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Abstract: An understanding of the participation and modulation of fibroblasts during tumor forma-
tion and growth is still unclear. Among many speculates, one might be the technical challenge to
reveal the versatile function of fibroblasts in tissue complexity, and another is the dynamics in tissue
physiology and cell activity. The histology of most solid tumors shows a predominant presence of
fibroblasts, suggesting that tumor cells recruit fibroblasts for breast tumor growth. In this review
paper, therefore, the migration, activation, differentiation, secretion, and signaling systems that are
associated with fibroblasts and cancer-associated fibroblasts (CAFs) after implantation of a breast
tumoroid, i.e., a lab-generated tumor tissue into an animal, are discussed.
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1. Introduction

The traditional two-dimensional (2D) in vitro culture has been in practice for more
than decades to perform fundamental cancer research. Though it is still very popular, it
cannot support breast tumor growth by maintaining physiological conditions with tumor
heterogeneity. It is, therefore, not more supportive of revealing tumor morphology and
tumor clonal heterogeneity. Recent advances in 3D culture systems have provided insight
into a long-standing desire for understanding tumor growths and rapid diagnosis of cancers
together with effective treatment plans [1]. They have optimized and applied alternative
systems for maintaining the tumor heterogeneity where cells express phenotypical and
physiological characteristics similar to their expressions in native tumors [2]. Tumoroids,
organoids, and 3D-cell laden scaffolds are some of alternative systems that have been
applying to generate mini tumor-like tissue in the lab [2–7]. They are multicellular with one
or more different types of cancer cells, aggregating in a manner to exhibit the physiological
relevant cell–cell and cell–extracellular matrix (ECM) interactions. Tumoroids somehow
resemble natural tumors according to certain characteristics they express, for example, cell
signatures, heterogeneity, and structural complexity. Their intermediate complexity that
lies between standard 2D cultures and native tumors further facilitates studying tumor
growth in a lab. It is said that tumoroids can maintain the stroma of in vitro tumor tissue,
representing native tumor biology. A tumoroid is a type of transplantable tumor, which is
easy to generate in a lab, and can be optimized according to study projects.

Further, growing tumoroids can be monitored for various functional studies of cy-
tokines for ECM remodeling, proliferation, migration, cell–cell interaction, and many more,
through state-of-the-art live and post-live imaging systems [8–10]. They have to be opti-
mized to address some other concerns, though current tumoroid models provide many
clues about tumor tissue formation, for example, how the tissue fibroblasts migrate and
take part in tumor formation. It is difficult to reveal the fundamental process of tumor
tissue formation from pro-oncogene or migrating cancer cells by using imaging systems
because of tissue complexity and complex cell signatures in a native tumor [11–13]. There-
fore, an implanted tumoroid can represent a tumor core and can facilitate breast tumor
formation by triggering migration of cancer-associated cells, including fibroblasts towards
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it [14–16]. For a more concise and informative review, here, only fibrocytes and fibroblasts
are described, not other cell types, even though they engage in tumor formation. A tu-
moroid is a lab-grown tumor of a desired size. After implantation, it forms a xenografted
tumor in an animal tissue within a certain period, depending on the type of cancer cell
and hydrogel or scaffold used [4,7,16,17]. Fibroblasts and fibrocytes are the most dominant
cell types in a tumor tissue, more significant than the cancer cells and other cell types, as
shown in various studies in the literature [18–20].

Histological sections of a tumor have consistently shown that both tissue fibroblasts
and migrating fibroblasts or fibrocytes take part in the tumor tissue growth, as shown
in the Figures 1 and 2 [16,18,19]. Fully grown tumor tissue has a large inner core area
that is surrounded by the outgrowing tumor tissue. Interestingly, active or proliferating
cancer cells are present predominantly in the outer margin of tumor tissue [16,20,21], while
cancer-associated fibroblasts (CAFs) primarily occupy the core part rather than the outer
growing tumor region [17–20]. In addition, the percentage ratio of CAFs to cancer cells is
significantly more towards the core region, with a reversed ratio in the outer region of a
tumor tissue, as represented by the Figure 2 [4,16,22,23]. On the one hand, the cancer core,
because of less blood and nutrition supply, is usually the detective core which represents
the positive charge topological area that is occupied mostly by round fibroblasts. The outer
part of a tumor, on the other hand, represents a negative topological charge area which
consists mostly of elongated fibroblasts that are necessary for tumor growth, as shown
in Figure 2 [21]. Kristen et al. effectively described the cellular changes by topological
charge, for example, degree of alignment, as well as behavior and density of fibroblasts
and epithelial cells [24]. Fibroblasts tend to be more alignment with more density, but they
have different behaviors near a defect as compared with normal tissue [24]. Because of
heterogeneity and the versatile phenotypic nature of cells in a tumor tissue along with
functional plasticity of CAFs, a detailed study on fibroblasts and CAFs could facilitate the
understanding of tumor biology in a xenografted tumor [25].
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Figure 1. Illustration represents a xenografted tumoroid at an early period and giant solid tumor tissue at a later stage, 
surrounded by host tissue. The micro-tumoroid generated in the lab has implanted into the subcutaneous tissue of the 
recipient animal (A). Local immune cells or inflammatory cells act on the tumoroids, triggering chemotaxis that enhances 

Figure 1. Illustration represents a xenografted tumoroid at an early period and giant solid tumor tissue at a later stage,
surrounded by host tissue. The micro-tumoroid generated in the lab has implanted into the subcutaneous tissue of the
recipient animal (A). Local immune cells or inflammatory cells act on the tumoroids, triggering chemotaxis that enhances
the migration of the different host cells to the implanted tumoroid area to develop the large solid tumor (B). The histological
section of the large tumor shows its central core has round fibroblasts (yellowish green color) with scattered cancer cells
(red color), tumor margins with more active tumor cells (red color) and cancer-associated fibroblasts (elongated yellowish
green color) along with other host cells (not shown). There are more blood vessels on the skin side of the tumor than on its
muscle side when the tumoroid transforms to a xenografted tumor into the subcutaneous pouch of the recipient animal. TA,
tumor area, encircled by red dotted line.
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Figure 2. Illustration represents growing tumor in three dimensional. The local tissue fibroblasts (yellowish green color)
predominantly participate in tumor expansion after getting signals from cancer cells (red color) and converting to the
activated cancer-associated fibroblasts (CAFs). Circulatory fibroblast or fibrocyte through small or large blood vessels also
participate in tumor expansion though less as compared with the local tissue fibroblasts. The tumor tissue area (marked by
red dotted margin) represents the outer layer of growing tumor that contains the rapidly proliferating cancer cells (red color)
and CAFs (elongated yellowish green color). Note: Other cells are not represented in the figure even if they participate in
tumor formation. TA, tumor area.

2. Fibroblast Contribution to Tumor Tissue Formation
2.1. Tissue Fibroblasts

Most of the cell components of a tissue are fibrocytes, which are usually in a quiescent
state. They transform to an active state known as quiescent normal fibroblasts when
tissue maintenance and metabolism are necessary to maintain the homeostasis. They
also play a vital role in intra- or inter-cell communications to regulate a normal tissue
microenvironment, in addition to their support in the immune system at the tissue level
(more information in paragraph 2 of Section 3.6) [22,26]. The relatively high expression
of CD39 usually differentiates fibrocytes from quiescent normal fibroblasts [23,27]. The
reversible conversion of fibroblasts to fibrocytes takes place at a cellular level, as per the
need to maintain the cellular integrity and tissue function [27,28]. Fibroblasts change their
phenotypical features and physiological functions, depending on purposes and action
sites. Interestingly, fibroblasts remember their original locality and functions even after
their translocation to other body site [29–32]. They are primarily derivatives of primitive
mesenchyme from epithelial cells through epithelial-mesenchymal transition (EMT) [33].

Fibroblasts handle the connective tissue structural integrity, and release various ECM
precursors required for formation of tissue matrix, a fundamental foundation for tissue
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development and differentiation [34]. Interestingly, fibroblasts undergo mesenchymal-
epithelial transition (MET) when there is a requirement of producing epithelia which is
necessary for the regeneration of both normal and abnormal (for example, tumor) tis-
sues [35]. Fibroblasts are heterogeneity in population depending on the tissue source,
activation, and function. Many studies mention that local tissue fibroblasts predomi-
nantly transform into CAFs in a tumor microenvironment as compared with circulating
fibroblasts [36]. A histological evaluation usually shows the morphological diversity and
variability of fibroblasts in addition to their distribution patterns within solid tumors [37].
Busch et al. effectively presented the heterogeneity of fibroblasts at the molecular level
based on an analysis of both a single fibroblast and its tumor-activated counterpart [25].
They showed that most fibroblasts representing the “naïve” phenotypes expressed the
typical fibroblast markers (e.g., VIM and CD44) without the expression of epithelial mark-
ers (e.g., CDHA and EPCAM) [25]. Various factors produced by the tissue fibroblasts are
mostly cell specific, not species specific, and their release depends mostly on the fibroblasts
themselves. They can modulate the epithelial cell mobilities, and usually work as paracrine
agents for fibroblast–epithelial cell interactions [38]. These factors also act in a group as a
restrictive effect, a specialized contractile machinery necessary for motility which is applied
on intercellular matrix materials, enforcing fibroblasts to form aggregates for migration [39].
Fibroblasts, which have round cell morphology, have higher density with positive topo-
logical charges and they are present in a defect area, whereas fibroblasts having elongated
morphology with negative topological charges and occupy the growing tissue area. The
distribution pattern of different morphological fibroblasts suggests the possibility of cell
alignment during tissue growth. The elastic nature of tissue further supports cell alignment
and facilitates the precise location of an oriental core defect. It also guides the migration
and the differentiation of fibroblasts in addition to apoptosis [21].

2.2. Migrating Fibroblasts

Local tissue migration is possible by micro-level movement, and distant migration is
by macro-level movement, of fibroblasts through blood. Circular fibrocytes or fibroblasts
are distant migrating fibrocytes or fibroblasts. Fibroblasts should polarize spatially through
the direction of various signaling molecules to achieve migration ability and to promote
cellular protrusion at one end while retraction at the other [40]. A leading or protruding
edge periodically switches the protrusion and retraction process, depending on the fluctua-
tion in actin polymerization that is controlled by complex motility dynamics signals [41,42].
Cell migration depends on ECM rigidity, fibronectin binding capacity, and myosin light
chain kinase (MLCK) that exhibit the control on Rac signaling and periodic protrusion. Rac
signaling controls the protrusion width, thereby, increasing the mobility of a migrating cell
(Figure 3 normal tissue) [42]. The migrating cell can change the orientation and direction by
restricting the protrusion in the opposite direction through a stochastic turning mechanism,
which is directed by various chemotactic gradients and other dynamic cues (Figure 3
tumor tissue) [43]. It has been shown that PIK signaling mediates for the establishment
of chemotactic gradients and chemotaxis and also restricts for additional protrusion, fa-
cilitating unidirectional cell migration [44–46]. Blood-borne fibroblasts-like cells have a
peculiarity in their cell phenotypes (collagen I/CD11b/CD13/CD127/CD45RO/MHC
class, II/CD86/TSLPR, and alpha-SMA) [47,48], and take part actively in tumor forma-
tion [49]. They migrate to the tumor formation site through specific communication among
cytokines and their receptors, for example, CCR3, -5, -7, and CXCR4 (Figure 3) [48]. TGF-β
plays a vital role in proliferation and differentiation of fibrocytes, and enhances the pro-
duction of ECM proteins, for example, collagen (Figure 3) [50]. In addition, it mediates
the fibroblast migration with the support of CD44 [21]. CD44 is a cellular adhesion recep-
tor that is usually expressed during tissue inflammation and injury [51]. Its interactions
with cytoskeletal components influence the adhesion and motility of fibroblasts for tis-
sue remodeling and repairing [52]. It further promotes TGF-β activation through MMP
molecules, enhancing fibroblast migration, and therefore speeding up migration velocity
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to spike cellular activities to maintain tissue integrity [52]. In addition, activated T cells
that interact with migrating fibroblasts help early differentiation and maturation of fibrob-
lasts, and support fibroblasts to take part in different functions, for example, promoting
tumor stromagenesis [53]. Migrating fibroblasts serve as the regulators of cell migration
and also directly participate in cancer progression, as shown in Figure 3 [49]. They also
promote the influx of monocytes into the tissue by increasing the expression of certain
receptors (CCR2 and CCR5) (Figure 3), which speed up the vulnerability of the cancer cell
invasion [48,49]. In addition, they mediate the immune suppression in tumor tissue by
increasing the expression of indoleamine oxidase, and therefore they are also considered to
be immunosuppressive fibroblasts. Circulatory fibroblasts also help to induce angiogenesis
during tissue repair or tumor tissue growth (Figure 3) [48].
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Figure 3. Schematic representation of the signaling cascades of the normal fibroblasts and CAFs for normal and tumor
tissue function, respectively. Normal tissue fibroblasts and/or myofibroblast (MF) or fibrocytes play a vital role by main-
taining normal tissue homeostasis through normal tissue proliferation, ECM secretion, cell–cell and cell–ECM interactions,
angiogenesis, apoptosis, and chemosensitivity through various inter- and intra-coordinated communications. Normal
communications within normal cells through various signaling factors and cascades are disturbed and disoriented by
cancer cells, leading to excessive cell proliferation and ECM secretion. ECM becomes stiffer with a significant increase
in inter- and intra-cell to cell, or cell to ECM communications. Tumor tissue has a massive angiogenesis process with
the ability to suppress apoptosis mechanisms. Increased tolerance by tumor tissue to an anticancer therapy speeds up
uncontrolled tumor tissue growth as compared with check-and-balance normal tissue growth. The biological factors in
the green box represent the factors released from both normal fibroblasts at a normal level and CAFs at an excessive level.
The dotted blue arrows represent the normal secretion of factors and function on different cells for normal homeostasis,
and the dotted red arrows represent the excessive secretion of factors and function on different cells for tumor tissue
microenvironment. MMPs, matrix metalloproteinases; VEGF, vascular endothelial growth factor; PDGF, platelet derived
growth factor; IL-6, interleukin-6; IL-17A, interleukin-17A; EGF, epidermal growth factor; IGF, insulin growth factor; CXCL
7 and 10 platelet-derived chemokines CXC chemokine ligand (CXCL) 7 and 10; HGF, hepatocyte growth factor; CCR, C-C
chemokine receptor types 2; TNF, tissue necrotic factor; INF-γ, interferon-γ; CCL5, C-C motif chemokine ligand 5; FGF,
fibroblast growth factor; CTGF, connective tissue growth factor; PGE2, prostaglandin E2; NF-kB, nuclear factor kappa-light
chain. Self-activation property of CAFs supports for rapid tumor cell proliferations and tumor growth. TF, tissue fibroblast;
NE, normal environment; TME, tumor microenvironment.
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2.3. Activated Fibroblasts

Activated fibroblasts take part more actively in various functions, for example, produc-
tion and expression of various proteins or cytokines, and activation of other cells through
cell-cell communications directly or indirectly as compared with the normal fibroblasts.
They are the most common cell type that produces the collagen, a major component of ECM
proteins, and other protein factors or fibers. Quiescent fibroblasts become active sufficiently
only for a normal tissue repair process so as to maintain tissue integrity, in the case of tissue
that becomes damaged by various reasons. Normally, an injury of tissue triggers an inflam-
matory response, thereby, chemoattracting inflammatory cells that secret various factors
to support the transformation of local fibroblasts to activated fibroblasts [54]. Activated
fibroblasts usually locate in any inflammatory site to repair the tissue damage by deposit-
ing tissue matrix, and to support angiogenesis [55,56]. They become active exceeding the
normal limit, for example, during abnormal tissue growth by the signals from abnormal
sources or cancer cells [57,58]. Normally activated fibroblasts represent the normal or
negligible expression of proteins or cytokines, for example, normal expression of Col-I
without alpha-SMA expression as shown by dermal fibroblasts. However, in the presence
of cancer cells, dermal fibroblasts express abnormally high Col-I and alpha-SMA [36,59].
Activated fibroblasts mainly maintain tissue homeostasis by performing various required
functions, for example, ECM production and modification, tissue regeneration, angiogen-
esis, immunity, chemo-sensitivity or chemo-resistance, and cell metabolism, along with
program cell death (apoptosis). However, almost all the expressions by super-activated
fibroblasts with the apoptosis arrest are abnormally high in tumors. Fibroblasts become
excessively active in a tumor microenvironment, and support breast tumor growth through
versatile functions of many secretory proteins, cytokines, and transcriptional factors, for
example, MMPs, VEGF, TGF-β, PDGF, IL-6, EGF, IGF, IGF, FGF, CTGF, PGE2, CXCLs,
CCRs, CCLs, TNF, INF- γ, and NF-kB, etc. (Figure 3) [60–65].

2.4. Fibroblasts in Tumor Mass

The recruitment and activation of fibroblasts in growing tumors are the complex
processes to figure out because of tissue complexity, heterogeneity, and the dynamic
tumorigenesis. In a solid tumor mass, stroma includes the fibroblasts, blood vessels,
inflammatory or immune cells, fat cells, and cancer cells where cancer cells exhibit guidance
to co-ordinate cellular flow and migration [66]. It has been shown that circulatory fibroblasts
do not contribute significantly for their differentiation to CAFs as compared with local
tissue fibroblasts. Circulatory fibroblasts help immune influx to the tissue, facilitating
invasion by tumor cells. In addition, CAFs may be originated from adipocytes, or even
from cancer cells via EMT [67]. CAFs, which express Col-I, constitute approximately one-
third of the stromal mass [36]. They also promote the vessel sprouting for the development
of the tumor vasculature or angiogenesis [36,68]. Their support in EMT transition leads
to tumor stemness, and drug resistance as mentioned above (Figure 2) [58,69–71]. CAFs
reprogram the regulatory molecules, and change the metabolic pathways to favor the
tumor growth (Figure 3) [23]. They not only represent the predominant cell component in
the tumor but also secrete the major extracellular proteins or fibers that are needed for the
formation of tumor stroma (Figures 2 and 3).

3. Other Factors That Contribute to Tumor Tissue Formation
3.1. ECMs

ECM is a conditioned structural framework created by cells for their attachment,
proliferation and differentiation. Cell-to-matrix interactions are prerequisite for regulating
normal tissue homeostasis. The change in regular ECM integrity considerably influences
the activity of fibroblasts, for example, attachment, proliferation and secretion [60]. Like-
wise, changes in the cellular expressions alter the ECM structure and integrity [60,61]. CAFs
usually express markers like CD140b, CD87 and CD95 that help to differentiate themselves
from the normal activated fibroblasts [23]. Unusually high expression of these markers
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contributes to tissue disorganization directing for the aberrant tissue growth as noticed in
an unhealed wound or in a cancer. In both unhealed wound and cancer, ECM becomes
stiffer compared to surrounding normal tissue ECM [72]. The CAFs and local fibroblasts
activated by tissue inflammation [72,73] induce excessive production, remodeling and stiff-
ening of ECMs. Newly deposited ECM further supports for the reorientation of collagens
and other ECM fibers by the cross-linking through LOX and transglutaminase, generating
larger and stiffer ECM fibers along with enlargement of the tumor tissue [72–74]. The CAFs
from patient-derived breast cancer have shown the moderate secretory profile on molecular
signatures with most ECM remodeling molecules, for example, COL1A, TNC, MMP2,
LOX and LOXL2 [25]. It might be the reason that CAFs-derived ECM proteins are more
progressive towards the stiffness and promote for the cancer growth and invasion [71].
Detail description about the changes in ECM structure and integrity during migration,
initiation and formation of tumor by fibroblasts is nicely described by Tianyi et al. [71].

3.2. Angiogenesis

Angiogenesis is a complex and multistep process that leads to the development of
new blood vessels through various co-ordination systems either during normal tissue
development, wound repair or during cancer growth [64]. Fibroblast growth factor 2
(FGF2) of FGF family is a potent angiogenic factor that induces endothelial cell prolifer-
ation, migration and initiation of tubule formation along with the promotion of various
other enzymes like proteases, and supports for the receptor expressions like integrin and
cadherin [62,63]. FGF2 inhibits TGF-β1, inducing the differentiation of fibroblasts for
pro-fibrotic microenvironment, and enhances proliferation of fibroblasts for new tissue
formation and angiogenesis [75]. Further, FGF supports vessel integrity, stimulates the
production of vascular endothelial growth factors (VEGFs), and controls the glycolytic
metabolism in endothelial cells that are needed for the angiogenesis process. Some studies
have shown that lack of FGF effects angiogenesis because of failure in vessel integrity, and
the increase in permeability [65,76,77]. As known, CAFs speed up the angiogenesis in can-
cer tissue through VEGF-mediated enhancement of zester2/vasohibin 1 (EZH2/VASH1)
pathway [78].

In addition to support for angiogenesis by angiogenetic factors, fibroblasts directly
participate in formation of outermost layer of blood vessels, especially of large blood
vessels, generally known as adventitial fibroblasts [79]. They possibly play a role as vas-
cular progenitor cells of unknown heterogeneity. These distinct niches of perivascular
fibroblasts share some expression markers with vascular smooth muscle cells and peri-
cytes, creating the strong lineation that makes difficult to delineate them from underlying
layer [79]. Arsheen et al. studied about the various collagen genes expressed by perivascu-
lar fibroblasts to establish the vascular integrity [80]. Interestingly, perivascular fibroblasts
also function as pericyte progenitors to maintain the inner layer of the blood vessel and
deposit matrix proteins to form the endothelial lumen and to stabilize nascent blood ves-
sels [56,80]. CAFs additionally support vascular growth through mechanical force created
by the increase in the fibrin density [81].

3.3. Immunosuppression

Besides support for tissue maintenance and angiogenesis, activated fibroblasts secret
various peptide growth factors, chemokines, cytokines and so on to regulate the immune
status within the tissue microenvironment (Figure 3). Since the expression profile depends
on the location and the function of fibroblasts, it is unclear to describe the role of fibroblasts
precisely in immunosuppression. But some studies show that fibroblasts suppress the
immune system through multi-step mechanism, supporting for the tumor cell survival and
the cancer growth [71,82]. CAFs however support accumulation of inflammatory cells and
modulate immune response through TGF-β besides dysregulation of the ECMs [83–85].
They mediate the higher expression of CD206, an anti-inflammatory molecule, showing
the immunosuppression activity indirectly [85]. They are derivatives of different cell types
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such as normal fibroblasts, epithelial cells, bone marrow stromal cells, stellate cells and
adipocyte cells [86]. CAFs communicate and stimulate the self-renewal function of cancer
cells mainly through the paracrine systems facilitated by cytokines, vesicles and metabolites
(Figure 3) [86]. They are responsible not only for excessive production of ECMs but for
their physical remodulation, supporting proliferation and migration of cancer cells [86].
CAFs also play a vital role to protect cancer cells in tumor microenvironment indirectly by
secreting MMPs, upregulating BCL-Xl, and by releasing some soluble factors, for example,
fibroblast activation protein [87–93]. Further, CAFs derived exosomes, which establish
the intercellular communication, induce fibroblast differentiation to CAFs through TGF-β
signaling, and promotes the chemoresistance [94,95].

3.4. Energy

Survivability and activities of fibroblasts depend solely upon energy and energy
sources available in surrounding microenvironment. Various activities of fibroblasts like
self-activation, production of ECMs, and regulation of other processes, for example, an-
giogenesis require energy. Fibroblasts acquire energy only through the metabolism of
carbohydrate, lipid or proteins. Fibroblast growth factors like FGF1, FGF15, 19 & 21 have
emerged as key regulators of carbohydrate and lipid metabolism [96,97]. Fibroblasts also
can mobilize tumor cell glycogen to promote the cancer cell proliferation [98]. In addition,
TGF-β1 produced by cancer cells activates p38-MAPK signaling in CAFs to release various
chemokines and cytokines so as to help for the mobilization of glycogen within cancer
cells [98]. CAF associated FAK can regulate expression of some chemokines like Cc16
and Cc112, and help metabolism in cancer cell through malignant Ccr1/Ccr2 and PKA
activation [99]. Interestingly, both CAFs and cancer cells exhibit a metabolic shift in their
biosynthetic pathways which are under the direction of epigenetic reprogramming on
lactate production [100].

3.5. Apoptosis

Apoptosis represents the natural cell death, and it is necessary for the regulation
of tissue homeostasis as well as development and remodeling of a tissue. Fibroblasts
regulate apoptosis in normal tissue by the help of various cytokines, chemokines or active
protein that can cause glutathione depletion in the cells [101]. ROS-induced cell death may
represent, depending on the cellular system, either apoptosis or necrosis. Fibronectin also
induces the delayed apoptosis in fibroblasts compared to early apoptosis in endothelial
cells [102]. Proliferation of fibroblast and its apoptosis depend on various metabolic activi-
ties [103,104], hormonal control [105], and hypoxic condition [106]. In tumor, apoptosis is
markedly reduced compared to proliferation of fibroblasts. Fibroblasts therefore not only
represent the predominant cell component in tumor but also contribute for the formation
of tumor stroma by depositing major secretory proteins and fibers (Figures 2 and 3).

3.6. Tumor Microenvironment

The tumor microenvironment (TME) has distinct ECM proteins and its regulators
compared to those of native tissue microenvironment [16]. An in vitro tumoroid prepared
from the single cancer-type in the lab exhibits unique ECM proteins and other factors
specific to the cancer cell type used in its formation. These ECM proteins and factors are
both insoluble and soluble cancer factors and handle the formation of an entire cell-specific
TME. The studies have shown that the cancer cells express some ECM components that are
not expressed by normal cells, for example, Col19A1, Col122A1, Col7A1, LAMA4, LAMB1,
LTBP3, TINAGL1 [107]. Cancer cells secrete the ECM regulators and other factors to
maintain the tumor ECMs, for example, LOX, LOXL2, LOXL4 & PLOD1, S100-A4, S100-A6
& S100-A13 [107].

The tumoroid with pre-established TME therefore when implanted into the mice, can-
cer cells do not need to go through the new environmental adapting process to create their
initial TME. However, host cells get new tumor mass that triggers the change in cell signa-
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tures of host tissue and directs the extension of TME thereby facilitating transformation of
the tumoroid into the tumor mass within the host tissue (Figure 3). The first host response
to the tumoroid is inflammatory response where immune cells migrate towards the tu-
moroid and act against the complex tumor tissue antigens present in the tumoroid (tumor
ECMs, regulators and secret factors etc.). Local fibroblasts promote the inflammation and
induce immune cell influx, forming the space to migrate themselves towards the tumoroid.
Ultimately, immune cells become more activated by the signals received from the cancer
cells, leading to profuse secretion of ECM proteins and other factors (Figure 3) [108–110].
In addition, tumoroid cancer cells adapt in host tissue and proliferate rapidly together
with invasion of tumoroid by local immune cells, fibroblasts, endothelial cells, and fat cells,
leading tumoroid transformation to a tumor mass (Figures 1–3). As shown in Figure 2,
fibroblasts occupy the majority of the central core of solid tumor, however, cancer cells and
active CAFs mainly occupy the tumor peripheral area [16,21].

It is known that the greater the formation of blood vessels in TME, the higher the
proliferation of cancer cells and CAFs, thereby, extending the area of tumor mass (more
often in a skin site) as compared with an area with less blood supply (more often in a
muscle site) where tumor mass cannot extend much (Figure 2) [4,111,112]. The histology
and immunohistochemistry of xenografted tumor sections have shown that the outer area
of a tumor has an abundant blood supply with many fat cells as compared with the central
area of a tumor [4,113]. It suggests that, as the tumor grows, the cells in the central core
area are relatively less active or in the quiescent phase or undergo necrosis after a certain
period. Later, liquid stroma fills the tumor necrotic core [114,115].

The CAFs are one of the vital cell components in a tumor and their self-proliferating
loop further increases tumor mass. CAFs enhance the endothelial cell proliferation for more
vascularity, protect the tumor cells from anticancer drug effect, increase the stiffness of
ECMs, and activate the fatty cell proliferation for the increased energy production required
for the highly proliferating fibroblasts themselves, cancer cells, and other associated cells
(Figure 3) [58,69–71]. Xenografted tumors generated in a host tissue by implanting the cell-
and ECM-specific tumoroids, therefore, help decipher the significant roles of fibroblasts for
cancer formation and growth.

4. Tumoroid Transformation to a Tumor by Host Fibroblasts Following Implantation

Tumoroids are sophisticated and complex 3D spheroids that contain at least one type
of cancer cells [15]. A fully grown tumoroid, where a necrotic core is surrounded by actively
proliferating layers of cells, resembles native tumor tissue [116]. Studies have shown that
cells involved in a tumoroid perform metabolic and physical activities similar to what they
do in native tissue. The ECM proteins produced by cells during tumoroid formation bind
each other and form the complex networks that represent the tumor complexity as seen
in xenografted tumors [117,118]. The methodologies to generate tumoroids are beyond
the scope of this paper. Briefly, most of the methods follow the techniques which help to
aggregate cells after their division, for example, magnetic levitation [119]. Tumoroids have
been used to study the invasiveness of a tumor cell, anticancer drug screening, and various
cell signatures [4,120].

Biological mechanisms either in normal or in altered states are always complex be-
cause of constant dynamic interactions among many indigenous and extraneous factors
which are associated with the microenvironment [111,121]. The dynamic interactions result
in the changes in cellular morphology along with functional alteration or variation in
cell–cell or cell–matrix interactions, maintain the homeostasis for cells which are associated
with their communities [121]. When a normal condition transits to an altered condition,
all the cells associated with the environment have to alter their functions to help to man-
age their survivability until a normal condition returns, or they have to go through the
direction they receive to adapt to the altered condition, or they die if they cannot tolerate
or fight against the abnormal situation. Breast cancer cell lines, which tend to aggregate,
can form tumoroids. Tumoroids represent moderate tissue complexity as compared with
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the high complexity of native tissue. They facilitate the study of cell–cell or cell–matrix
interactions and the analysis of tumor formation and progression towards cancer. It is also
known that some subpopulations of tumor cells can represent cancer stem cells (CSCs)
or tumor-initiating cells (TICs) that have stem cell-like features for tumor initiation and
growth [112]. During tumoroid sphere formation, CSCs plays a significant role in the
division and synthesis of ECM protein that supports cell–matrix interactions and acts as a
scaffolding bed for dividing cells. Tirino et al. showed that some tumor cells could lose
their stemness during the culture period after their differentiation from CD133+ cells to
CD133- cells [122,123], which ultimately led to the formation of a necrotic area inside the
tumoroid [124]. It has been shown that tumoroids can maintain the stemness characteristic
of tumor cells by suppressing the differentiation process [112]. Some interesting findings
show that cancer cells (CD133-), which rarely form aggregates due to the lack of stemness
characteristics, can regain their stem cell-like properties in tumoroid or 3D culture sys-
tems [125,126]. A dynamic model provides a suitable relocalization opportunity for cells
that trigger transformation of inactive cells to active stem-like cells [126,127]. Cell–matrix
and cell–cell interactions build up a cohesive force that brings the cells close together,
forming compact and smaller tumoroids [128]. Cells with high cohesive force are usually
present towards the center of the tumoroids, while cells with less cohesive force present in
the periphery of the tumoroids [128].

Although tumoroids can represent the complexity of tumors to a certain extent, the
in vivo implantation of tumoroids extends the benefits of their study to help character-
ize cell–cell and cell–matrix interactions in physiological conditions. The study of how
fibroblasts, macrophages, and some other inflammatory cells migrate towards a tumor
microenvironment is not possible using the current available 3D culture systems such
as tumoroids. Breast tumor growth and angiogenesis factors are progressive markers of
tumor expansion in a tumor. Once tumoroids implant into subjects to generate xenografted
tumors, the cancer stem cells that present in the periphery of the tumoroids actively adapt
to the new environment, and represent the “reactive” cancer cells that start providing the
microenvironment to promote tumor growth [129].

In the initial phase, the inflammatory response to tumoroids by the host immune
system triggers an increment in CXCL1, a mediator of leukocyte influx recruiting neu-
trophil (CD45+ Neut+) [130]. The inflammatory phase ultimately transits to the tumor
progression phase, arresting apoptosis and increasing cell proliferation similar to that of
the wound healing process [131]. It is known that the fibroblasts especially present in the
breast carcinoma produce the paracrine growth factors, ECM components, and proteolytic
enzymes, as shown in Figure 3 [132]. A study has shown that stromal fibroblasts support
cancer growth and promote tumorigenesis [133]. In the tumor environment, fibroblasts
differentiate into CAFs; however, differentiation does not show similar patterns since it
depends on the grades of neoplasticity of cancer cells [134]. CAFs also gain the ability
to transform non-tumorigenic cancer cells to tumorigenic cancer cells, promoting cancer
growth. They also boost the signaling cascades in the surrounding area of a tumor that help
recruitment of stromal fibroblasts and other host cells for tumor progression [135]. During
tumoroid transformation to a tumor in a host tissue, high expression of certain cytokines
such as IL-6 and IL-8 regulates the immune and inflammatory responses and enhances the
breast tumor growth [130,136]. The increased expression of IL-6 also supports migration
of endothelial stem cells, and IL-8 aids the process of angiogenesis [130]. CAFs release
stimuli factors, for example, TGF-β superfamily factors (FGF, HGF, etc.) that have the
ability for EMT that is associated with E-cadherin loss, enhancing invasiveness of tumor
cells for tumor progression [137]. CAFs, in addition, create an environment that helps
to express more WNT ligands for tumor growth [138]. The matrix degrading enzymes
(MMP-1, MMP-2, MMP-3, MMP-9, MMP-11, and MMP-14) secreted by CAFs breakdown
the basement membrane barriers and play an essential role in EMT (Figure 3) [137,139].
MMP-1 itself has also been shown to promote tumor cell migration by activating a receptor,
protease-activated receptor (PAR1), which is expressed in breast cancer cells [140].
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Recently, CRISPR-Cas9 gene editing technologies are in practice to better understand
breast tumor growth through specific mutagenesis of some mutation factors that are
involved in malignant transformation [141,142]. This technology helps accurately knockout
the genes of interest as well as shortens the culture time of fibroblasts [143]. Stefano et al.
demonstrated CRISPR-Cas9-mediated somatic gene editing of mammary epithelial cells
that caused E-cadherin loss and initiated invasive lobular breast carcinoma [144]. Since the
mutation created by CRISPR-Cas9 was permanent, it was suitable to terminally differentiate
cells and to efficiently express genes of interest in tumoroids [144,145]. When implanted
into the mice, mutated tumoroid transforms into invasive cancer and mutated normal cells
behave as cancer cells and proliferate rapidly for breast tumor growth [138].

Infiltration of fibroblasts into an implanted tumoroid supports complex ECM network
formation after the deposition of laminin, fibronectin, hyaluronan, and glycosaminoglycans,
etc. by fibroblasts [146,147]. Some of these components under the influence of tumor
cells promote the migratory capacity of fibroblasts, for example, by increasing the extra
domain A and B of fibronectin in the tumor environment [148,149]. Recently, Begum et al.
further showed that CAFs promote directional cancer cell migration by aligning fibronectin
through increased traction forces and contractility [150]. A tumoroid, therefore, enhances
the early exponential growth phase in a xenografted tumor followed by a delay in growth
as compared with a xenografted tumor from 2D cultures where early growth rate is slow
due to the presence of both non-proliferating and necrotic cells, and even the total number
of cells is higher [15]. CAFs also enhance cancer growth by increasing the secretion
of stromal derived factor-1 (SDF-1) which directly stimulates the expression of cognate
receptor, CXCR4, that initiates angiogenesis and tumor cell motility [20]. It is still under
debate whether tumor cells transform fibroblasts to myofibroblasts for tumor growth or
if the previously altered stromal microenvironment enhances the tumor growth [151,152].
Different populations of CAFs that are derived from several cell types may be present in a
tumor with different overlapping or non-operating expressions of certain markers such as
NG2, PDGFRβ, and αSMA [153,154]. CAFs organize the matrix with the help of a mediator,
PDGFRα, which is also associated with connective tissue remodeling [150,155]. Organized
matrix and integrin αvβ6 and α9β1 promote directional cell migration, facilitating tumor
shape and its growth [150,156]. Further, formation of larger adhesions containing vinculin
in CAFs, as compared with those in normal stromal fibroblasts, slows the turnover rate,
increasing mechanical and traction forces that help to shape breast tumor growth [150,157].

5. Conclusions and Perspectives

Fibroblasts are heterogeneous with versatile functions that depend on their locations
and purposes. On the one hand, they are essential to tissue repair, and on the other hand,
they facilitate apoptosis, thereby, representing a totally opposite function for a fundamental
purpose that is the maintenance of homeostasis and tissue integrity. Fibroblasts transform
in a tumor microenvironment to activated CAFs, which are more active and proliferative,
accelerating breast tumor growth under the direction of cancer cells. In addition, CAFs
show the frequent random motility which is a type of migration with excessive expression
of ECMs and other biological factors. CAFs can arrest apoptosis, thereby, facilitating
uncontrolled abnormal growth. After tumoroid implantation, the cancer cells located on
the surface of a tumoroid try to adapt in a new host environment. During this time, a
tumoroid sensitizes local host tissue and evokes the inflammatory response. A tumoroid
ultimately stabilizes its own microenvironment and transforms to a xenografted tumor by
recruiting various host cells, for example, local fibroblasts. A tumoroid transforms local
fibroblasts to CAFs that further enhance the inflammatory response which helps to recruit
many inflammatory cells such as neutrophils and monocytes. Eventually, inflammatory
cells that come into contact with a tumor turn into cancer-associated inflammatory cells.
They proliferate rapidly, protect the tumor, and further accelerate migration of host cells
towards the tumor as well as initiate new vessel formation in the growing tumor.
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Native tumor tissue mimicking a tumoroid supports the possibility of a benchmark to
try to understand how fibroblasts migrate towards tumor tissue and take part actively in
tumor formation. However, we are not there yet where we can monitor the migration of
fibroblasts through an in vitro 3D system. We can only show the migration of fibroblasts
to a tumoroid after xenografting and harvesting a tumor along with its surrounding host
tissues in different time points or by using highly sophisticated in vivo live imaging systems
that use contrast agents or a tumoroid of fluorescent tagged cells that help monitor tumor
formation in real time. The 3D native mimicking substrata along with the systems, which
could facilitate the flow of blood and tissue cells (also considered as biophysiological 3D
dynamic culture system) as in a body system, would substantially help to demonstrate the
role of fibroblasts in tumor formation, and to fully understand the mechanism of tumor
growth. In addition, this system would make it easy to decipher the cancer cell signatures
in an in vitro setup that would show expressions similar to in vivo tumor tissue.

The recent advancement in a 3D system that uses a fluidic tumoroid culture to track tu-
mor invasion is encouraging, suggesting that, in near future, there will be a fully functional
tumoroid dynamic system that helps study cancer growth without the use of animals [9].
The delay in creating a biophysiological 3D dynamic culture system and incomplete in-
formation about tumor growth keeps us in the present conflicting situation about cancer
growth mechanisms, and therefore makes the future timeline uncertain for successful
personalized anticancer therapeutics.
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