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Abstract: Acetaminophen (APAP) is one of the most commonly used analgesic and anti-pyretic drugs,
and APAP intoxication is one of the main reasons for liver transplantation following liver failure in
the Western world. While APAP poisoning ultimately leads to liver necrosis, various programmed
cell death modalities have been implicated, including ER stress-triggered apoptosis. The BCL-2
family member BOK (BCL-2-related ovarian killer) has been described to modulate the unfolded
protein response and to promote chemical-induced liver injury. We therefore investigated the impact
of the loss of BOK following APAP overdosing in mice. Surprisingly, we observed sex-dependent
differences in the activation of the unfolded protein response (UPR) in both wildtype (WT) and
Bok-/- mice, with increased activation of JNK in females compared with males. Loss of BOK led to
a decrease in JNK activation and a reduced percentage of centrilobular necrosis in both sexes after
APAP treatment; however, this protection was more pronounced in Bok-/- females. Nevertheless,
serum ALT and AST levels of Bok-/- and WT mice were comparable, indicating that there was no
major difference in the overall outcome of liver injury. We conclude that after APAP overdosing,
loss of BOK affects initiating signaling steps linked to ER stress, but has a more minor impact on
the outcome of liver necrosis. Furthermore, we observed sex-dependent differences that might be
worthwhile to investigate.

Keywords: BOK; BCL-2 family; acetaminophen; ER stress; UPR; apoptosis; necrosis

1. Introduction

Para-(Acetylamino)phenol (acetaminophen, paracetamol, herein referred to as APAP)
is one of the most commonly used antipyretic and analgesic drugs in the world [1,2]. It is
safe to use within its rather narrow therapeutic window; however, an overdose can lead
to severe hepatic injury and liver failure [1,3]. As an over-the-counter obtainable drug,
excessive self-medication—intentional (due to suicide attempts) or unintentional (by the
use of combination products containing APAP)—is the main cause of APAP-intoxication
and accounts for ~50% of all acute liver failure (ALF) cases in the Western world [1–4]. The
metabolism of APAP takes place mainly in the liver, with a lesser contribution of the kidney
and intestine [5]. While the main portion of APAP is readily conjugated with glucuronic
acid or sulphate and excreted with the urine, only a small percentage (~10%) is metabolized
by cytochrome P450 (predominantly CYP2E1 and CYP1A2), leading to the formation of
the highly reactive intermediate N-acetyl-p-benzoquinone imine (NAPQI) [2,4,6,7]. Under
physiological conditions, NAPQI is rapidly conjugated to glutathione (GSH) and secreted
in the urine as cysteine and mercapturic acid conjugates [6]. However, if GSH stores are
depleted, a situation encountered upon APAP overdosing, unconjugated NAPQI binds
and reacts with cellular, preferentially mitochondrial proteins, leading to mitochondrial
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dysfunction and cell death [6]. Importantly, it has been described that female mice are less
susceptible to APAP hepatotoxicity compared to male mice [8,9], due to an accelerated
GSH restoration, which allows the scavenging of more NAPQI from the cell [8].

So far, the only approved antidote for APAP intoxication is N-acetylcysteine (NAC), a
precursor for GSH, which is able to bind and scavenge excessive NAPQI [1,2]. NAC has to
be administered within the first 8 h of overdosing, as its efficacy significantly diminishes
thereafter [3]. Due to the short therapeutic time window of NAC and the adverse effects
that have been observed after prolonged treatments, more insight into cell death pathways
that are activated in response to APAP overdose is needed to develop new treatment
options, especially for late-presenting patients [2].

Although it is well established that APAP overdose ultimately leads to liver necro-
sis [2,3,10], various programmed cell death modalities have been implicated during its
course. For instance, ferroptosis was reported to be activated and to aggravate the severity
of liver damage [11] and its inhibition by ferrostatin-1 was associated with a decrease
in hepatocyte cell death in vitro and in vivo [11,12]. Necroptosis, a RIPK1/3 and MLKL-
dependent programmed cell death with necrotic outcome, is also described to be activated
following APAP intoxication. However, despite induction of RIPK1/3 and MLKL, the
involvement of these genes in APAP hepatotoxicity is controversially discussed (reviewed
in [13]). Similarly, the contribution of apoptotic cell death to the pathophysiology of
APAP-induced hepatotoxicity and the roles of several BCL-2 family members in mod-
ulating disease severity is controversially discussed (reviewed in [14]). Simultaneous
downregulation of anti-apoptotic BCL-2 and upregulation of pro-apoptotic BAX after
APAP treatment was correlated with increased caspase-3 cleavage, apoptotic cell death and
increased hepatotoxicity [15–17], while an overexpression of human BCL-2 in transgenic
mice unexpectedly showed enhanced hepatotoxicity [18]. Genetic deletion or silencing of
the pro-apoptotic BH3-only proteins BIM, BID and PUMA were all reported to partially
protect from APAP-induced liver damage [19–21].

Mitochondria play a crucial role in the development of APAP-induced liver damage.
APAP overdose-induced ROS triggers a prolonged opening of the mitochondrial mem-
brane permeability transition pore, which results in mitochondrial membrane potential
depolarization, a drop in energy (ATP) production and, eventually, necrosis [6,22]. In
addition to mitochondria, ER function and integrity are also heavily affected by APAP
overdose. In fact, the transcription factor GADD153 (CHOP) is upregulated upon APAP
treatment in renal tubular cells and mouse liver [23,24]. CHOP, in turn, mediates the
transcriptional induction of BIM, which eventually leads to the initiation of apoptosis [25].
The induction of ER stress and subsequent activation of the unfolded protein response
(UPR), is an important mechanism in the development of APAP hepatotoxicity [26,27] and
Chop-/- mice were found to be protected from liver damage following APAP overdose [28].
Several studies have shown that ER stress can induce non-apoptotic programmed cell
death, namely necroptosis, which may be relevant given the necrotic outcome of APAP
intoxication [29–31]. Mechanistically, the connection from ER stress to necroptosis is poorly
understood, but may involve ligand-independent activation of TNF-R1 [29] and may be
facilitated in the context of ischemia/reperfusion [30,31].

BCL-2-related ovarian killer (BOK) is a member of the BCL-2 protein family with the
highest structural similarity to pro-apoptotic BAX/BAK, and multiple studies have impli-
cated BOK in pro-apoptotic processes [32–35]. Nevertheless, BOK fulfils other functions
that are not, or not directly, associated with apoptosis, such as the regulation of cellular
proliferation, autophagy induction and modulation of the UPR (reviewed in [36]). A role of
BOK in the latter is supported by the findings that the majority of BOK is localized at the
ER-membrane [37–39]. In the mouse liver, BOK was shown to mediate diethylnitrosamine
(DEN)-induced hepatocellular apoptosis [40]. That study showed that DEN induces BOK
levels in a partially JNK-dependent manner, and that compared with WT controls, livers
from treated Bok-/- mice had reduced induction of CHOP, BIM and PUMA, resulting in
decreased apoptosis. Given the previously reported roles of BOK in acute liver damage
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and in modulating UPR responses, we addressed in this study how the loss of BOK affects
liver damage in male and female mice upon APAP overdosing.

Surprisingly, we found sex-dependent differences in the activation of the UPR follow-
ing ER stress, and a decrease in JNK activation in Bok-/- compared to WT mice. However,
whereas the loss of BOK decreased lobular necrosis in females (and to a smaller extent also
in males) based on pathohistological assessment, no significant difference in overall liver
damage, as assessed by ALT and AST serum levels, was detected between the genotypes.

2. Results

2.1. Expression of CYP2E1 Is Increased at the mRNA but Not the Protein Level in Bok-/- Livers

The metabolism of APAP into the toxic metabolite NAPQI is mediated by CYPs,
especially by CYP2E1 and, to a lesser extent, also by other CYPs, such as CYP1A2 [41]. To
test whether expression levels of CYPs differ between Bok-/- and WT mice, we analyzed the
expression of CYP1A2 and CYP2E1 mRNA in primary hepatocytes or whole livers isolated
from WT and Bok-/- mice of both sexes, at baseline conditions (Figure 1A–F) and after
APAP treatment (Supplementary Figure S1A,B). Of note, the expression of CYP2E1 at the
baseline was increased in both primary hepatocytes and whole liver lysates derived from
Bok-/- male mice compared with WT mice (Figure 1A,C). The expression of CYP1A2 was
also increased; however, the difference did not reach statistical significance (Figure 1B,D).
On the other hand, no difference in respective CYP expression levels was seen in liver
lysates from Bok-/- and WT female mice (Figure 1E,F). Despite the difference seen at the
mRNA level, CYP2E1 protein levels in untreated livers were comparable between the
genotypes (Figure 1G,H). After APAP treatment, the expression levels of CYP1A2 and
CYP2E1 transcripts did not differ significantly between the two genotypes of either sex.
However, CYP2E1, but not CYP1A2, expression decreased in males, while no changes in
females were detected (Supplementary Figure S1A,B). CYP2E1 protein levels after APAP
treatment were comparable between the genotypes (Supplementary Figure S1C–E).

2.2. p53 Expression Correlates with PUMA Expression but Not with the Severity of Liver Damage

P53 has been described to play a protective and attenuative role in APAP-induced
hepatic injury, yet the underlying mechanism is still obscure [42–44]. Since we previously
found that BOK-deficient cells (HCT116 and HepG2) and liver lysates derived from Bok-/-

mice show a higher baseline expression of p53 at both the transcriptional and protein
levels [40,45], we tested p53 expression in the liver after APAP treatment by RT-qPCR.
As shown in Figure 2A, similar expression levels of p53 were detected in both sexes of
WT and Bok/- mice. The BH3 only protein and p53 downstream target PUMA has been
reported to contribute to APAP-induced hepatotoxicity [21]. Indeed, our data showed that
APAP induces the expression of PUMA in WT and in Bok-/- mice (Figure 2B). Furthermore,
p53 expression levels correlated linearly with those of PUMA in both males and females
(Figure 2C,D), but not with the severity of liver injury as assessed by the levels of ALT in
the serum (Figure 2E,F).
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Data are represented as mean ± S.D. and are derived from 3 mice per group. *: p < 0.05; n.s.: not significant. 
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Figure 1. CYP2E1 mRNA but not protein expression is increased in Bok-/- males at baseline. qPCR analysis revealed increased
expression of CYP2E1 and CYP1A2 in primary hepatocytes derived from Bok-/- male mice compared with wildtype (WT)
(A,B). Expression of CYP2E1, but not CYP2A1 was significantly increased in whole liver lysates derived from Bok-/- males
compared with WT (C,D). In whole liver lysates of female WT and Bok-/- mice CYP2E1 (E) and CYP1A2 (F) were expressed
at similar levels. CYP2E1 protein levels were comparable in whole liver lysates of untreated WT and Bok-/- mice (G,H).
Results are depicted as a fold change compared to sex-matched WT (A–F) or as GAPDH normalized values (H). Data are
represented as mean ± S.D. and are derived from 3 mice per group. *: p < 0.05; n.s.: not significant.
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Figure 2. P53 expression correlates with PUMA expression but not with the severity of liver damage. qPCR analysis showed
that livers from WT and Bok-/- mice expressed p53 at similar levels (A) and that PUMA was induced in WT and Bok-/-

mice after APAP with higher induction observed in WT mice (B). Expression of PUMA and p53 correlated in males (C)
and females (D). P53 expression did not correlate with serum ALT levels in males (E) nor in females (F). qPCR results
are represented as a fold change compared to sex- and genotype matched PBS controls (A,B). Data are represented as
mean ± S.D. and are derived from 8 to 9 mice per group. ****: p < 0.0001; n.s.: not significant.

2.3. APAP Induces ER Stress and Activates the Unfolded Protein Response

Several studies reported APAP overdose to induce ER stress [23,24]. Furthermore,
there is increasing evidence pointing towards a role for BOK in modulating the unfolded
protein response (UPR) [36,39]. Thus, we hypothesized that the activation of the UPR via
APAP-triggered ER stress could be impaired in Bok-/- mice. Therefore, we investigated
the expression levels of several proteins implicated in ER stress-induced UPR pathways,
among them ATF4, CHOP, BIM and PUMA, in livers of WT and Bok-/- mice. qRT-PCR
analysis revealed that APAP treatment results in an elevation of ATF4 levels in livers of
WT and Bok-/- mice in a sex-specific manner (Figure 3A). In fact, the increase of ATF4 in WT
males was comparable to that in Bok-/- males, but substantially stronger than in females.
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Interestingly, in the latter, ATF4 induction was more pronounced in Bok-/- mice than in the
WT controls (Figure 3A). This increase in ATF4 in treated Bok-/- females was associated with
increased levels of CHOP and BIM, whereas respective expression levels in males were
comparable between the two genotypes (Figure 3B–F). PUMA protein levels were increased
after 5 h of APAP treatment compared with PBS controls, and the increase was stronger in
females than in males; however, no differences were observed between the genotypes of
either sex (Figure 3G) In WT mice, APAP treatment resulted in a 40% downregulation of
BOK protein in female but not in male mice at the 5 h timepoint (Figure 3H).
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Figure 3. Acetaminophen (APAP) induces ER stress signaling. Transcriptional induction of ATF4 in response to APAP
was increased in males compared to females (A) and increased in Bok-/- females compared to WT females (A). In all mice,
BIM was induced transcriptionally with significantly increased induction in Bok-/- females compared with Bok-/- males and
WT females (B). A Western blot of total liver lysates from males (C) and females (D) showed similar protein expression
levels of BIM and CHOP in WT and Bok-/- mice, except for higher BIM expression levels in Bok-/- females (C–F). PUMA
protein was more strongly induced by APAP in females than in males with similar expression levels between genotypes
(C,D,G). BCL-2-related ovarian killer (BOK) was downregulated in WT females (D,H) but not in WT males (C,H). Results
are depicted as a fold change compared to sex- and genotype matched PBS controls (A,B,G,H) or as GAPDH normalized
values (E,F). Data are represented as mean ± S.D. and are derived from 8 to 9 mice per group. *: p < 0.05; **: p < 0.01;
***: p < 0.001; ****: p < 0.0001; n.s.: not significant.
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The JNK signalling pathway was activated in WT and Bok-/- mice of both sexes. JNK
activation was significantly increased in WT females compared to WT males and a similar,
although less pronounced, sex-specific effect was seen in mice lacking BOK (Figure 4).
In both sexes, a trend of decreased pJNK activation in Bok-/- mice compared with their
WT counterparts was observed (Figure 4). Prolonged activation of the UPR eventually
induces apoptosis [46]. However, although our results showed an induction or activation
of ER stress-activated proteins, such as JNK, CHOP, BIM and PUMA, all of which have
the potential to induce apoptosis, we failed to detect effector caspase-3 or -7 activation at
the endpoint of 5 h of APAP treatment, whereas some degree of PARP cleavage was seen
(Figure 5). Taken together, we conclude that despite signs of the initiation of classical ER
stress-driven apoptotic pathways, effector caspases may have been activated below the
detection level, or only during an early phase of APAP overdosing. Alternatively, PARP
might have been cleaved by other proteases activated during the course of liver necrosis.
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Figure 4. Activation of JNK after APAP treatment. The JNK pathway was activated in livers of
males (A) and females (B) of both genotypes after 5 h of APAP treatment. pJNK was significantly
increased in WT females compared with WT males and reduced in both Bok-/- females (C) and males
(D). (D) shows data of male mice from (C) as close-up. Data are represented as mean ± S.D. and are
derived from 7 to 8 mice per group. ***: p < 0.001; n.s.: not significant.
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Figure 5. 5 h APAP treated livers do not display active effector caspases while PARP cleavage is detectable. No caspase-3 or
-7 cleavage was detected in the total liver lysates of males (A) and females (B) while low degree PARP cleavage was seen
after 5 h of APAP treatment. Liver lysate from DEN-treated mice was used as positive control for apoptosis induction [40].
Data are derived from 8 to 9 mice per group.

2.4. Lack of BOK Slightly Reduces Liver Necrosis after APAP Overdose in a
Sex-Dependent Manner

The effect of APAP overdosing on inducing liver necrosis was assessed histologically
and by quantifying the serum levels of the hepatocellular enzymes ALT and AST. The
data showed that when grouping mice of the same sex together, ALT and AST levels were
comparable in APAP-treated Bok-/- and WT mice (Figure 6A,B). However, when comparing
male and female mice within a same genotype, slightly increased ALT levels were seen in
WT females compared to males (Figure 6C,D). This difference was not seen in Bok-/- mice
(Figure 6C), nor were there differences in AST levels between sex or genotypes (Figure 6D).
Histopathological analysis revealed that centrilobular necrosis was found in 100% of WT
and Bok-/- males, whereas in females, necrosis was present in the majority but not all of the
WT (75%) and Bok-/- (62.5%) mice (Table 1). The necrosis was confluent, i.e., bridging, in all
animals except one female Bok-/- animal. The mean extent of lobular necrosis indicated in
the percentage of affected centrilobular-portal vein distance was generally higher in WT
mice compared with Bok-/- mice (Table 1). Furthermore, lobular necrosis in Bok-/- was less
extensive in females than in males (21.9% vs. 30.5%) (Figure 6E and Table 1). The hepatic
necrosis was haemorrhagic, i.e., admixed with extravasated erythrocytes, in a significant
number (50%) of female WT mice (Table 1). This feature was rare or absent in males and
female Bok-/- mice. Altogether, the data indicate that the protective impact upon the loss
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of BOK on the severity of liver damage is minor, based on histology and ALT/AST levels;
however, it becomes more evident when comparing the extent of microscopic lobular
necrosis. Of note, these effects in Bok-/- mice are more strongly pronounced in females,
supporting the notion of sex-specific effects in the APAP intoxication model.
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Figure 6. The impact of BOK on the severity of liver damage is moderate and sex dependent. ALT and AST levels were
similar in WT and Bok-/- males (A) and females (B) after 5 h APAP. ALT and AST levels did not significantly differ between
males and females (C,D). Histologically, centrilobular necrosis was detected in WT and Bok-/- mice. Haematoxylin and eosin
stain (E). Scale bars = 1 mm. The extent of centrilobular necrosis (indicated as a mean percentage of affected centrilobular-
portal vein distance) was higher in WT mice compared to Bok-/- mice, with the lowest values in Bok-/- females (F). Data are
represented as mean ± S.D. and are derived from 8 mice per group. n.s.: not significant.
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Table 1. Histopathological assessment of liver damage in APAP treated WT and Bok-/- mice.

Group
Presence of

Centrilobular
Necrosis

Extent of Lobular
Necrosis (%)

Mean (Range, SD)

Mean Lobular Necrosis
(%) Excluding Cases

with Absent Necrosis

Centrilobular
Vacuolar
Change

Presence of
Bridging
Necrosis

Presence of
Hemorrhagic

Necrosis

WT Male 8/8 (100%) 38.13 (23–60, SD 14.98) 38.13 (SD 14.98) 8/8 (100%) 8/8 (100%) 1/8 (12.5%)
Bok-/- Male 8/8 (100%) 30.5 (18–45, SD 10.74) 30.5 (SD 10.74) 8/8 (100%) 8/8 (100%) 0/8
WT Female 6/8 (75%) 38.25 (0–73, SD 30.16) 51 (SD 22.20) 7/8 (87.5%) 8/8 (100%) 4/8 (50%)

Bok-/- Female 5/8 (62.5%) 21.88 (0–71, SD 23.41) 29.17 (SD 22.62) 7/8 (87.5%) 7/8 (87.5%) 1/8 (12.5%)

3. Discussion

APAP intoxication is one of the most common causes for severe liver injury and failure
and for subsequent liver transplantation [3]. Although APAP is an over-the-counter drug
and one of the most commonly used antipyretic and analgesic drugs in the world, its exact
mode of action is unknown. Even less is known about its toxic effect on hepatocytes and
the main mechanisms leading to massive cellular damage after ingesting a single overdose
(>150 mg/kg or ~7.5 g in adults) or after repetitive intake of APAP or APAP-containing
drugs within a short period of time (>200 mg/kg or 10 g within 24 h) [47]. Yet, it is well
established that the formation of the highly reactive by-product NAPQI and its binding to
cellular, preferentially mitochondrial proteins initiates cellular stress pathways, eventually
resulting in hepatocellular necrosis [2,4,6,7].

One of these cellular stress responses is the UPR following ER stress [23,24]. BOK is
predominantly localized at the ER and ER-associated membranes and has already been
assigned UPR-modulating functions [37,39]. Along these lines, BOK has been shown to
promote cell death in a chemical-induced liver injury model [40]. BOK-deficient cells
were, on the other hand, reported to be more susceptible to Brefeldin A-induced cell death,
pointing towards a UPR modulating function of BOK that can enhance either prosurvival
or proapoptotic pathways in a context-dependent manner [37]. We thus hypothesized
that after an APAP challenge, Bok-/- mice would present with a defective ER stress trans-
lating either into increased or decreased liver damage. While we did indeed observe
slight alterations in the upstream events of ER stress-triggered UPR responses in Bok-/-

mice, this eventually did not result in major differences in APAP-induced liver necrosis
compared with WT controls. Nevertheless, our study revealed sex-relevant differences in
the activation of ER stress pathways. While the activation of ATF4, a downstream target
of PERK, was increased in males, females showed higher expression of pJNK, which is
involved in the IRE-1α pathway. Interestingly, it has been shown that estradiol can induce
JNK-dependent apoptosis [48,49], suggesting that the activation of the JNK pathway may
be sex-dependent with increased activation in females compared to males. Although BOK
is known to be important for the regulation of the PERK > ATF4 arm, along with CHOP and
BIM [39,50], we did not detect significant differences in the expression levels of any of these
members in Bok-/- males compared to WT males. Whereas we found a correlation between
p53 and PUMA transcripts (Figure 2C,D), a direct role of p53 in inducing PUMA in the
APAP model is not clear. Actually, Chen et al. proposed a RIPK1 and JNK-dependent, but
p53 independent, transcriptional activation of PUMA upon APAP overdosing [21]. On the
other hand, the JNK activation in Bok-/- females was reduced as compared with WT mice,
while ATF4 induction, BIM and CHOP expression levels were increased in Bok-/- females.
Since JNK activation was also reduced in Bok-/- males, we propose that BOK is important
for the regulation of the IRE-1α pathway, along with JNK, rather than the PERK > ATF4
arm along with CHOP. Furthermore, the increase of ATF4, CHOP and BIM detected in Bok-/-

compared to WT females can be proposed as an alternative ER stress pathway activation in
Bok-/- females, since the lack of BOK is associated with a reduction in the activation of the
IRE-1α arm. The observation that BOK is substantially downregulated in females but not
in males supports a sex-dependent role of BOK in the activation of ER stress pathways and
for the development of hepatic injury.

It is still unclear and controversially discussed how important apoptosis is for the
development of hepatic injury after APAP overdose (reviewed in [14]). Despite the induc-
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tion of the two pro-apoptotic BH3-only proteins BIM and PUMA in response to APAP,
the development of liver damage implicates ER stress likely as a late event [51] in APAP
intoxication. In fact, our findings support this view since the expression levels of pJNK and
CHOP are still rather low after 3 h intoxication (Supplementary Figure S2).

Another unexpected and sex-related finding was the increased expression levels of
CYP2E1 mRNA in livers from Bok-/- males compared to WT males, which was not seen
in females. Increased expression levels of CYPs, induced by e.g., alcohol intake, typically
correlate with an increased conversion of APAP into NAPQI and, hence, increased liver
damage would be expected for Bok-/- males [41]. However, CYP2E1 increase was modest
and no difference was seen between the genotypes at the protein level. We conclude that the
slightly less extensive centrilobular necrosis found in Bok-/- mice compared with their WT
counterparts cannot be explained by changes in CYP2E1 levels. Importantly, the difference
in centrilobular necrosis between WT and Bok-/- mice was higher in females than in males.
Thus, BOK seems to be more important for the development of liver damage in females
than in males. It has previously been shown that APAP-induced liver damage is sex-specific
in mice and that females have a lower susceptibility to APAP hepatotoxicity compared to
males [8,9,52]. Du et al. reported a strong protection of C57BL/6 females compared with
males in the APAP model. We did not see such a clear difference while using a higher dose
of APAP. Of note, in the Du et al. study, the cytosolic pJNK/JNK ratio in females dropped
only at a timepoint later than our endpoint of 5 h [8]. However, protection in females is
supported by our findings, in which liver necrosis was present in 100% of the males but
only 69% (11/16 mice) of the females. This phenomenon may be explained by the finding
that females are able to restore GSH faster and thus scavenge more of the toxic NAPQI
than males despite similar kinetics of GSH depletion after APAP overdose [8]. In line with
these observations, we found total and reduced GSH to be increased in females compared
to males; however, no significant difference between WT and Bok-/- mice was observed
(Supplementary Figure S3). This finding suggests that there is no major difference in the
metabolism of APAP between WT and Bok-/- mice.

In conclusion, our data support a role of BOK in the regulation of the UPR after APAP
intoxication, especially by modulating the IRE1α > JNK arm that follows a sex-relevant
activation pattern reflected by a substantial increase in its activation in female as compared
to male mice. However, since apoptosis may not play a major role in the development
of necrotic liver damage in this acute APAP overdosing model, the contribution of BOK
in regulating the severity of liver damage is more minor after 5 h of intoxication. This
view is further supported by our findings that loss of BOK does not alter the sensitivity
of mouse and human hepatocellular cell lines towards various doses of APAP in vitro
(Supplementary Figure S4). However, all cell models tested except for Tib-75 were rather
insensitive to APAP-induced killing, requiring high concentrations to see a decrease in
viability (Supplementary Figure S4).

In summary, we show that BOK modulates upstream events linked to ER stress in re-
sponse to APAP intoxication, and that the impact of BOK on hepatic injury following APAP
overdose is only moderate. However, and surprisingly, this difference is sex-dependent,
probably due to the differential activation of the UPR in males and females. Since the
UPR following ER stress is a rather late event in APAP toxicity, later timepoints could be
analysed to identify the involvement of BOK in a subacute intoxication model.

4. Materials and Methods
4.1. Mice Experiments

Age and sex-matched C57BL/6 WT and Bok-/- (kindly provided by A. Strasser, WEHI,
Parkville, Australia) mice were fasted overnight with free access to water. Following
the fasting period, mice were injected with an overdose of APAP (400 mg/kg) dissolved
in warm PBS. Control animals were injected with the respective volume of warm PBS.
After 5 h, mice were sacrificed, blood was taken by retro-orbital bleeding and livers were
collected. The left lobe of the liver of each mouse was fixed in 4% PFA for histology while
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the others were snap frozen and used later for protein and RNA expression analyses. All
animal experiments were approved by the Animal Experimentation Review Board of the
Canton of Bern, Switzerland (BE43/19).

4.2. Cell Culture

IHH (kindly provided by T. Brunner, University of Konstanz, Konstanz, Germany)
were cultured in IMDM (Sigma Aldrich I3390, Buchs, Switzerland), supplemented with
10% FCS, 105 IU/L penicillin-G and 100 mg/L streptomycin and GlutaMAX™ Supplement
(Thermo Fisher Scientific, Basel, CH). BNL 1ME A.7R.1 (ATCC® TIB-75™) cells (kind
gift of N. Corazza, Bern, Switzerland) were cultured in DMEM (D0819, Sigma-Aldrich,
Buchs, Switzerland), supplemented with 10% FCS, 105 IU/L penicillin-G and 100 mg/L
streptomycin and 1 mM sodium pyruvate solution (S8636, Sigma Aldrich, Buchs, Switzer-
land). HepaRG cells (kindly provided by M. Haschke, Bern, Switzerland) were cultured in
William’s E medium (Thermo Fisher Scientific, Basel, Switzerland), supplemented with
10% FCS, 105 IU/L penicillin-G and 100 mg/L streptomycin, GlutaMAX™ Supplement,
5 µg/mL bovine insulin (I0516) and 50 µM hydrocortisone hemisuccinate (H2270, Sigma-
Aldrich, Buchs, Switzerland).

Primary hepatocytes were isolated as described elsewhere [37] and cultured in collagen-
coated flasks in William’s medium E supplemented with 10% FCS, 100 nM dexamethasone
(D4902, Sigma-Aldrich, Buchs, Switzerland), GlutaMAX™ Supplement and 105 IU/L
penicillin-G and 100 mg/L streptomycin. All cells were kept in a humidified incubator at
37 ◦C and 5% CO2.

4.3. CRISPR/Cas9 Gene Editing

The genomic region of BOK was disrupted using the CRISPR/Cas9 technology, as
previously described [40]. Two different guide RNAs were used to target human and mouse
BOK, respectively. The following primer pair was used to create the gRNA targeting human
BOK: F: 5′-caccgGTCTGTGGGCGAGCGGTCAA-3′; R: 5′-aaacTTGACCGCTCGCCCAC
AGACc-3′. For mouse BOK the primer pair was F: 5′-caccgGTCTGTGGGCGAGCGATCAA-
3′; R: 5′-aaacTTGATCGCTCGCCCACA GACc-3′.

4.4. Cell Viability Measurements by MTT and Flow Cytometry

HepaRG, IHH and Tib-75 cells were seeded in 96-well flat-bottom plates. Primary
hepatocytes were seeded in collagen-coated 96-well flat-bottom plates. After overnight
adherence, cells were treated with the indicated concentrations of APAP (Sigma-Aldrich
A5000, Buchs, Switzerland) for 24 h. Cell viability of HepaRG, Tib-75 and primary hepato-
cytes was assessed by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H- tetrazoliumbromid
(MTT) (Sigma-Aldrich M2128, Buchs, Switzerland). In brief, medium was removed and
cells were washed once with PBS. 100 µL MTT solution (5 mg/mL) was added to the cells
and incubated for 30 min at 37 ◦C. After incubation, MTT solution was aspirated and
100 µL DMSO was added into each well. Absorbance was read at 562 nm and cell viability
was normalised to untreated control.

For flow cytometric analysis, cells were washed with FACS buffer (150 mM NaCl,
4 mM KCl, 2.5 mM CaCl2, 1 mM MgSO4, 15 mM HEPES pH 7.2, 2% FCS and 10 mM
NaN3) and incubated with FITC–Annexin V diluted in FACS buffer. After 20 min of
incubation on ice in the dark, cells were washed with FACS buffer and resuspended in
100 µL FACS buffer containing 2 µg/mL propidium iodide. Cells were examined by a BD
FACSLyric™ Research System (BD Biosciences, San Jose, CA, USA). Double negative cells
were considered as viable cells.

4.5. Immunoblotting

Frozen liver pieces were homogenized using the Mikro-Dismembrator S (Sartorius
Group) and lysed in RIPA buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% Triton
X100, 0.5% Na-deoxycholate, 0.1% SDS) containing cOmplete™ Protease Inhibitor Cocktail
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(Roche), pepstatin (1 mg/mL) and phosphatase inhibitors (2 mM sodium orthovana-
date and 50 mM sodium fluoride). Samples were boiled in Lämmli buffer containing
100 mM DTT, separated on 12.5% SDS-PAGE gels and transferred to Immobilon®-FL PVDF
membranes (Merck). Membranes were probed with mouse anti-CHOP (B-3) (Santa Cruz
Biotechnology, sc-7351), rabbit anti-CYP2E1 (Merck # HPA009128), mouse anti-pJNK (G9)
(#9255, Cell Signaling Technology, Danvers, MA, USA), rabbit anti-JNK (Cell Signaling
Technology #9252), rabbit anti-GAPDH (14C10) (Cell Signaling Technology #2118), rabbit
anti-BIM (C34C5) (Cell Signaling Technology #2933), rabbit anti-PUMA (Cell Signaling
Technology #7467), rabbit anti-cleaved caspase-3 (5A1E) (Cell Signaling Technology #9664),
rabbit anti-caspase-3 (Cell Signaling Technology #9662), rabbit anti-cleaved Caspase-7 (Cell
Signaling Technology #9491), mouse anti-PARP (clone C2-10; BD Biosciences, San Jose,
CA, USA) and rabbit anti-BOK (clone BOK-1-5) [39]. Fluorochrome-conjugated secondary
antibodies, IRDye® 800CW and IRDye® 600RD (LI-COR Biotechnology, Bad Homburg, DE),
or horseradish-peroxidase conjugated secondary antibodies (Jackson ImmunoResearch
Europe Ltd., Ely, UK) were used. For the latter, the membrane was additionally incubated
in Immobilon Forte Western HRP substrate (Merck). Signals were detected by the Odyssey®

Fc Imaging System (LI-COR Biosciences) and data was quantified using Image Studio Lite
5.2 software (LI-COR Biosciences).

4.6. Total and Reduced Glutathione (GSH) Measurement

20 mg liver tissue of each mouse was resuspended in ice-cold lysis buffer (0.5% NP40
in PBS). Samples were deproteinized using trichloroacetic acid (TCA) and neutralized
using sodium hydrogen carbonate (NaHCO3). Total and reduced GSH levels were mea-
sured using the GSH/GSSG Ratio Detection Assay Kit II, according to the manufacturer’s
instructions (ab205811, abcam, Cambridge, MA, USA).

4.7. RNA Extraction and Quantitative RT-PCR (qPCR)

Total RNA of liver tissue was isolated using the SV Total RNA Isolation System
(Promega). One µg RNA was reverse transcribed using M-MLV Reverse Transcriptase
following the manufacturer’s instructions (Promega). Real-time PCR for mouse Atf4 (F: 5′-
TCGATGCTCTGTTTCGAATG-3′; R: 5′-GGCAACCTGGTC GACTTTTAT-3′), mouse Bim
(F: 5′-GAGTTGTGACAAGTCAACACAAACC-3′; R: 5′-GAAGATAAAGCGTAACAGTTG
TAAGATAACC-3′), mouse Puma (F: 5′-ATGCCTGCCTCACCTTCATCT3′; R: 5′-AGCACA
GGATTCACAGTCTGGA-3′), mouse Tp53 (F: 5′-CACGTACTCTCCTCCCCTCAAT-3′; R:
5′-AACTGCACA GGGCACGTCTT-3′), mouse Bok (F: 5′-TTCTCAGCAGGTATCACATGG-
3′; R: 5′-TAGCCAAGGTCTTGCGTACA-3′), mouse Cyp1a2 (F: 5′-CCAGGTGGTGGAAT
CGGTG-3′; R: 5′-TCTTAAACCTCTTGAGGGCCG-3′) and mouse Cyp2e1 (F: 5′-CATCACC
GTTGCCTTGCTTG-3′; R: 5′GCCAACTTGGTTAAAGACTTGGG-3′) was performed in
a CFX Connect Real-Time PCR Detection System (Bio-Rad) using HOT FIREPol ‘Eva-
Green’ qPCR Mix Plus (Solis Biodyne, Tartu, EST). Mouse Hprt1 (F: TGGATACAGGCCA-
GACTTTGTT; R: CAGATTCAACTTGCGCTCATC) and/or mouse β-actin (F: GCTTCTTTG
CAGCTCCTTCGT; R: CGTCATCCATGG CGAACTG) were used as reference genes.

4.8. Histology

Freshly isolated liver lobes were fixed in 4% paraformaldehyde overnight, embedded
in paraffin and cut in 4 µM sections. The sections were stained with hematoxylin and
eosin. Histopathological analysis was performed blinded by a veterinary pathologist
(SdB). The extent of lobular liver necrosis was calculated by measuring the percentage
of affected centrilobular-portal vein distance. For this purpose, five randomly selected
different measurements were taken of each liver tissue fragment and corresponding mean
values were calculated for each liver tissue fragment and each animal.
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4.9. Statistical Analysis

Statistical differences were analysed using the unpaired Student’s t-test. p-values of
<0.05 were considered significant (*: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001;
n.s.: not significant). Correlation analyses were performed using the Pearson correlation
coefficient. Graphs were created using Prism 7.0 (GraphPad, San Diego, CA, USA).

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/6/3281/s1.
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