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Abstract. Therapeutic approaches that target the metabolism 
of tumor cells have been a popular research topic in recent 
years. Previous studies have demonstrated that glycolysis 
inhibitors reduce the proliferation of non‑small cell lung 
cancer (NSCLC) cells by interfering with the aerobic 
glycolytic pathway. However, the mitochondrial oxidative 
phosphorylation (OXPHOS) pathway in tumor cells has also 
been implicated in lung cancer metabolism. Metformin, a 
known inhibitor of mitochondrial OXPHOS, has been indi‑
cated to reduce NSCLC morbidity and mortality in clinical 
studies. The present article reviewed the therapeutic effects 
of metformin against NSCLC, both as a single agent and 
combined with other anticancer treatments, in order to provide 
a theoretical basis for its clinical use in adjuvant therapy for 
NSCLC.
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1. Introduction

Lung cancer is the most common cause of cancer‑related death 
worldwide (1). According to the latest statistical report from 
the American Cancer Center from 2021, lung cancer has the 
second‑highest incidence and the highest mortality rate among 
all malignancies (2). There are primarily two types of lung 
cancer: Non‑small cell lung cancer (NSCLC) and SCLC, and 
the former accounts for ~85% of all lung cancer cases (3). 
Although valuable progress has been made in the treatment of 
NSCLC in previous years, the high metastasis rate, post‑opera‑
tive recurrence rate and resistance to chemotherapeutic drugs in 
lung cancer have led to unsatisfactory outcomes (4,5). The rates 
of successful treatment and survival remain low and the 5‑year 
survival rate is 21% (2), which may be attributed to the fact that 
NSCLC is usually diagnosed at an advanced stage, with no 
surgical options (6,7). Therefore, it is particularly important to 
explore new treatments and develop novel drugs.

Certain metabolic alterations, also referred to as metabolic 
reprogramming, are commonly observed in tumor cells and 
are proposed to be hallmarks of cancer (8). Given the vast 
differences in metabolism between healthy and tumor cells, 
there is hope that selective targeting of tumor metabolism 
may be achieved while limiting toxicity to healthy tissue. 
The most striking and characteristic metabolic alteration in 
cancer cells is anomalous glucose metabolism and cancer cells 
tend to utilize glycolysis to obtain energy even under aerobic 
conditions via a process called ‘aerobic glycolysis’ (9). The 
implications of this finding overshadowed the importance of 
mitochondria for tumor growth for a long time. However, in 
recent years, there has been increasing evidence that metformin 
exerts its anticancer effects through the inhibition of oxida‑
tive phosphorylation (OXPHOS) of tumor cell mitochondria, 
and metabolic pathways based on metformin targeting have 
only recently become the focus of intensive research. In order 
to establish a systematic literature review, the online search 
engine PubMed was used for the present study. Studies 
published within the last 10 years were retrieved using the key 
terms ‘Metformin’ and ‘Lung Cancer’. In the present review, 
NSCLC metabolism was discussed with a focus on the poten‑
tial of metformin‑based targeting of NSCLC metabolism and 
the associated mechanisms, and the available preclinical and 
clinical evidence was assessed.
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2. Aerobic glycolytic pathways and targeted therapy in 
NSCLC

Glucose is the most abundant and important energy source in 
organisms and it is metabolized in cells via two major pathways 
(Fig. 1): Glycolysis, which takes place under anaerobic condi‑
tions, and complete oxidation, which occurs under aerobic 
conditions (10). In the 1920s, Otto Heinrich Warburg discov‑
ered that cancer cells, unlike normal cells, use the glycolytic 
pathway to obtain energy for growth even in the presence of 
oxygen, which is a phenomenon known as ‘aerobic glycolysis’ 
or the Warburg effect (9), and aerobic glycolysis is a common 
metabolic phenotype in NSCLC (11). In positron emission 
tomography (PET)/CT, the high rate of glycolysis in NSCLC 
is reflected by the high uptake of 18F‑fluorodeoxyglucose 
at the corresponding tumor sites (12). It has been reported 
that lung cancer cells exhibit upregulated expression of all 
key glycolytic enzymes [hexokinase 2 (HK2), phosphofruc‑
tokinase and pyruvate kinase (PK)] (13), suggesting that the 
essential enzymes of the aerobic glycolytic pathway have a 
critical role in the development of lung carcinoma. Therefore, 
various drugs that interfere with glycolytic glucose transport 
proteins and key enzymes are being studied for their potential 
as anticancer agents (14).

Glucose transporter 1 (GLUT1), which drives the intracel‑
lular transport of glucose, is the first rate‑limiting factor in 
glycolysis (15). Lung cancer cells have a high rate of glycolysis 
and high GLUT1 expression (16), and research focusing 
on GLUT1 may be important for lung cancer treatment. 
WZB117 (WZB) is a synthetic small molecule that inhibits 
glucose transport by downregulating GLUT1 expression (17). 
A study suggested that WZB may enhance toxic effects on 
the NSCLC cell line H460 by limiting glycolysis (18). In a 
nude mouse tumor transplantation model of lung cancer, WZB 
was indicated to inhibit tumor growth by inhibiting GLUT1 
and limiting the glycolytic flow (19,20). 2‑Deoxy‑D‑glucose 
(2‑DG), another glycolysis inhibitor, restricts tumor growth 
by binding to HK and preventing glucose from accessing 
the enzyme (5,18). In recent years, research on microRNAs 
(miRNAs/miRs) has expanded and their association with 
NSCLC has been explored. For instance, Jia et al (21) demon‑
strated that miR‑206 levels were reduced in NSCLC cells and 
tissues and overexpression of miR‑206 was able to inhibit 
glycolysis and cell proliferation by targeting the 3'‑untranslated 
region of HK2 and downregulating HK2 expression. PKM2 
is essential for tumorigenesis and An et al (22) demonstrated 
that small ubiquitin‑related modifier 1 (SUMO1) overexpres‑
sion increased glycolysis and promoted the growth of A549 
cells in vitro by modifying PKM2 at Lys‑336. Knockdown of 
SUMO1 in A549 cells resulted in a marked decrease in the 
protein expression of PKM2, suggesting that SUMO1‑modified 
PKM2 may be a potential therapeutic target for NSCLC.

The study of aerobic glycolytic pathways and the functions 
of key enzymes in tumor cells is vital for the treatment of 
NSCLC. Since the Warburg effect was described, there has 
been an increase in research focusing on aerobic glycolysis (14) 
and there have been several attempts to limit the growth of lung 
cancer by cutting off its energy supply. Although a reversal 
of the Warburg effect may be a broad anticancer strategy, 
therapeutic approaches to limit aerobic glycolysis in NSCLC 

have been only partially successful (23). The expression of 
PKM2 was previously indicated to be required for aerobic 
glycolysis and it was proposed that PKM2 provides a growth 
advantage to tumors. However, Israelsen et al (24) excised 
PKM exon 10 to terminate PKM2 protein synthesis while 
still allowing the splicing and protein expression of PKM1, 
which demonstrated that the loss of PKM2 accelerated tumor 
formation in a nude mouse xenograft tumor model. Similarly, 
Cortés‑Cros et al (25) knocked down PKM2/M1 in established 
tumors and observed no significant difference in the growth of 
A549 lung cancer xenografts in vivo. These studies suggest the 
presence of other alternative metabolic pathways.

Mitochondria are the main sites of ATP release during 
oxidative phosphorylation and the original hypothesis of the 
Warburg effect was that cancer cells have a defective mito‑
chondrial function, resulting in impaired aerobic respiration, 
necessitating the reliance on glycolysis for ATP supply (26). 
However, later studies have indicated that mitochondrial func‑
tion is not impaired in most cancer cells and that mitochondria 
have an important role in cancer metabolism (27‑29). In addi‑
tion, although the ratio of glycolysis to OXPHOS increases, in 
absolute terms, both glycolysis and oxidative phosphorylation 
are more active in cancer cells than in normal cells and the 
two processes coexist (30). Given that mitochondria are essen‑
tial for tumorigenesis and cancer cell proliferation (31‑33), 
targeting the mitochondrial OXPHOS metabolic pathway 
may be a viable approach for inhibiting the growth of cancer 
cells (34).

3. Mechanisms underlying the effects of metformin in lung 
cancer treatment

Metformin has been the safest and most widely prescribed 
drug for type 2 diabetes (T2D) (35). It downregulates cyto‑
solic OXPHOS by inhibiting mitochondrial electron transport 
chain complex I (ETC I), thereby hampering the oxidative 
phosphorylation required for tumor cell growth (36‑38). Initial 
interest in the use of metformin for preventing and treating 
lung cancer arose from a number of clinical studies suggesting 
that metformin reduces the risk of lung cancer in individuals 
with diabetes (39‑41).

Studies have gradually revealed the mechanism of action 
of metformin in the treatment of cancer (Fig. 1). Metformin 
has indirect (insulin‑dependent) and direct (insulin‑indepen‑
dent) anticancer effects (42). The indirect anticancer effect 
of metformin results from the attenuation of the stimulatory 
effect of hyperinsulinemia on lung cancer growth via an 
increase in insulin sensitivity and decrease in circulating 
insulin levels (43). By contrast, the direct effect of metformin 
is caused by the activation of adenosine monophosphate 
(AMP)‑activated protein kinase (AMPK). Metformin indi‑
rectly activates AMPK by disrupting mitochondrial ETC I, 
leading to reduced ATP synthesis and an increased cellular 
AMP/ATP ratio (44). It is generally speculated that the AMPK 
activation‑mediated anticancer activity of metformin may be 
dependent on liver kinase B1 (LKB1). Metformin exerts its 
antitumor effects mainly through the AMPK/LKB1/mamma‑
lian target of rapamycin (mTOR) complex 1 (mTORC1) 
signaling pathway, causing apoptosis of cancer cells (45‑48). 
LKB1 is a classical tumor suppressor (49) and mutations in 
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this gene are associated with Peutz‑Jeghers cancer suscepti‑
bility syndrome (50,51). Genetic mutations in LKB1 are also 
observed in certain sporadic cancers, particularly squamous 
cell carcinoma and lung adenocarcinoma cells (52,53). AMPK 
is the direct substrate of LKB1. Metformin interferes with 
cellular energy metabolism by disrupting ETC I; the low 
energy states induce LKB1‑mediated AMPK activation and 
indirectly inhibit mTORC1 to regulate cell growth (54‑56). 
In addition, metformin may also have anticancer activity via 
AMPK activation independent of LKB1 (57‑59). Guo et al (57) 
evaluated the effects of metformin on human NSCLC H1299 
(LKB1‑positive) and H460 (LKB1‑deficient) cells. They 
indicated that metformin inhibits NSCLC proliferation in a 
time‑ and dose‑dependent manner, induces cell cycle arrest in 
G0/G1 phase and increases apoptosis independent of LKB1 
protein levels. They also observed that knockdown of LKB1 
using short hairpin RNA does not affect the anti‑proliferative 
effect of metformin on H1299 cells.

mTORC1, a serine/threonine protein kinase belonging 
to the PI3K‑related kinase family, acts as a regulator of 
cell growth and metabolism (60). Activated AMPK inhibits 
tumor growth by inhibiting mTORC1, which blocks protein 
synthesis and proliferation in cancer cells (61,62). As 

mTORC1 is frequently mutated in cancers and functions 
downstream of several oncogenic pathways, various tumors, 
including lung cancer tumors, exhibit elevated mTORC1 
activity (63). The RAS/PI3K/AKT/mTOR signaling 
pathway is an important cellular signaling cascade in which 
RAS activates PI3K and AKT and indirectly regulates 
mTORC1 (9,64,65). Among the three RAS genes (H‑, K‑ 
and N‑RAS), the highest mutation frequency was observed 
for the K‑RAS gene in lung cancer (6.5% frequency for 
squamous cell carcinoma and 26% for adenocarcinoma in 
Western populations) (66). Metformin induces apoptosis via 
the downregulation of the downstream targets of K‑RAS in 
human A549 lung adenocarcinoma cells with K‑RAS muta‑
tions (67). It has also been reported that metformin inhibits 
mTORC1 signaling in an AMPK‑independent manner and 
that this inhibition of mTORC1 activation and signaling may 
be Rag GTPase‑dependent (68).

The anticancer effects of metformin are also specu‑
lated to be related to miRNAs in NSCLC. A recent study 
by Dong et al (69) indicated that metformin inhibits the 
growth, migration and invasion of A549 cells by upregu‑
lating AMPK‑mediated miR‑7 expression and regulating the 
AKT/mTOR and MAPK/ERK pathways. Recently, it has been 

Figure 1. Glucose metabolism and possible molecular actions of metformin in non‑small cell lung cancer. GLUT1, glucose transporter 1; HK, hexokinase; PFK, 
phosphofructokinase; PKM2, pyruvate kinase M2; ETC Ⅰ, electron transport chain complex I; K‑RAS, Kirsten rat sarcoma viral oncogene homolog; PI3K, 
phosphoinositide 3‑kinase; miRNA, microRNA; LKB1, liver kinase B1; AMPK, adenosine monophosphate‑activated protein kinase; mTORC1, mechanistic 
target of rapamycin complex 1; RAF, Raf oncogene; MEK, mitogen‑activated protein kinase kinase; ERK, extracellular signal‑regulated kinase; EGFR‑TKI, 
epidermal growth factor receptor tyrosine kinase inhibitor; PP2A, protein phosphatase 2A; BAX, B‑cell lymphoma 2‑associated X protein; MYC, myelocyto‑
matosis oncogene; ↑, promoting effect; T, inhibiting effect.
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reported that high Yes‑associated protein (YAP) may induce 
the growth and metastasis of NSCLC. Metformin also disrupts 
the growth and metastasis of NSCLC by inhibiting the activity 
of the miR‑381‑YAP‑Snail axis (70).

However, the gene knockout of AMPK does not completely 
block the effects of metformin against cancer development, 
suggesting the presence of alternative mechanisms (57,59). 
Protein phosphatase 2 (PP2A) is considered a tumor inhibitor 
in a variety of tumors (71) and the PP2A inhibitor α4 is usually 
overexpressed in tumor cells. Zhou et al (72) determined that 
metformin increases the apoptotic rate of A549 and H1651 
lung cancer cells by disrupting the interaction of PP2A inhibi‑
tors (α4 and MID1) with the catalytic subunit and activating 
PP2A. This effect is associated with inhibited oncogenic 
activity of AKT and MYC, as well as Bax phosphorylation, 
suggesting that PP2A may also be a potential metformin target 
in lung cancer therapy.

4. Metformin monotherapy for NSCLC

Preclinical studies. Metformin has been used as a single agent 
in in vivo and ex vivo studies and the data obtained in preclin‑
ical studies suggested that it had certain anticancer activity 
(Table Ⅰ). In vitro studies indicated that metformin inhibited 
the proliferation of lung cancer cells in a time‑ and concen‑
tration‑dependent manner and increased phosphorylation of 
AMPK (73‑75). Lee et al (76) exposed A549, H460, H1299, 
H1650 and H226 cells to 0‑10 mM metformin and observed 
decreased cell proliferation and colony‑forming capacity, and 
increased protein levels of p53, p21 and growth arrest and 
DNA damage protein 45A. In a study by Ko et al (77), treat‑
ment of H2087 cells with 0.25‑4 mM metformin revealed a 
decrease in cell colonization and invasion, and upregulated 
expression of phosphorylated (p)‑ERK. Wang et al (78) treated 
A549, H1975 and HCC827 cells with 0.2 mM metformin and 
observed that not only did they inhibit cell proliferation, but 
they also induced cell cycle arrest in the S phase and increased 
apoptosis.

Progress has also been made in research on the effects of 
metformin in animal models of lung cancer. Nicotine‑derived 
nitrosamides, also known as 4‑(methylnitrosamino)1‑(3‑pyri
dyl)‑1‑butanone (NNK), have been identified as inducers of 
lung cancer (79). In a study by Memmott et al (80), in which 
A/J mice were exposed to NNK and then received intraperi‑
toneal injections of metformin, metformin was observed to 
reduce tumorigenesis by 72%. This study demonstrated that 
metformin prevents the tobacco carcinogen‑induced develop‑
ment of lung tumors via inhibition of Akt, upstream of mTOR, 
and indirect inhibition of mTOR. In three other xenogeneic 
models of A549 cell origin, treatment with metformin signifi‑
cantly reduced tumor growth and metastatic capacity in vivo, 
and reduced the expression of proteins such as Ki‑67, prolif‑
erating cell nuclear antigen (PCNA), Akt and Myc (72,78,81). 
In a study by Moro et al (73) on patient‑derived xenografts 
(PDXs), metformin (100 mg/kg/day) partially inhibited the 
tumor growth of PDXs with wild‑type LKB1 (maximum 
inhibition rate, 50.5±14.8%), but had no significant inhibitory 
effect on LKB1‑mutant PDXs, and with increasing doses of 
metformin, p‑AMPK expression was increased and Ki67 
expression was decreased, indicating that LKB1‑deficient 

tumors have an impaired ability to adapt to metabolic stress 
induced by metformin treatment. More recently, in another 
study on wild‑type LKB1 PDXs, metformin only induced 
apoptosis in wild‑type LKB1 PDXs with high expression of 
miR‑17, suggesting that high miR‑17 expression increased 
sensitivity to metformin treatment (82).

Retrospective clinical studies. Preclinical studies have indi‑
cated that metformin has anticancer effects and numerous 
retrospective clinical studies have demonstrated that metformin 
significantly improved anticancer activity in patients with 
NSCLC compared to those not taking metformin (Table Ⅱ). 
Several retrospective studies suggested that metformin use 
is associated with a decreased risk of lung cancer (41,83,84). 
Metformin use was also significantly associated with a 
favorable prognosis of patients with NSCLC (85,86). In a 
retrospective study assessing overall survival (OS) of patients 
with T2D and metastatic lung cancer, patients treated with 
metformin had 20% higher survival rates than those who did 
not take metformin (87). A comprehensive systematic evalu‑
ation and meta‑analysis of 10 published retrospective studies 
by Cao et al (88) determined that treatment with metformin 
significantly improved survival, with corresponding increases 
in OS and progression‑free survival (PFS) of 23 and 47%, 
respectively. In addition, analyses stratified by tissue type 
indicated a significant improvement in OS and PFS in NSCLC, 
suggesting that metformin may be an effective treatment 
option for patients with diabetes combined with lung cancer. 
However, Kim et al (89) performed a retrospective study of 
336,168 individuals regarding lung cancer incidence with 
a median study duration of 12.86 years and observed that 
metformin treatment did not reduce lung cancer incidence in 
the diabetic population. The potential use of metformin in lung 
cancer prevention should be reconsidered and requires to be 
further validated in randomized controlled trials.

5. Metformin combined with glycolysis inhibitor

Metformin exer ts toxic effects on NSCLC cells as 
an OXPHOS inhibitor (90). However, under standard 
high‑glucose conditions, metformin treatment primarily 
causes cell cycle arrest without any signs of cell death (91). 
A study by Elgendy et al (92) indicated that glucose 
consumption and lactate production increased in a time‑ and 
dose‑dependent manner after HCT116 cells were treated 
with metformin, indicating that the rates of glycolysis 
increased. Conversely, under low‑glucose conditions, these 
cells exhibited a rapid increase in oxygen consumption 
and a consequent increase in OXPHOS. These findings 
are consistent with those of certain studies reporting that 
inhibition of glycolysis is associated with increased activity 
of OXPHOS and vice versa (93‑96). Preclinical evidence 
suggested that, similar to other anticancer drugs, the 
effectiveness of metformin was limited in in vitro studies 
and it is feasible to combine drugs to simultaneously 
target multiple metabolic pathways in NSCLC to improve 
treatment efficacy. In a study by Hou et al (97) on a combi‑
nation of metformin and the glycolysis inhibitor 2‑DG in 
NSCLC treatment, enhanced DNA damage, DNA adduct 
formation, intracellular reactive oxygen species levels and 
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Table I. Preclinical studies on metformin in non‑small cell lung cancer.

A, No treatment

Author (year) Cell/animal model Metformin dose Combination treatment Finding/effect of treatment (Refs.)

Moro et al (2018) A549, H1299 50‑250 mM ‑ ↓ Cell proliferation (73) 
    ↑ G1 cell cycle arrest
    ↓ MMP 
Luo et al (2019) A549, H460  0‑80 mM ‑ ↓ Cell proliferation (74)
    ↑ Apoptosis
    ↓ c‑FLIPL, PKA
    ↑ GSK‑3β 
Riaz et al (2019) A549, H460  2 µM‑8 mM ‑ ↓ Cell proliferation (75)
    ↓ Colony formation
    ↓ ERCC1
    ↑ p‑MAPK 
Lee et al (2019) A549, H460, H1299,  0‑10 mM ‑ ↓ Cell proliferation (76)
 H1650, H226   ↓ Colony formation
    ↓ SIRT1
    ↑ p53, p21
    ↑ GADD45A 
Ko et al (2020) H2087  0.25‑4 mM ‑ ↓ Cell viability (77)
    ↓ Colony formation
    ↑ p‑ERK   
Wang et al (2021) A549, H1975, HCC827 0.2 mM ‑ ↓ Cell proliferation (78)
    ↑ Apoptosis
    ↓ Colony formation
    ↑ Gs cell cycle arrest 
Zhou et al (2019) A549 xenograft 5 mg/ml ‑ ↓ Lung cancer metastases (72)
 Nu/J nude mice   ↓ Tumor growth 
Wang et al (2021) A549 xenograft 250 mg/d ‑ ↓ Tumor growth (78)
 male nude mice
De Bruycker et al A549 xenograft 100 mg/kg ‑ ↓ Tumor growth (81)
(2019) female nude mice   ↓ Ki‑67 
Moro et al (2018) PDXs SCID mice 100, 800 mg/kg ‑ ↓ Tumor growth (73)
    ↓ Ki‑67
    ↑ p‑AMPK 
Borzi et al (2021) PDXs  400 mg/kg ‑ ↑ Apoptosis (82)
    ↓ Tumor volume 

B, Treatment

Type/author (year) Cell/animal model Metformin dose Combination treatment Finding/effect of treatment (Refs.)

Glycolysis inhibitor     
  Hou et al (2016) A549 0‑10 mM 2‑dDG ↓ Cell proliferation (97)
    ↑ DNA damage
    ↑ ROS level
    ↑ Apoptosis
    ↑ AMPK 
  Yakisich et al (2019) H460 0‑10 mM 2‑DG/WZB ↓ Cell proliferation (18)
    ↓ Number of colonies 
Radiation     
  Wang et al (2017) A549, H460 5 mM 2 Gy ↓ Colony formation (104)
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mitochondrial membrane potential alteration, as well as 
increased apoptosis, caspase‑3 activity, p‑p38 and p‑AMPK 
levels, were observed, indicating that combined treatment 
was more effective against NSCLC than either drug alone. 
Similarly, in a study by Yakisich et al (18), who studied the 
effect of metformin alone or in combination with 2‑DG and 
WZB on H460 cell viability, a strong synergistic effect was 
discovered. The combination of metformin and glycolytic 
inhibitors led to a marked reduction in intracellular ATP 
and increased cell death by inhibiting both metabolic path‑
ways in lung cancer.

Another strategy to influence the aerobic glycolytic 
pathway in cancer cells includes the inhibition of glucose 

concentrations in culture media in vitro and diet restric‑
tions to lower blood glucose levels in vivo (98). Several 
studies have indicated that cancer cells cultured under low 
glucose concentrations or in sugar‑free media are more 
susceptible to the cytotoxic effects of metformin (55,91,99). 
Restricted diets exhibited a strong synergistic effect on 
anticancer activity in preclinical models of lung adeno‑
carcinoma. Elgendy et al (92) treated mice undergoing 
a 24‑h feeding/fasting cycle with metformin and they 
observed impaired tumor growth only when the drug was 
administered during fasting‑induced hypoglycemia. This 
indicated that metformin combined with fasting‑induced 
hypoglycemia synergistically inhibited the growth of 

Table I. Continued.

B, Treatment

Type/author (year) Cell/animal model Metformin dose Combination treatment Finding/effect of treatment (Refs.)

Chemotherapy     
  Huang et al (2020) A549, H838 3‑12 mM Cisplatin ↓ Cell proliferation (105)
    ↓ Nrf2
    ↑ Apoptosis 
EGFR‑TKI     
  Wang et al (2017) A549, HCC827,  5 mM Erlotinib ↓ Cell proliferation (106)
 H332M

MMP, mitochondrial membrane potential; c‑FLIPL, cellular F ADD‑like IL‑1β‑converting enzyme‑inhibitory protein; PKA, protein kinase A; 
GSK‑3β, glycogen synthase kinase 3β; ERCC1, excision repair cross complement‑1; p‑MAPK, phospho‑mitogen‑activated protein kinase; 
SIRT1, sirtuin 1; GADD45A, growth arrest and DNA damage protein 45A; p‑ERK, phospho‑ERK; PDXs, patient‑derived xenografts; 
p‑AMPK, phospho‑AMP‑activated protein kinase; ROS, reactive oxygen species; AMPK, AMP‑activated protein kinase; Nrf2, nuclear factor 
erythroid 2‑related factor‑2; EGFR‑TKI, epidermal growth factor receptor tyrosine kinase inhibitor.

Table Ⅱ. Retrospective clinical trials on metformin in non‑small cell lung cancer.

A, Prevention

Author (year) Stage Number of subjects Finding/effect of treatment (Refs.)

Wang et al (2021) NS 295573 ↓ Risk of lung cancer (78)
Xiao et al (2020) NS ‑ ↓ Risk of lung cancer (84)
Kang et al (2021) NS 732199 ↓ Risk of lung cancer  (41)

B, Treatment    

Author (year) Stage Number of subjects Finding/effect of treatment (Refs.)

Arrieta et al (2016) Iv 1106 ↑ OS (85)
Xu et al (2018) NS 255 ↑ OST (86)
   ↑ DFST  
Cao et al (2017) NS ‑ ↑ OS (88)
   ↑ PFS 

NS, not specified; OS, overall survival; OST, overall survival time; DFST, disease‑free survival time; PFS, progression‑free survival; ↑, 
increase; ↓, decrease.
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transplanted tumors in nude mice. In addition, an ongoing 
clinical trial aims to determine whether the combination 
of metformin and fasting improves PFS in patients with 
advanced lung adenocarcinoma compared with historical 
data on metformin alone (100). In another clinical trial, the 
investigators will assess for the first time the efficacy of 
combining standard‑of‑care platinum‑based chemoimmu‑
notherapy with metformin plus/minus a fasting‑mimicking 
diet in patients with LKB1‑inactive, advanced lung adeno‑
carcinoma (ClinicalTrials.gov identifier no. NCT03709147).

6. Clinical progress of metformin combined with standard 
anticancer drugs

In recent years, under single treatment regimens [chemotherapy, 
immune checkpoint inhibitors (ICIs) and targeted therapies] 
patients have exhibited relapses due to the development of 
acquired drug resistance (101‑103). There is growing evidence 
that metformin exerts its anticancer effects by inhibiting tumor 
metabolism and that metformin may be a potential candidate 
for combination therapy in NSCLC. A number of preclinical 
studies have reported good results of metformin acting 
concurrently with radiotherapy, tyrosine kinase inhibitors 
(TKIs) and ICIs in NSCLC (104‑107), which has encouraged 
the use of combination therapies. In a meta‑analysis of 14 
clinical studies comprising 3,856 patients, the combination 
of metformin with standard antineoplastic drugs significantly 
improved OS in patients with lung cancer (108). These results 
suggest that metformin combined with radiotherapy may 
be an effective regimen for the treatment of patients with 
NSCLC. However, in two recent randomized clinical trials, 
Skinner et al (109) and Tsakiridis et al (110) reported poorer 
outcomes for patients with NSCLC treated with metformin in 
combination with radiotherapy, suggesting that the addition of 
metformin to radiotherapy did not improve OS in patients with 
NSCLC and increased toxicities, which contrasts the results of 
previous studies. Promising results have also been reported by 
two recent studies of metformin in combination with TKIs and 
ICIs, respectively, which suggested that metformin was able to 
significantly improve PFS and OS in patients with NSCLC by 
overcoming acquired resistance to TKIs and enhancing PD‑1 
blockade by anti‑PD‑1 antibodies, respectively (101,102). Other 
studies (111‑114) suggested that metformin may increase tumor 
response to ICI through a variety of mechanisms, including 
upregulation of CD8+ tumor‑infiltrating lymphocytes and 
their function, downregulation of myeloid suppressor cells 
with immunosuppressive effects, reduction of tumor hypoxia, 
anti‑angiogenic effects and shifting the composition of the 
patient's gut flora to bacterial strains that may respond better 
to immunotherapy (107). Although it has been suggested that 
metformin treatment may exert a synergistic antitumor effect 
with ICIs, the study by Jacobi et al (107) did not obtain any 
positive association between metformin and ICIs in the treat‑
ment of patients with diabetes combined with NSCLC. More 
prospective studies are required to further evaluate the effect of 
metformin in combination with radiotherapy, TKIs and ICIs on 
the outcome of patients with NSCLC. A search on https://clini‑
caltrials.gov indicated that a number of prospective clinical 
trials (Table III) are currently evaluating the preventive and 
therapeutic effects of metformin alone or in combination with 

other treatment options for NSCLC. One of these is an ongoing 
open, single‑arm, phase II clinical trial (ClinicalTrials.gov 
identifier no. NCT03874000) to evaluate the safety, efficacy 
and pharmacokinetics of the metformin‑sintilimab combina‑
tion in the treatment of NSCLC (115).

7. Prospects and conclusions

Therapeutic methods that target the metabolic differences 
between tumor cells and normal cells have potential in cancer 
treatment and the restriction of aerobic glycolysis in tumors 
has been somewhat effective in inducing lung cancer cell 
apoptosis. There are also increasing reports confirming the 
important role of mitochondria in the development and growth 
of cancer. In recent years, there has been increasing evidence 
of the antitumor effects of metformin as an OXPHOS inhib‑
itor and in a number of retrospective clinical trials, metformin 
has produced beneficial effects on survival outcomes in 
patients with NSCLC. The theory of the antitumor effects 
of metformin involves its action on several major signaling 
pathways, including indirect (insulin‑dependent) and direct 
(activation of AMPK pathways) and corresponding targets, 
such as PI3K, K‑RAS, mTORC, PP2A and miRNA. However, 
as with aerobic glycolysis inhibitors, metformin alone exhib‑
ited limitations in its effectiveness in in vitro trials. Drugs 
that target enzymes or metabolites of key metabolic pathways 
may be highly specific and effective but must be matched to 
responsive tumors that are likely to adapt rapidly. Preclinical 
evidence in recent years has demonstrated synergistic effects 
of metformin in combination with glycolysis inhibitors, 
radiotherapy, EGFR‑TKIs and ICIs in NSCLC, but it is not 
consistent with the results of certain retrospective studies 
and clinical trials, and more prospective studies are required 
to further evaluate the influence of metformin combination 
effects on the outcomes for patients with NSCLC. However, 
metformin inhibits mitochondria in a dose‑dependent 
manner and at high doses, although it is able to impair tumor 
growth, it may also lead to lactic acidosis (116). The clinical 
application of experimental doses of metformin may be 
challenging. Of note, metformin accumulates in tissues at 
concentrations several times higher than those in the blood 
and the positive charge on metformin has been indicated 
to promote its accumulation in the mitochondrial matrix 
<1,000‑fold (>20 mmol/l). Hence, metformin concentrations 
of 1‑10 mmol/l, which have been used in preclinical models, 
may also be effective during cancer treatment in clinical 
settings (117). In a recent study, Reinfeld et al (118) used PET 
tracers to measure glucose uptake in specific cellular subpop‑
ulations in the tumor microenvironment and determined that 
in a range of cancer models, myeloid cells have the greatest 
glucose uptake capacity within the tumor, followed by T cells 
and cancer cells. Furthermore, they observed that cancer cells 
had higher uptake of glutamine than of glucose. In the future, 
more in‑depth basic research on target metabolic pathways 
in lung cancer is required to provide an improved theoretical 
basis for adjuvant lung cancer therapy.
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