Allergic asthma; ALI, Air-liquid interface; AR, Allergic rhinitis; GMP, Good manufacturing practice; KO,

Knockout; PRR, Pathogen recognition receptor; PTMs, Post-translational modifications; TJ, Tight Junction.

a reducing agent (as L-cysteine) prior to in-vivo administration
or in-vitro cell activation. This reduction is optimal as well for
the interactions with specific Der p 1 protease inhibitors (E-64
notably) (14). This procedure was not systematically adopted in
studies involving HDM extracts (5). It is hypothesized that the
airway redox environment, through high glutathione levels and
the role of human glutathione-S-transferase pi, maximizes the
Der p 1 cysteine-protease activity (20, 21).

Although natural Der p 2 could be isolated from mite allergen
extracts (22), most of the Der p 2 characterization was performed
with different recombinant forms of this allergen. Der p 2 displays
structural homologies withmyeloid differentiation factor-2 (MD-
2), the LPS binding co-receptor of TLR4 (23). Recombinant Der
p 2 (rDer p 2) produced in insect cells and in the presence of
trace amount of LPS was capable to reconstitute TLR4 signaling

in the absence of MD-2, demonstrating that Der p 2, by its
capacity to interact with LPS, displays auto-adjuvant properties
(24). However, a more recent study showed that rDer p 2 alone
produced in yeast can cause a strong Th2-biased response in a
TLR4-independent manner (25). Moreover, lipid binding assays
evidenced that rDer p 2, contrary to rDer f 2, bound weakly to
LPS (26, 27). In this study, rDer p 2 was produced as inclusion
bodies in E. coli, suggesting that incomplete refolding process
affects the conformation of the Der p 2 hydrophobic pocket and
impairs interactions with LPS. More recent findings suggested
that cholesterol, originated from dietary source of mite culture
and from flakes of human skin in house dust, could represent
the natural ligand of Der p 2 (28). Again, MS analysis of lipids
extracted from rDer p 2 produced in E. coli did not evidence
the presence of LPS. Taken together, the LPS binding capacity of
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natural Der p 2 remains to be more deeply investigated together
with the identification of the endogen Der p 2 lipid ligand(s).
We can hypothesize that the large Der p 2 hydrophobic pocket
can accommodate lipid cargos with multiple structures. Their
nature will be dependent on the expression system used for the
Der p 2 production or the culture conditions for allergen extract
preparation (Figure 1). We can speculate that innate activations
triggered by Der p 2 are not limited to the unique Der p 2-
LPS/TLR4 axis and particularly as lipid ligands can activate other
PRRs as heterodimeric TLR1-TLR2 or TLR2-TLR6 (29).

Single allergen-based experimental conditions can
overestimate the specific contribution of individual HDM
allergens in the activation of innate sensors. Indeed, HDM
allergic patients are never exposed to only a single allergen.
Moreover, HDM allergen exposures could simultaneously
activate identical innate immune signaling pathways, considering
the functional redundancy of some HDM allergen groups
(protease or lipid-binding proteins at least). Remarkably, the
Prothrombinase activity of Der p 1 was shown to generate
subsequently TLR4 ligands in airway epithelium resulting in
TLR4-dependent ROS production whereas native Der p 2 failed
to trigger ROS production (30). Consequently, Der p 1 could be
top-ranked in the hierarchical classification of HDM allergens
eliciting innate immune activation, raising uncertainties on the
key contribution of Der p 2 in the TLR4 stimulation.

The present human protein substrates targeted by HDM
protease allergens include soluble (as prothrombin, antitrypsin,
elafin, SP-A, IL-33) or receptor/membrane associated molecules
(occludin, ZO-1, PAR-2, CD23, CD25, CD40) (30, 31). The
challenging elucidation of the complete substrate degradome of
HDM proteases was surprisingly not explored up to now.

The glycan structures of HDM allergens could affect their
innate immune recognition through interactions with C-type
lectin Receptors (CLR) (32). Der p 1 and Der p 2 are naturally
glycosylated and interact with mannose receptor and DC-SIGN,
respectively (33–36). Recombinant Der p 7 produced in P.
pastoris could bind to DC-SIGN as well but the glycosylation and
the binding to CLR were not evidenced for native Der p 7 (37).
The only HDM allergen showing binding activity to epithelial
Dectin-1 was the structural tropomyosin Der p 10 allergen,
however devoid of glycosylation (16).

Chitin, present in the mite exoskeleton as well as in the
peritrophic membrane of fecal pellets displays size-dependent
immunomodulatory properties. Large chitin structures
(>40µm) activated typical Th2 responses through notably
the induction of epithelial-derived cytokines IL-25, TSLP and
IL-33 (38). HDM allergens from group 12 (Blo t 12) and group
23 (Der p 23) display sequence homologies with chitin-binding
peritrophins whereas those from groups 15 (Der p 15) and
18 (Der p 18) have some similarities with glycosyl hydrolase
family 18 chitinases. Consequently, these allergens could
mediate innate immune activation through chitin transport or
chitin processing (degradation and release of chitin from the
peritrophic membrane of inhaled fecal pellets). However, chitin
binding assays with commercial chitin beads or shellfish chitin
evidenced interactions with Blo t 12 only (39). The chitin
binding capacity of Blo t 12 needs not only confirmation

but the immunostimulatory properties of this allergen-chitin
complex remain unraveled yet. It would be interesting to further
investigate chitinase or chitin binding activities of these allergens
using HDM-derived chitin (40).

HDM-INDUCED ASTHMA MOUSE MODELS
OR in-vitro CELL ACTIVATION ASSAYS

In-vivo Studies
Most of the in-vivo studies used conventional or conditional
knock-out (KO) mice to investigate the role of a specific innate
molecule in a defined HDM model of airway inflammation.
A key report from Hammad’s team evidenced the crucial role
of TLR4 signaling in lung structural cells to initiate the HDM
allergic response (41). To our knowledge, the rare in-vivo
studies deciphering the role of unique HDM allergens were
focused on protease allergens. The proteolytic activity of Der p
1 was essential for the initiation of HDM sensitization together
with PAR-2 activation by serine protease allergens (15, 42–
44). Although mice models are convenient, it is important
to recognize their limitations to recapitulate human innate
immunity (Figure 1). Notably, classical monocytes, crucial cells
for innate immune responses in humans, do not respond to
TLR7/8 (R848) and TLR4 (LPS) ligand in mice (45). Sequence
variations in TLR4 and MD-2 between human and mice can
help to explain the molecular basis of the species differences in
TLR4:MD-2 response to lipid A stimulation (46).

Another key parameter affecting HDM-induced innate
immune response is the constant interactions between
microbiota and lung/gut mucosa (47). As microbiota
composition and functions are dependent on environmental
and dietary factors, co-housing, dietary control and breeding
of independent mice lineages (KO, wild-type) in the same
facility would minimize microbiota differences. These conditions
optimize the reproducibility of the results and allow correct
interpretations on the impact of innate marker deletion in such
KO animal models. Another method to normalize microbiota
between mouse groups is to design littermate-controlled
experimental setup (48).

In-vitro Cell Activation Assays
Several cellular sources of airway and skin epithelium were
commonly used in in-vitro cell assays: primary nasal, bronchial
cells or skin keratinocytes (commercial sources or isolates),
epithelial cell lines or reporter cells expressing a specific
Pathogen Recognition Receptor (PRR). All these cell systems
offer advantages but have limitations as well (Figure 1). The
airway epithelium is not made by a single type of cells. In the
contrary, the core of the epithelial structure is pseudostratified
and consists of basal, club, ciliated, and goblet cells. Each of these
cells play unique roles in defense of the host (49). Moreover, rare
cell types are also present and include among others pulmonary
neuroendocrine cells and tuft cells. The barrier function of
the epithelium is dependent on the formation of intercellular
junctions (tight junctions [TJs], adherens junctions [AJs]) for
the control the epithelial sheet integrity (50). The complexity of
the airway epithelial structure clearly indicates that epithelial cell
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lines represent simplified biological systems for studies on the
airway innate immune activation by HDM allergens, even if they
offer controllable, versatile and reproducible setups. Moreover,
the expression profile of PRRs and TJ proteins can greatly differ
between different airway epithelial cells and do not correspond
to their natural in-vivo expression (51). Whereas, the cell surface
localization of TLR4 is important to sense LPS, this receptor
can be localized intracellularly or on the basolateral side of the
cells under homeostatic conditions (52). MD-2 expression is
often low explaining partly the in-vitro hyporesponsiveness of
primary epithelial cells to LPS (53). To our knowledge, whereas
HDM-derived b-glucans/LPS induced cell surface expression of
TLR2 and TLR4 in nasal and bronchial epithelia, respectively
(54), effects of individual HDM allergens on the expression, cell-
surface transfer and localization of TLR2 and TLR4 remains to
be explored. The accessibility of TLR2/TLR4 (particularly on
the basolateral side of epithelia) could be dependent as well
on the degradation of TJ proteins by HDM protease allergens,
suggesting that innate immune activation induced by HDM
lipid binding proteins could be largely dependent on the initial
intervention of protease allergens. The contribution of CD14,
LBP, and CD36, important accessory molecules for TLR2 and
TLR4 activation, in the initiation of the HDM-induced epithelial
activation remains uninvestigated to this day (55).

Primary nasal or bronchial cell cultures from HDM allergic
patients developing allergic rhinitis or allergic asthma is the
optimal cell system to represent the complex architecture of the
airway epithelium in the context of HDM allergy (56, 57). Such
cell isolates can display a range of abnormalities at the level of
epithelial integrity and innate immunity, commonly observed in
HDM allergics (50). Moreover, it allows comparative studies on
HDM component-resolved innate stimulation in relation to the
donor atopic status. Unfortunately, important limitations make
it difficult the use of primary epithelial cells: complex acquisition
of cell samples, limited number of cells and passage, patient
availability issues, cost, challenging genetic modification as well
as in-vitro differentiation in air–liquid interface (ALI) conditions.
All these issues together with the inherent biological variability
between human samples affect the reproducibility of the results.

DISCUSSION

The direct innate immune activation by HDM allergens
results from a myriad of interactions with epithelial innate
sensors (Table 1). Research deciphering the intrinsic role of
HDM allergens in the innate immune receptor engagement
is challenging as these proteins are naturally associated
with lipidergic and polysaccharide components. Despite
multiple pitfalls and limitations described in this mini-review,
consolidated data highlighted the key roles of HDM protease
allergens, LPS and chitin to shape innate responses leading
to the HDM allergic inflammation (5). In contrast, the innate
sensing of lipid binding proteins and peritrophin/chitin binding
protein/chitinase needs to be extensively investigated. This
would allow to draw conclusion on their contributions in the
initiation of the HDM allergic response. The HDM allergens

from groups 2, 5, 7, 13, 14, 21, 22, 31, 35, exhibiting similarities
with lipid binding protein and/or showing capacity to interact
with lipid cargos, are all susceptible to promote pleiotropic
effects on the innate immune system through interactions with
TLR2, TLR4 or other receptors as TLR1, TLR6, RAGE, CD14,
CD36 (24, 28, 58–60). Whether these proteins play redundant
or unique role(s) in the innate immune activation remains to
be investigated.

Airway epithelium is continuously in interactions with the
lung microbiome and alteration of lung microbiota is commonly
observed in allergic asthmatics, leading to inappropriate
inflammatory response (47). Moreover, lung epithelial cells and
alveolar macrophages (AMs) communicate continually with each
other to maintain lung homeostasis (61). Consequently, future
studies should test individual HDM allergens in double or triple
epithelial coculture model systems (epithelial cells and bacteria
in the presence or absence of AMs) to mimic more closely
the allergic nasal/lung environment (62). Nevertheless, these
complex coculture models will inevitably generate challenging
issues in experimental design and analysis.

Described as the first cell layers in contact with HDM
allergens, airway epithelium and skin keratinocytes were
considered as the primary cellular sensors of HDM allergens.
However, recent findings shed a new light on the initiation of
HDM allergic response. Transient receptor potential vanilloid 1
(TRPV1) expressing sensory neurons are activated by cysteine
protease activity of HDM extracts and this early event is
critical for the allergic skin inflammation (63). Intradermal
administration of papain in mice triggered the release of
substance P by TRPV1+ neurons which subsequently induces
CD301b+DCmigration throughMas-related G-protein coupled
receptor member A1 (MRGPRA1) (64). Nevertheless, substance
P alone was unable to induce a Th2 cell response indicating that
additional signal(s) mediated by alarmins/cytokines are required.
Nevertheless, these results suggest that these nociceptors
participate to the Der p 1-induced initiation of HDM allergic
response. Additional works are required to support this
hypothesis, notably through ablation or silencing of airway
nociceptors in mouse model of Der p 1 sensitization (65).

With few exceptions, the direct translation of murine
experimental data on innate immune activation by HDM
allergens to human pathological events is missing. Notably, the
association between TLR2, TLR4, PAR-2 and atopic diseases
remains controversial or unknown (66). Clinical studies based
on topical skin or intranasal administration of single purified
allergen are not realistic as they would need, for each tested
allergen, GMP-grade batch of highly purified protein. On the
other hand, ex-vivo studies based on single-cell transcriptomics
of human lung/skin tissue samples treated by HDM allergens
would render feasible the spatiotemporal mapping of innate
activation in airway/skin epithelial cell landscape (67).

Over the last two decades and despite the experimental issues
described in this review, substantial advances have been made
in the characterization of innate immune activation by HDM
allergens. Future studies are needed not only to disclose all the
aspects of these molecular pathways but also to demonstrate their
clinical relevance.
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TABLE 1 | Identified or putative innate immune activation by HDM allergens.

Allergen Biological activity PRR activation/Protein

target

Effects Notes

Der p 1 Cysteine protease PAR-1/PAR-4/ TLR4

(Pro-thrombinase activity)

MRGPRX1 and others

MR, DC-SIGN (glycosylation)?

TJ proteins

Intracellular ROS,

Proinflammatory cytokine productions

IL-33 maturation Unknown

Facilitate allergen uptake by DCs and

PRR activation by other HDM allergens

Indispensable innate immune activator

Complete substrate degradome

unelucidated

in-vivo CLR activation?

Interaction with sensory neurons?

Der p 2 MD-2-like fatty acid

binding protein

TLR 4, TLR 2 Pro-inflammatory cytokine productions Natural lipid ligand(s) partially identified

LPS binding to be confirmed

Interaction with other innate receptors/

co-receptors?

Der p 3 Trypsin-like serine

protease

PAR-2, PAR-4

TJ proteins

Pro-inflammatory cytokine productions,

Mast cell activation

Facilitate allergen uptake by DCs and

PRR activation by other HDM allergens

Complete substrate degradome

unelucidated

Der p 5 Lipid/fatty acid binding

proteins

TLR2 Pro-inflammatory cytokine productions Impossible to isolate enough natural Der

p 5 to identify its lipid ligand(s).

Mechanism of lipid binding

unelucidated: conformational switch or

hydrophobic pocket at the Der p 5

dimer interface?

Der p 7

Blo t 7

Lipid/fatty acid binding

proteins (LBP-like)

TLR2

CLR? (glycosylated natural

allergens)

Proinflammatory cytokine productions

Unknown

Natural Der p 7 accessible but

identification of the natural ligand(s) and

glycosylations not investigated.

Der p 9 Collagenase PAR-2

TJ protein degradation

Pro-inflammatory cytokine productions

Facilitate allergen uptake by DCs and

PRR activation by other HDM allergens

Complete substrate degradome

unelucidated

Der p 10 Tropomyosin Dectin-1 Regulation of IL-33 release Mechanism of binding of

unglycosylated Der p 10 to Dectin-1

unelucidated

Blo t 12 Chitin binding protein Unknown Pro-inflammatory cytokine productions

through chitin transport?

Blo t 12 homologs non-identified in

Dermatophagoides mite species up to

now

Chitin binding activity to be confirmed

Der p 13

Blo t 13

Cytosolic FABP TLR2

SAA

Pro-inflammatory cytokine productions

Stimulation FPR2-IL-33 axis

Natural ligand unidentified

Der p 15 Chitinase Unknown Chitin processing? Release of allergens

from fecal pellets?

Chitinase activity to be evaluated

Chitin binding activity to be confirmed

Der p 18 Chitinase Unknown Chitin processing? Release of allergens

from fecal pellets?

Chitinase activity to be evaluated

Chitin binding activity to be confirmed

Der p 21 Lipid/fatty acid binding

proteins

TLR2 Pro-inflammatory cytokine productions Impossible to isolate enough natural Der

p 21 to identify its lipid ligand(s).

Mechanism of lipid binding

unelucidated: conformational switch or

hydrophobic pocket at the Der p 21

dimer interface?

Der f 22 Lipid binding protein,

Der p/f 2 homolog

TLR4? TLR2? Pro-inflammatory cytokine productions? Similar innate immune activation than

Der p 2?

Der p 23

Der f 23

Chitin binding protein Unknown Pro-inflammatory cytokine productions

through chitin transport?

Chitin binding activity to be confirmed

Der f 31 Cofilin (actin-binding

protein)

TLR2 IL-33, TSLP production, ILC2 activation Native Der f 31 inaccessible

Mode of interaction between

actin-binding protein and TLR2

unknown

Der f 35 MD-2-like lipid-binding

protein

TLR4? Pro-inflammatory cytokine productions? Similar innate immune activation than

Der p 2/Der f 22?

CLR, C-type lectin receptor; DC, dendritic cell; DC-SIGN, Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; FABP, Fatty acid binding protein; FPR2, N-

formyl peptide receptor 2; ILC2, Innate lymphoid type 2 cell; LBP, LPS-binding protein; MD-2, Myeloid differentiation factor-2; MR, Mannose receptor; MRGPRX1, Mas-related G-protein

coupled receptor member X1; PAR, Protease-activated receptor; PRR, Pathogen recognition receptor; ROS, Reactive oxygen species; SAA, Serum amyloid A; TJ, Tight junction; TLR,

Toll-like receptor; TSLP, Thymic stromal lymphopoietin.
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