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ABSTRACT

Many important interactions of proteins are facilit-
ated by short, linear motifs (SLiMs) within a
protein’s primary sequence. Our aim was to estab-
lish robust methods for discovering putative func-
tional motifs. The strongest evidence for such
motifs is obtained when the same motifs occur in
unrelated proteins, evolving by convergence. In
practise, searches for such motifs are often swam-
ped by motifs shared in related proteins that are
identical by descent. Prediction of motifs among
sets of biologically related proteins, including those
both with and without detectable similarity, were
made using the TEIRESIAS algorithm. The number
of motif occurrences arising through common evo-
lutionary descent were normalized based on treat-
ment of BLAST local alignments. Motifs were ranked
according to a score derived from the product of the
normalized number of occurrences and the informa-
tion content. The method was shown to significantly
outperform methods that do not discount evolution-
ary relatedness, when applied to known SLiMs from
a subset of the eukaryotic linear motif (ELM)
database. An implementation of Multiple Spanning
Tree weighting outperformed two other weighting
schemes, in a variety of settings.

INTRODUCTION

Many protein interactions are facilitated through short, linear
motifs (SLiMs). Such motifs have been implicated in many
fundamental biological processes, including sub-cellular tar-
geting [e.g. The KDEL Golgi-to-Endoplasmic Reticulum
retrieving signal (1)], post-translational modification [e.g.
The C- Mannosylation site WxxW (2)] and protein–protein
interactions [e.g. The LxCxE ligand motif for the B-domain
of the retinoblastoma proteins (3)]. Over a hundred different
eukaryotic SLiMs have been identified so far (4) and it has
been estimated that hundreds have yet to be discovered (5).
When eubacterial, archaebacterial and viral motifs are
also considered, the true number of unknown functionally

important linear motifs is likely to be huge. Given the funda-
mental roles these motifs play in the basic functions of pro-
teins and cells, identifying these motifs is of crucial
importance for all biological disciplines.

While identifying domains in proteins is relatively straight-
forward [see (6,7) for reviews] with methods such as PRATT
(8), TEIRESIAS (9) and MEME (10) efficiently discovering
protein family signatures and other conserved regions, identi-
fying SLiMs presents an inherently greater challenge. Web
servers, such as eukaryotic linear motif (ELM) (4) and
QuasiMotiFinder (11) employ various methods, such as
domain masking and evolutionary filtering respectively, to
discover new occurrences of previously known motifs. How-
ever, the web-based LMD method (5) became the first method
to explicitly attempt novel SLiM discovery. The majority of
SLiMs are between 3 and 10 amino acids in length and most
have one or more ambiguous (variable) or wildcard (totally
variable) residues. These two factors make real SLiMs
difficult to distinguish from the background distribution of
randomly occurring false positive motifs. Evolutionary con-
servation in orthologs is frequently used for finding larger
domains but is of less utility in SLiM discovery since, due
to the degenerate nature of many SLiMs, similar non-
functional motifs of the same complexity can show similar
levels of conservation in closely related organisms. The
short and degenerate nature of SLiMs makes them evolution-
arily plastic and particularly amenable to convergent evolution
(12). Rather than looking for similarities between evolutionar-
ily related sequences therefore, a potentially powerful way to
discover novel SLiMs is to look for motifs that are shared
between functionally related proteins that otherwise have little
or no sequence similarity.

Here, we present a new motif discovery method, SLiMDisc
(Short Linear Motif Discovery), to find shared motifs in pro-
teins with little or no primary sequence similarity from a
group of proteins with a common attribute—be it biological
function, sub-cellular location or a common interaction part-
ner. The method builds on the basic pattern discovery abilities
of simple motif discovery tools, such as the TEIRESIAS (9)
algorithm, applying a number of filters to the returned motifs
to up-weight those present in apparently unrelated sequences
and down-weight those primarily arising due to common
evolutionary descent. A key feature of this method is that
it requires no pre-filtering of the dataset for evolutionarily
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conserved sequences and does not suffer from the potential
loss of information (and SLiMs) incurred by arbitrarily retain-
ing a single representative of any given group of homologous
proteins. Furthermore, a number of filtering options are pro-
vided, giving the user a great deal of control over the type
of motif returned. We have applied SLiMDisc to a benchmark-
ing dataset from the ELM database (4) and demonstrate that it
significantly outperform methods that do not account for
evolutionary relationships between the searched proteins.

MATERIALS AND METHODS

The method was implemented in a Python program, SLiM-
Disc, which outputs a ranked list of putatively interesting
SLiMs from an input dataset of proteins. An overview of
the method is given in Figure 1. First, TEIRESIAS is used
to identify all motifs with user defined parameters for min-
imum support (the number of occurrences of a returned
motif), motif length and number of non-wildcard positions,
and which potential ambiguities are to be allowed. For ana-
lyses using ambiguity, the default TEIRESIAS ambiguity
codes for amino acids were used (AG, FY, KR, DE, LIVM
and QN). Motifs were filtered according to a number of
optional criteria, including the evolutionary relatedness of
the proteins containing the motif, information content and
surface probability. Finally, the motifs are ranked according
to information content (13) and normalized support among
unrelated sequences, as described below. The SLiMDisc
program is available on the SLiMDisc website at http://
bioinformatics.ucd.ie/shields/software/slimdisc/.

Input

SLiMDisc accepts input in FASTA (14) or UniProt (15) down-
load format. UniProt annotations may be automatically used to
restrict analysis to certain domains, or to eliminate certain

domains. The user may therefore edit the annotation to cus-
tomize the protein search space as desired. Areas, such as
transmembrane regions, protein domains and inaccessible
residues can be masked since, for certain purposes, they are
areas which may have a lower likelihood of containing motifs.
Alternatively, the user may wish to identify specific regions
of the proteins in which to confine the search, e.g. the cyto-
plasmic regions of a set of proteins, or may have prior
knowledge of a region possibly containing a functional
motif. This allows easy incorporation of experimentally-
derived knowledge without lengthy post-processing of results.

Motif discovery

Putative motifs are returned by the TEIRESIAS algorithm.
TEIRESIAS is a flexible algorithm which allows the user to
specify several settings controlling the class of motif returned
(fixed/ambiguous patterns, minimum number of fixed posi-
tions, etc.) and guarantees to return all maximal motifs of
that class in the input dataset (9). The number of motifs
returned is typically related to the input database size and
the relatedness of the proteins in the dataset (the more closely
related sequences the dataset contains, the longer the search
will take). Motifs which have a complexity below a user
defined threshold can also be removed. Multiple hits between
regions of low complexity, (such as poly-glutamine repeats)
are a common problem in motif discovery searching so this
filter may be useful for some datasets. However, it is worth
noting that some important biological motifs have low com-
plexity, e.g. the NR box nuclear receptor binding motif
LxxLL (16). The Emini method (17) for predicting surface
probability has also been implemented, so that motifs where
less than a user defined percentage cut-off of residues are cal-
culated to be on the surface of the protein can be optionally
removed. However, this method is not as accurate as 3D
structure-based methods, such as DSSP (18) and should be
used with caution.

Information content

A motif M can be defined as:

M¼R1, x(g1), R2, x(g2), R3, x(g3), . . . , Rn-1, x(gn-1), Rn

where R is a fixed/ambiguous position and x(g) is a
gap/wildcard of length g, there are n non-gap positions.

The Information Content is altered to give infrequent amino
acids a higher score, their scores are up-weighted by modify-
ing an element of the classical Information Content (13):
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where Ri is the set of amino acids at position i, pRi is the
probability of Ri, pa is the probability of a, S is the set of

Figure 1. Simplified graphical representation of the SLiMDisc method. The
steps completed by SLiMDisc are in green, those which occur outside the
program are in red. The input dataset is given to the TEIRESIAS algorithm
for pattern discovery and the BLAST algorithm to establish the evolutionary
relationships of the parent proteins. The returned motifs are then filtered
according to a number of user defined criteria. Finally, the motifs are ranked
using information content (based on amino acid frequencies) and evolu-
tionary relatedness.
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all amino acids, w is a gap weight and gk is the length of the
gap at position k.

Normalized number of occurrences of motifs

The number of occurrences of each motif is down-weighted
according to the similarity of the sequences containing the
motif. Ideally, the normalized support should have the fol-
lowing characteristics:

(i) If n motifs are found in identical proteins, the normal-
ized support is 1; (ii) If n motifs are found within completely
dissimilar proteins, the normalized support is n and (iii) the
normalized support must increase from 1 towards n as simil-
arity of the parent proteins decreases. We implemented three
methods of varying stringency to normalize the score, each
of which may be most applicable in different biological
contexts.

(1) Minimum spanning tree (MST) normalization

The default method is to use a MST method (19) (Supple-
mentary Figure 1), which groups together closely related
proteins down-weighting their overall contribution to the nor-
malized support. The MST is the network of edges connect-
ing all nodes, which has the minimum sum of edge lengths.
The MST is calculated using a slightly altered version of
Prims algorithm (19) allowing for the weighting of edges in
a biologically useful way (20). Here, the MST is calculated
based on a distance matrix of the sequence similarity of the
proteins containing the motif, normalized to a value between
1 and 0 (where 1 is no similarity). Weighting of the edge
lengths, shortening the more closely related branches more
harshly than the distantly related branches while still keeping
the score between 1 and n (where n is the number of proteins
containing the motif) is also possible.

Sequence similarity was calculated using the GABLAM
(Global Analysis from BLAST Local AlignMents) method
(Supplementary Figure 2), which gives a global percentage
similarity for any pairwise comparison of proteins by map-
ping local BLAST alignments onto the two proteins. Since
the GABLAM method calculates a separate % identity for
each of two sequences, we took the minimum of the two %
identities in each case. As a percentage of the protein, this
score is normalized for sequence length (unlike BLAST
scores and E-values). Furthermore, multiple hits to the
same region (due to multiple domains or low complexity
regions, for example) do not artificially inflate scores. GAB-
LAM is not so sensitive to alignment artefacts when compar-
ing unrelated proteins and, unlike pairwise sequence
alignment (21), will give them a similarity score of zero.
GABLAM will also account for domain rearrangements,
which pairwise alignment does not.

(2) Unique homologous segments (UHS) normalization

The MST method has the apparent disadvantage that it
ignores whether or not a motif lies within the evolutionarily
conserved or unconserved region of the protein, as detected
by BLAST alignment. For this reason, we considered an
alternative weighting scheme. This defined a UHS weighting,
defining the support as the number of occurrences within all
sets of aligned and unaligned regions (Figure 2). In the case
where three occurrences occurred within regions where A

aligned with B, and B aligned with C, but A did not align
with C, UHS considered this to represent only a single
sequence in calculating the support.

Normalizing the support of a motif based on the number
of UHS allows the proteins to be treated as modular
entities (Figure 2). This method adequately deals with
similarities both between proteins and within proteins.
Given that many proteins in higher eukaryotes are multi-
domain, and many domains exist in multiple copies within
a protein, this is an important consideration. The number of
UHS containing the motif then provides the normalized
support for that motif.

(3) Unrelated proteins (UP) normalization

In certain circumstances, BLAST homology may tend to
underestimate the degree of evolutionary relatedness, and
may only define certain regions as being homologous, while
many more regions, or the entire proteins, may be so. In this
circumstance (e.g. in searches restricted to single domain
proteins, such as cytokines) it may be appropriate to treat
two occurrences in proteins sharing any BLAST similarity
whatsoever as being a single occurrence (UP in Figure 2).
This is the strictest normalization method available in SLiM-
Disc. Essentially, given a list of proteins containing a pattern,
the technique clusters together proteins which have signific-
ant level of homology to each other even if inferred through
another protein. For example, if a motif occurs in three
sequences, where p1 has significant homology to p2 and p2
has significant homology to p3, but BLAST failed to detect
similarity between p1 and p2, the inferred number of nor-
malized occurrences is then estimated as 1 (Figure 2). UP
clustering produces one or more groups of proteins with no
detectable homology between groups (with the BLAST para-
meters used). The normalized support is the number of
groups. By adjusting the BLAST parameters, this setting
can be tailored for very stringent or very relaxed clustering.

Ranking

Having established a large number of motifs, the objective is
to rank them according their information content and fre-
quency of occurrence, adjusted for evolutionary relationships.
Given IC and one of the above measures of the normalized
support N, a motif score is then estimated as:

Score ¼ IC:N

as suggested by Jonassen et al. (20). In practice, this provides a
reasonable means of identifying the motifs of most interest.
Scattergrams of information content versus the score
(Figure 3) provide a visual approach to identify the degree to
which the score of the motif of interest stands out from other
returned motifs of equivalent IC, which may in part reflect
the background distribution of false positives, although care
needs to be taken to distinguish false positives from sub-motifs
or alternative representations of the most interesting motif.

Creating the benchmarking dataset for the method

We adopted the same set of 22 benchmarking ELMs from the
ELM database as the LMD method to facilitate comparison
with their method. The web-based LMD method (5) is a
recently published SLiM discovery method that deals with
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problems of common evolutionary descent by eliminating all
but one representative of a group of homologous segments.
This allows LMD to use a probabilistic scoring scheme
(based on raw motif occurrences in a random dataset),
which is suitable for motif occurrences that can be considered
to be independent, when the random dataset approximates
well the underlying background motif distribution of the
particular group of proteins or protein regions under consid-
eration. For the SLiMDisc method, given the inclusion of
non-independent (related) proteins in datasets generating
motifs, a simpler scoring scheme based on information content
was applied. After testing the validity of their method on the
benchmarking test set, the LMD method was applied to
interaction datasets, where direct binding assays of synthetic
oligopeptides revealed that predicted novel motifs bound the
target proteins as expected (5). To compare like with like,
we similarly restricted motif discovery to regions outside of
documented protein domains (5) but also carried out searches
without domain filtering. The benchmark set of 22 validated
motifs comprises those considered to have greater than three

motifs outside of protein domains, in what appeared to be
unrelated proteins (5). Of these, we omitted the Groucho/
TLE binding motif (LIG_EH1) (22) (no instances available
at www.elm.eu.org), the Mannosylation site motif (MOD_
CMANNOS) (2) (occurs in the annotated Thrombospondin
type 1 domain), the TRAF2 binding motif (LIG_TRAF2_1)
(23) (all instances available on web site are evolutionarily
related) and the WRPW motif (LIG_WRPW_1) (24) (all
instances available are from the Runt and Hairy protein fam-
ilies and the motif is easily discovered by looking down a mul-
tiple alignment of the dataset), leaving 18 motifs for
comparison. SLiMDisc was used to discover motifs using sev-
eral normalization techniques described in the Materials and
Methods section, taking as input for each ELM in turn the
set of sequences documented to contain the motif. The rank
of the highest ranking motif matching the regular expression
given for the documented ELM motif was then recorded for
each ELM. All datasets used in this analysis are available on
the SLiMDisc website at http://bioinformatics.ucd.ie/shields/
software/slimdisc/.

Figure 2. Graphical representation of UHS and UP normalization techniques. Four proteins, labelled 1–4, are shown with annotated domains marked as coloured
regions. Regions of homology as detected by BLAST are shown as grey boxes linking the sequences. Sequences 1 and 2 share a large homologous (orange)
domain. Sequences 2 and 3 also share a homologous region but this is not annotated as a domain. Three other domains are specific to proteins 1 (green), 3 (blue)
and 4 (purple). All motifs a–f have three occurrences in the dataset but have different support (shown in the table on the right) after filtering. a.!Motif a occurs in
a shared region between 1 and 2, which is reduced by UHS to a single occurrence. The third occurrence in sequence 3 is not in an homologous region to 1 or 2 and
is treated as a separate occurrence by UHS. However, proteins 2 and 3 share a homologous region and so UP will cluster sequences 1, 2 and 3, reducing the
number of occurrences to 1. Filtering domains reduces the support to 1 in either case. b.!Motif b occurs in a shared region between 2 and 3, which is reduced by
both UHS and UP to a single occurrence. This time, the third occurrence lies in the totally unrelated protein 4 and is counted with either filter. Filtering domains
removed the occurrence in 4, reducing the support to 1. c.!Motif c lies purely within a repeated domain in protein 3. This is reduced to a single occurrence by
both UHS and UP (the protein is homologous with itself). Although, whole-protein self-hits are ignored by UHS, the additional local BLAST hits between
different domains (shown in grey) will still cause motif c to be filtered by UHS. Domain filtering removes it completely. d.!Motif d is the same as motif b,
except that none of the occurrences lie in domains and so domain filtering makes no difference. e.!Motif e lies in non-homologous regions of protein 1 and 4.
UHS therefore keeps all three occurrences. Whole-protein self-hits are ignored during the UHS filtering, and so both occurrences of motif e in protein 4 are
counted. In contrast, UP clusters sequence 4 with itself and reduces the support to 2. No occurrences lie in domains and so domain filtering makes no difference.
f.!Motif f is found in proteins 1, 3 and 4. None of these regions are homologous and so UHS gives a support of 3. UP, however, will group proteins 1 and 3; even
though they do not directly share homology, they both share homology with common protein 2. UP therefore reduces the support to 2.
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RESULTS

ELM dataset

The ELM benchmarking dataset is based on a dataset pro-
posed to validate the performance of the LMD program (5)
in which every sequence contains the known motif. It is not
clear if taking a set of sequences, all of which contain a
known ELM, is a good validation of the process of discover-
ing novel motifs, since most real discovery datasets will con-
tain sequences that do not contain the motif. Nevertheless, it
provides one potential comparison and, in the absence of a
suitable alternative, represents the best validation resource.
We consider the performance of SLiMDisc with other data-
sets, which do not have 100% support below. The default
SLiMDisc method implemented was MST weighting, with
two other algorithms, UHS and UP also explored (see
Materials and Methods for details).

An overview of the results is presented in Table 1. This
demonstrates a clear improvement of SLiMDisc over basic
TEIRESIAS, regardless of whether fixed or ambiguous, and
regardless of whether ELMs occurring in domains were fil-
tered out. Typically, there was a very substantial improve-
ment in motif rank, and a clear improvement in the number
of identified sequences (support). In comparison with MST,
UHS performed similarly, but not quite as well. The stricter
UP algorithm, which might be expected to eliminate evolu-
tionarily related sequences where the relationship was defined
by a region that does not span the motif occurrences, per-
formed more poorly, presumably because it erroneously
excluded proteins sharing common domains that were irrelev-
ant to the motif. However, it still clearly outperformed the
basic TEIRESIAS method in terms of rank, while support
was lowered by the exclusion of a greater number of
sequences.

Looking at the results in more detail for each of the
18 motifs of the ELM dataset, SLiMDisc (MST) returned
known ELMs in the top 100 ranked motifs for all motifs
with the exception of one. A total of 10 (58%) were the top
ranked motif and 15 (84%) were in the top 10 ranks (Table 2),
compared to only 8 for TEIRESIAS. These results are similar
to the LMD results reported previously (5), with both meth-
ods returning in first position the true ELM in 10 of the 18
cases. In our experience, we could not obtain such good per-
formance applying the same datasets to the web version of
LMD (5). This may reflect some differences in the test dataset
applied here to SLiMDisc, or details of the web server imple-
mentation of LMD. The dataset is probably too small to com-
ment in detail on differences between SLiMDisc and LMD.
However, SLiMDisc missed only one ELM [the sparse
N-glycosylation site (MOD_N-GLC_1) (25)] within the top
100, while the published evaluation of LMD missed three
(5). A more detailed comparison would require running
both methods on a larger identical test dataset.

It is instructive to consider why the alternative weighting
schemes do not perform as well as MST (Supplementary
Table 1). A particularly striking example is the CtBP motif,
which is returned as the top motif by MST, but with a rank
of 54 and 50 by UHS and UP. While the overall performance
of UP was worse, in one instance it performed better than
MST: for the PCNA ligand motif, the true motif was ranked
33 by MST, but third by UP. In this case, the set of proteins
may share a degree of weak similarity below the threshold
detectable by BLAST which vastly increases the number of
background motifs returned by TEIRESIAS. Domain filtering
is sometimes recommended for SLiM discovery. With the
dataset of 18 ELMs used here, the difference was modest
(Supplementary Table 1). However, overall performance
was marginally better with domain filtering. The key question

Figure 3. Scattergram of the information content versus the score for the KDEL (see Table 2) retrieving motif. Each blue point on the scattergram is a motif
which has been considered by SLiMDisc. The points in green are the top three motifs ranked by the method. The actual SLiM for this dataset is the motif
described by the regular expression [KRHQSAP][DENQT]EL.
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is whether this is valid for other motifs outside of those
investigated here.

The method can return ambiguous motifs, such as the
Golgi-to-ER targeting signal (KRH)(DENQ)EL (1). However
our test sets showed that, with this dataset, the ambiguity did
not increase the sensitivity of the searches (see Supplement-
ary Table 1). In cases where there was already a highly
ranked pattern, ambiguity occasionally returned a more
accurate descriptor of the motif [for example the [KR]xTQT
motif of the Dynein Light Chain binding motif (23)] and
rarely caused the motif to drop down the rankings. On occa-
sions where the motif was poorly ranked without ambiguity,
the ambiguity added noise to the dataset causing their rank to
worsen. Overall, from our experience with the ELM dataset,
application of ambiguity slightly disimproved the perform-
ance. TEIRESIAS ambiguity coding is not perfect for
amino acid analysis: it does not adequately capture the fact
that certain amino acid properties are overlapping, rather
than falling into discrete categories. Secondly, for certain
motifs, or residues within motifs, the requirements may be
very specific for one amino acid, or instead be permissive
across the range of ambiguous residues.

Despite the shortcoming of the ELM test dataset that the
SLiM was present in all input sequences, in practise there
was <100% support when considering the analyses performed
without ambiguity: not all occurrences of a given motif had
the same residues at the ambiguous positions, effectively gen-
erating a number of derived motifs that could be detected,
which occur only in a subset of the whole dataset. For
example, the SUMO motif recognized for modification by
SUMO-1 (26) is described in the ELM database as [VIL-
MAFP]KxE. The returned motif, IKxE, occurs in only
14 of the 28 proteins. This illustrates that it is not necessary
for the motif to have very high support to be returned by
SLiMDisc. On the other hand, it also highlights the problems
of searching for SLiMs with ambiguous positions. Until a
good method is developed for introducing ambiguities with-
out generating overwhelming quantities of noise into the res-
ults, it may prove most sensible to search without ambiguities
and then re-search the dataset for additional motifs that are
highly similar to the best SLiMs returned. Only by further
experimental validation can the true sequence of a given
SLiM be elucidated. The analysis of test datasets with
<100% support is considered below.

Table 2. Comparison of methods based on results from the ELM benchmark dataset

ELM TEIRESIAS SLiMDisc LMD
Initial
motifs

Rank Motif Support Rank Motif Support Initial
motifs

Rank Motif Support

14-3-3(type 1)-R(SFYW)xSxP 2232 1 RSxSxP 4/4 1 RSxSxP 4/4 225 1 RSxSxP 3/4

14-3-3(type 3)-(RHK)(STALV)x(ST)x(PEDSIF) 11 130 6 SxSxP 6/6 5 SxSxP 6/6 1656 6 RSxSxE 7/12
c-adaptin-(DE)(DES)xFx(DE)(LVIMFD) 17 339 1 DxFxDFxS 5/8 1 DxFxDFxS 5/8 392 1 DDxFxxF 3/4

Clathrin box-L(ILM)x(ILMF)(DE) 53 613 80 LxDL 12/15 1 LxDL 12/15 778 1 LlxLD 3/5

CtBP-Px(DEN)L(VAST) 157 438 53 PxDL 20/26 1 PxDL 20/26 26 892 1 DxPxDL 8/25

Cyclin-(RK)xLx{0–1}(FYLIVMP) 100 074 — — 0/22 7 KKL 11/22 13 179 15 KRRL 3/19
Dynein light chain-(KR)xTQT 1263 1 SxxKxTQT 3/4 1 SxxKxTQT 3/4 117 1 KxTQT 3/4

HP-1-PxVx(LM) 10 035 2 PxVxL 6/6 1 PxVxL 6/6 5287 4 KVPxVxL 3/7
NRBOX-LxxLL 68 944 9 LxxLL 8/9 10 LxxLL 8/9 27 874 — — 0/18
PCNA-Qxx(ILM)xx(FHM)(FHM) 64 978 — — 0/13 36 QxxLxxF 9/13 1505 1 QxxxxxFF 11/24

Retinoblastoma-(LI)xCx(DE) 131 943 1 LxCxE 18/25 1 LxCxE 18/25 24 581 1 LxCxE 14/24

Integrin-RGD 8351 25 RGD 9/15 1 RGD 9/15 154 2 R.DV 3/8
SH3 (type 2) domain-PxxPx(KR) 14 380 1 PPxP 7/9 1 PPxP 7/9 1406 1 PPxxPxR 4/7

TRAF6-PxE 9294 18 QxPxE 7/8 2 QxPxE 7/8 121 1 PQE 3/7

N-glycosylation-NxC 1982 — — 0/4 — — 0/4 53 — — 0/4
SUMO-1-(VILAFP)Kx(EDNGP) 132 732 — — 0/29 2 IKxE 15/29 13 722 — — 0/14
Golgi-to-ER signal-(KRH)(DENQ)EL 17 236 1 DEL 11/12 1 KDEL 8/12 8 1 KDEL 3/5

Endosome sorting signal-(DER)xxxL(LVI) 10 201 — — 0/10 27 ExxxLL 5/10 1471 22 ExxxLL 5/12

Results of the analysis of 18 datasets from the ELM database as proposed by Neduva et al (5). The table compares the first ranked position, support and number of
initial motifs between TEIRESIAS (scored using the product of support and information content), SLiMDisc (using default settings) and the LMD method [as
described in the LMD paper (5)]. Results in bold are motifs for which the method returns the best rank or equal best rank for that ELM across the three methods.

Table 1. Summary performance of the different normalization techniques on ELM benchmark dataset

Ambiguity Domain filter MST UHS UP TEIRESIAS
Rank Support % Rank Support % Rank Support % Rank Support %

No No 18.06 73.9 24.83 69.8 50.56 51.5 62.17 64.3
No Yes 16.61 70.5 20.83 66.4 49.83 48.1 66.61 59.6
Yes No 41.61 70.9 56.56 69.6 69.11 57.9 84.22 52.6
Yes Yes 28.39 72.5 48.61 64.0 53.56 56.6 57.33 62.6

Comparison of the average rank of the motif matching the regular expression given in the ELM database and the average percentage support of the top ranked
pattern for the ELM benchmark dataset between the three different normalization techniques and the TEIRESIAS algorithm with and without domain filtering and
ambiguity. Rank is calculated using the arbitrary value of 200 when the motif of interest is not found in the top 100 motifs returned. Support for each ELM is the
percentage of proteins in the dataset containing the returned ELM.
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RECOVERY OF MOTIFS FROM DATASETS
WHERE THERE IS <100% SUPPORT

Interaction datasets

A more challenging test for the method would come when
noisy biological data are analysed. Large scale interaction
databases provide readily available benchmarking datasets,
which can be probed to re-discover known SLiMs (5).
The datasets provide protein interaction data for a central
hub protein known to interact with several spoke proteins.
When searching for SLiMs in these datasets, we are looking
for SLiMs involved in motif–domain interactions and
motif–motif interactions. However, these interactions datasets
often contain large numbers of domain–domain interactions,
so that the signal of any SLiMs contained in the datasets can
be overpowered. Secondly, very large proteins may have
multiple domains and motifs involved in interactions, increas-
ing the ‘noise’ around any given motif. Thirdly, high-
throughput experimental datasets often contain considerable
experimental noise.

To test the performance of SLiMDisc on a dataset with a
more realistic level of noise, we took a set of 17 proteins
from the literature, which are known to interact with several
of their binding partners through ELMs, and also had an entry
as a hub protein in the HPRD interaction database (27). We
analysed their HPRD-defined binding partners for the pres-
ence of interesting motifs using SLiMDisc (default settings).
In 7 of these 17 test sets, motifs from known binding sites
were re-discovered in the top 10 ranked motifs returned
(41% success rate) (Table 3). For these seven returned motifs,
there is likely to be considerable noise in the dataset, since
between 71 and 96% of the proteins in the datasets do not
contain annotated instances of the ELMs (Table 3).When
TEIRESIAS motifs ranked based on true support and
information content were investigated only 1 of the 17 data-
sets returned the motifs from known binding sites in the top
100 ranked motifs (LIG_NRBOX motif ranked 96th). To
establish how many motifs might be returned at random,
we determined the numbers of motifs in the top ten returned
for the reversed motif: none of the 17 reversed motifs were
returned in the top 100. When restricting datasets to proteins
interactions derived from Yeast Two Hybrid experiments
(12 datasets), only 2 of these datasets returned the known
motif in the top ten ranked motifs (a 17% success rate
compared to 41% success rate for all HPRD interactions).

This trend is not surprising, given the fairly high level of
experimental noise in yeast two hybrid data: however, we
would emphasize that the sample sizes are relatively small
and the success rates only indicative.

The introduction of ‘noise’ in the form of false positives
(spoke proteins not interacting with the hub through a
SLiM) and false negatives (missing proteins) in these datasets
clearly degrades performance in comparison to the highly-
supported ELM benchmarking datasets. False positives
increase the number of stochastically returned motifs, causing
the rank of the true motif to decrease. Similarly, missing pro-
teins will reduce the support for a motif, which negatively
impacts its score and therefore its rank. Yet the SLiMDisc
method appears to more strongly outperform TEIRESIAS
(motifs ranked by true support and information content) in
noisy biological data compared to the more idealized ELM
benchmarking dataset, indicating that correcting for common
evolutionary descent is even more critical in typical datasets
where motif discovery is preformed.

RGD

The RGD motif (28) interacts directly with integrin extracel-
lular domains and is critical for the cell adhesion of numerous
proteins, such as fibrinogen, fibronectin and von Willebrand
factor. We searched all 53 human proteins linked to the GO
term ‘Integrin binding’, without filtering domains. The RGD
motif was returned (MST rank: 4; UHS rank: 64; UP rank:
> 100). It has been reported that <15% of SLiMs occur in
domains (5). While there can be a substantial increase in
sensitivity of a SLiM detection method if domains are
removed, this must be used cautiously. Removal of Swiss-
Prot annotated domains in this case would lower the pattern
support from 23 to 13, significantly lowering the likelihood of
RGD being detected.

A feature of SLiMDisc is its ability to specify a protein, or
even a region within a protein, on which to focus a search
(Only SLiMs that occur within this protein/region are then
considered). The original discovery of the cell attachment
site of fibronectin (29) narrowed it down to a 108 amino
acid region. When we searched the ‘Integrin binding’ dataset
again, this time requiring the true motif to occur within this
108 amino acid region, RGD was ranked first (MST: 1;
UHS: 41; UP: >100; TEIRESIAS >100). Such restricted
searches massively cut down search space, reducing both

Table 3. Results from ELM containing HPRD interaction datasets

Hub protein HPRD _id ELM name (annotated motif) % True annotated
motifs

Returned
motif (rank)

CtBP 04015 LIG_CtBP ([PG][LVIPME][DENS]L[VASTRGE]) 0.29 (9/31) DLS (6)
Clathrin 00350 LIG_Clathr_ClatBox_1 (L[IVLMF]x[IVLMF][DE]) 0.21 (5/24) LxDL (2)
Peroxisome proliferator activated

receptor gamma
03288 LIG_NRBOX (LxxLL) 0.14 (3/21) LxxLL (4)

Integrin Alpha 5 00627 LIG_RGD (RGD) 0.1 (2/21) RGD (4)
Grb2 00150 LIG_SH3_2 (PxxPx[KR]) 0.04 (6/159) PxPP (3)
14-3-3- Eta 00215 LIG_14-3-3_1 (R[SFYW]xSxP) 0.06 (2/31) RSxS (4)
Ubiquitin conjugating enzyme E2I 09045 MOD_SUMO ([VILMAFP]KxE) 0.09 (4/43) IKxE (8)

Results for the seven datasets which returned true annotated binding motifs in the top 10 ranks for the HPRD interaction datasets. A returned motif is defined as one
which is found at the annotated positions of the known instances of the motif (including motifs which account for at least 2 of the residues involved in the ELM
interaction). %True annotatedmotifs is a measure of the extent of anticipated noise in the dataset: datasets with a low% have relatively few of the proteins where the
ELM has been annotated.
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false positives and computational time and are strongly
recommended where such information is available.

We then searched all human proteins with the GO cellular
component term of ‘Extracellular Matrix’. This dataset con-
sisted of 149 proteins, including the ‘Integrin binding’ dataset
as a subset. When searched for interesting motifs (without
domain elimination) the known RGD motif was not ranked
in the top one hundred motifs. Even when the search was
focused on the 108 amino acid region of Fibronectin the
motif was only ranked in 32nd position. This illustrates the
limits of searches for short motifs on large datasets. When
the search was limited to surface accessible regions the rank-
ing was increased to 18th. Protein interaction motifs are often
restricted to the surface of proteins. Such motifs will be
returned in datasets, and clues as to their nature can be reve-
aled by investigating their positions in the protein, protein
structure and by studying multiple alignments.

LPxTG

A dataset of 104 proteins from 37 bacterial species in UniProt
(15) containing the keyword ‘Cell Wall’ and term ‘Anchor’
was investigated for its ability to return the known LPxTG
motif (30), whose cleavage between Threonine and Glycine
permits attachment to the cell wall. SLiMDisc analysis with
MST normalization, and filtering out UniProt annotated
domains, yielded over a million TEIRESIAS patterns for
which 176 889 had an MST-normalized support of 2 or
greater. The LPxTGmotif occurred in just over half of the pro-
teins present in the dataset, and was returned as the top ranked
motif using MST normalization. Ranks of the matching motif
using TEIRESIAS, UHS and UP were all >100 when using the
default BLAST cut-off of 1e�2. Using a BLAST cut-off of
1e�6, ranks of the motif using TEIRESIAS, UHS and UP
were >100, 2 and 61, respectively. This illustrates the sensitiv-
ity of the UHS and UP normalization techniques to choice of
parameter settings.

Detection of the homologous cytokine
receptor WSxWS motif

While the primary objective of this method is focussed on
detection of motifs that have arisen by convergent evolution,
and distinguishing them from motifs shared by common des-
cent, it is clear that the resolution of the BLAST method will
result in the detection of ancient motifs, identical by descent,
that have been conserved in otherwise highly diverged pro-
teins. We therefore tested the performance of the method to
detect a known motif identical by descent, which defines a dis-
tinct signature for a protein family. We searched for motifs
among a dataset of 37 human proteins linked to the GO
term ‘Hematopoietin/interferon-class cytokine receptor activ-
ity’. These are all haematopoietic receptors. The analysis was
performed without filtering of domains.

The highest ranked motif to be returned from the dataset
was the well known WSxWS motif (31). This motif is not
an interaction motif, but a structural motif that is homologous
rather than convergent. Running the analysis eliminating Uni-
Prot domains would remove this motif, since it lies within a
fibronectin domain. The three weighting schemes gave the
following ranks for this motif (MST: 1; UHS: >100; UP:
>100; TEIRESIAS: >100). In this case UHS and UP ranked

the motif poorly as they can detect and down-weight homo-
logy via an intermediate protein that MST cannot. Recover-
ing homologous motifs for extremely diverged proteins may
give clues regarding homology that may not be detected out-
side of the motif, or give clues regarding critical functional
regions. In this case, the input proteins are too distant to be
aligned by Clustalw (32), yet SLiMDisc was able to identify
a known functionally important motif.

DISCUSSION

Our implementation of weighting schemes to correct for close
relationships shared by larger sequence regions provides a
means to routinely discover motifs, without the requirement
to discard in advance any sequences from the dataset under
investigation. The weighting scheme which performed most
strongly in a variety of settings was the MST weighting
scheme. It is perhaps a little surprising that this simpler
scheme appears the most robust, since it (and UHS) would
appear sensitive to the problems of short motif sharing
from evolutionary descent in regions that are just outside of
a region alignable by BLAST. Perhaps BLAST is typically
reasonably efficient at recovering most such short segments
as part of a returned alignment. Clearly the datasets tested
here are not representative of all possible biological scen-
arios, and even here we came across one case of a motif
(PCNA), which is better recovered by the UP algorithm,
which weights against any relationships among parent
sequences, regardless of whether they overlap the motif of
interest. Thus, these three weighting schemes may represent
optimal strategies for particular problems, if enough is
known about the domain and homology distributions of the
datasets under consideration. The alternative LMD scheme
is to simply discard all but one representative homologous
segment from a group of related proteins (5); This is not so
important for datasets, such as the ELM benchmarking data-
set, where one knows that the motif is present in all proteins.
In real applications, however, there is a big risk of accident-
ally discarding a region containing the motif of interest in
favour of a related protein region that does not contain
the motif. The methods we have presented represent a two-
stage process, of motif discovery, followed by score nor-
malization. Ultimately, the development of integrated motif
discovery algorithms that incorporate a priori weighting
schemes may improve or accelerate motif discovery.

While this method has been implemented here in conjunc-
tion with the most rapid motif discovery tool available to us
(TEIRESIAS), clearly the same logic may also be applied to
other motif discovery tools. Particularly important for certain
classes of motifs are tools which permit flexible length gaps.
Flexible length gapped motif discovery is of great interest as
many biological motifs permit gaps, and the next major
advances in SLiM discovery should find efficient approaches
to incorporate gapped motif discovery into current tech-
niques. In addition, an improved method for incorporating
ambiguity into motifs is clearly desirable for future SLiM dis-
covery tools. While the weighting schemes we propose are
useful, the problem of motif discovery remains substantial.
Most commonly, a SLiM discovery tool has to find a motif
with relatively low support and relatively few fixed positions
(low information content). There are problems associated
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with looking for SLiMs with low support; many motifs which
have a biological activity can look less interesting than a pat-
tern which has occurred by chance. Certain motifs which
have low support and low information content are almost
indistinguishable from random noise in most datasets [e.g.
the PCSK cleavage site (33) [KR] R which plays a role in
the proteolytic processing of both neuropeptide and peptide
hormone precursors or the peroxisomal targeting motif
WXXXY/F (34)]. It is vitally important, therefore, to reduce
the search space as much as possible, restricting the input to
only those proteins (and, where possible, the relevant regions
of proteins) that are likely to contain the SLiM of interest.
This reduction of search space has the greatest impact on
reduction of false positives. The greatest impact in SLiM dis-
covery may come from sensitive handling of biological clas-
sifications of proteins that assist in reducing the search space.
These can be small scale careful analyses, such as probing a
group of proteins which share a function, sub-cellular loca-
tion or interacting partner; or can be large, genomic scale
analyses, such as surveys of entire protein–protein interaction
databases (5,27) or GO term analysis (35).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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