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Activin A belongs to the transforming growth factor superfamily and has a variety of

biological functions. Studies have revealed that activin A can regulate the body’s immune

and inflammatory responses and participate in the regulation of cell death. In addition,

activin A also has neurotrophic function and plays an important role in the repair of

brain damage. This article summarizes recent advances in understanding the role and

mechanism of action of activin A in brain injury and provides new hints into the application

of activin A in the treatment of brain injury.
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INTRODUCTION

Brain injury is a typical functional disorder of the nervous system, with many types of pathogenic
factors involved and a complex pathogenesis. The main pathogenesis involves massive cell death
in injured brain areas and surrounding tissue, which leads to tissue damage and eventually
destruction, mainly caused by systematic inflammation, including ischemia and traumatic brain
injury (Chandra et al., 2018).

Activin A, a member of the transforming growth factor beta (TGF-β) superfamily, regulates the
body’s immune and inflammatory responses, and participates in the regulation of cell death. In
addition, activin A has a neurotrophic function and plays an important role in repair following
brain damage (Ageta and Tsuchida, 2011). For example, a transgenic mouse study showed that
activin A exerts a critical role in neuroprotection following various types of brain damage, by
regulating spine formation and adult neurogenesis (Müller et al., 2006).

In recent years, the role of activin A and its molecular mechanisms in brain injury have been
studied extensively. Activin A may thus represent a promising therapeutic target, and knowledge
about its function may provide some hints for clinical treatment and drug discovery. The present
review discusses recent progress in the study of the role and mechanism of action of activin A in
brain injury.

STRUCTURAL CHARACTERISTICS AND REGULATION OF
ACTIVIN A ACTIVITY

Structural Features of Activin A
Activin A is a widely expressed homodimer that is composed of two β A chains. Sequence
analysis showed that the β subunit has the typical structural features of the TGF-β superfamily,
i.e., the C-terminal active portion of the molecule has nine conserved cysteine residues
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(Wang X. et al., 2016). In addition, the 14-kDa mature human
β A chain of activin A has 100% amino acid sequence identity
in cattle, cats, mice, pigs, etc., indicating its highly conserved
structure (Tanimoto et al., 1991).

Regulation of Activin A Activity
The receptor for activin A is a serine threonine protein kinase,
and there are three types of receptors: type I (RI), type II (RII),
and type III (RIII). RI and RII are mainly involved in the
regulation of activin A activity, whereas RIII is not indispensable
for its activity. RI is also known as activin receptor-like kinase
5 (ALK5) and can be phosphorylated by RII (de Kroon et al.,
2015). Upon signal transduction, activin A first binds to RII,
which in turn activates RI to form the receptor complex. After
being activated, signaling of the formed receptor complex results
in activation of the Smad signaling pathway, which includes
phosphorylation of transcription factors Smad2 or Smad3 by
ALK5 protein kinase, and leads to the transcriptional regulation
of activin A response genes. Furthermore, phosphorylated
Smad2 or Smad3 bind to Smad4, and the resulting complex
translocates from the cytoplasm to the nucleus, where the
Smad complex interacts in a cell-specific manner with various
other transcription factors, thus exerting its biological activity
(Peterson et al., 2012; Figure 1). In addition to the Smad-
dependent signaling pathways, there are activin A pathways that
are Smad-independent and mainly include the nuclear factor-κB
pathway, extracellular signal-regulated kinase (ERK1/2) pathway,
ubiquitin-proteolytic pathways, mitogen-activated protein kinase
(MAPK) pathways, and other signal transduction pathways
(Derynck and Zhang, 2003; Kim et al., 2015). The activin A/Smad
molecular pathway is shown in Figure 1.

Studies have found that activin A activity is regulated by
numerous factors. For example, it is negatively regulated by
some factors, including the bone morphogenetic protein (BMP),
BMP and activin membrane-bound inhibitor, glycan, and uterine
natural killer, which limit its ability to induce the assembly
of receptor complexes (Shi et al., 2009; Upton et al., 2009;
Mai et al., 2014; Peng et al., 2015). Other factors, like 2-
macroglobulin, follistatin, and follistatin-related genes, limit
activin A bioavailability by binding to it (Asashima et al., 1991;
Mather, 1996; de Kretser et al., 2012). In contrast, it has been
reported that, in the early stages of tissue damage, TGF-β,
epidermal growth factor, and platelet-derived growth factor are
released from platelets, thus triggering the upregulation of activin
A and leading to protection of the damaged nerve (Hübner et al.,
1999; Wang and Ge, 2004; Protic et al., 2017). These factors were
also found to promote the expression of the activin βA subunit in
both cultured fibroblasts and keratinocytes (Huang et al., 2004).
In vitro studies have shown that high levels of interleukin (IL)-
1 and tumor necrosis factor alpha (TNF-α) are expressed in
polymorphonuclear leucocytes and macrophages, both of which
can also promote activin A secretion (Arai et al., 2011; Kelly et al.,
2016). Moreover, recent studies have discovered a new group
of intracellular proteins, termed activin A receptor-interacting
proteins, which interact with activin A RII and regulate an activin
A-dependent intracellular signaling process, influenced by activin
A histological distribution and biological activity (Liu et al., 2009;

Liu H. Y. et al., 2013; Qi et al., 2013; Table 1). The molecules that
regulate activin A activity are summarized in Table 1.

ACTIVIN A AND BRAIN INJURY

Activin A and its receptors are widely expressed in brain tissue.
Studies have shown that the expression of activin A is upregulated
after nerve cells are subjected to acute injury from various sources
(Mukerji et al., 2007). The neuroprotective effect of activin A
after brain injury occurs mainly through its anti-inflammatory
activity; however, the inhibition of the secretion of certain
reactive proteins, reduction of cytotoxic brain edema, anti-
oxidation, inhibition of free radical aggregation, upregulation
of brain-derived neurotrophic factor and induction of its
synthesis, as well as the antagonization of excitatory amino acid-
induced neurotoxicity, among other functions, render activin
A an important molecule with an endogenous protective role
(Wang Q. et al., 2016). Moreover, a study found that activin
A increases the number of synapses and the length of the
dendritic aponeurosis neck in hippocampal neurons cultured in
vitro, while it also increases the activity of neuronal voltage-
gated Na+/K+ channels and triggers the maturation of synapses
(Manickam and Tulsawani, 2014).

Activin A and Hypoxic-Ischemic Brain
Injury
The rat model of cerebral ischemic and hypoxic injury
induces the overexpression of follistatin, activin A, and BMP-4,
depending on development and age, all of which are protective
against nerve injury. As the rat grows older, the expression
of follistatin and activin A decreases gradually, whereas BMP-
4 expression decreases significantly in adulthood. (Tian et al.,
2014). During ischemic and hypoxic injury, the exogenous use
of activin A was shown to inhibit the expression of caspase-3
and apoptosis in neural cells (He et al., 2011). Besides, activin A
also negatively regulate autophagy, which was found to inhibit
the c-Jun N-terminal kinase 1 (JNK) and p38 MAPK signaling
pathways during cerebral ischemia (Xue et al., 2017). In addition,
a study found that activin A is upregulated in the early stage of
acute ischemic brain injury, whereby it exerts its neuroprotective
role by downregulating nitric oxide levels and increasing
superoxide dismutase activity and neuronal tolerance to ischemic
injury, through the activin A/Smad signaling pathway (Nakajima
et al., 2014). In a mouse model of ischemia/reperfusion, it was
found that intracerebroventricular injection of activin A inhibits
neuronal apoptosis and significantly reduces the infarct size (Ma
et al., 2016).

In a PC12-cell oxygen-glucose deprivation (OGD) and
endoplasmic reticulum stress (ERS) lesion model, the protein
levels of activin A and phosphorylated Smad3 (p-Smad3) were
significantly upregulated (Guo et al., 2014). Treatment with
exogenous activin A was shown to further increase activin
A and p-Smad3 protein levels, as well as cell viability, and
to significantly reduce the number of apoptotic nuclei and
the levels of the C/EBP homologous protein and caspase-12.
These findings indicate that activin A/Smad signaling exerts
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FIGURE 1 | The activin A/Smad signaling pathway.

TABLE 1 | Molecules regulating activin A activity.

Promoting

factors

References Inhibitory factors References

Regulatory molecules

for activin A activity

TGF-β Hübner et al., 1999 BMP Shi et al., 2009

EGF Protic et al., 2017 BAMBI Mai et al., 2014

PDGF Wang and Ge, 2004 glycan Peng et al., 2015

IL-1 Arai et al., 2011 UNK Upton et al., 2009

TNF-α Kelly et al., 2016 2-macroglobulin Asashima et al., 1991

ARIP1/ARIP2 Liu et al., 2009;

Liu H. Y. et al., 2013;

Qi et al., 2013

Follistatin/

follistatin-related genes

Mather, 1996;

de Kretser et al., 2012

ARIP1/ARIP2, activin receptor-interacting protein 1/2; BAMBI, BMP and activin membrane-bound inhibitor; BMP, bone morphogenetic protein; EGF, epidermal growth factor; IL-1,

interleukin 1; TGF-β, transforming growth factor beta; TNF-α, tumor necrosis factor alpha; PDGF, platelet-derived growth factor; UNK, uterine natural killer.

neuroprotective effects by inhibiting ERS-mediated apoptosis
during OGD. The study also found that the expression of
microtubule-associated protein light chain 3 (LC3) and of Beclin1
is significantly upregulated after OGD in PC12 cells and increases
with the extension of OGD duration. Interestingly, application
of exogenous activin A significantly inhibits LC3II and Beclin1
protein levels (Wang et al., 2016a). Together, the in vivo and
in vitro study suggest that activin A exerts its neuroprotection
role mainly through negatively regulate apoptotic and autophagic
pathway.

Activin A/Smad Pathway and Focal
Cerebral Ischemia in Rats
When transient cerebral ischemia and hypoxia occurs, the
expression of activin A, as a neuronal survival factor, as well as
that of its effectors RII or Smad3, is significantly upregulated.
It was found that activin A and Smad3 are mainly expressed
in the cytoplasm and nucleus, whereas RII is mainly expressed
in the cytoplasm and membrane of the cells. This change in
expression levels occurs specifically in neurons, suggesting that
the activin A/Smad pathway is activated after focal cerebral
ischemia (Mukerji et al., 2009).

It was also reported that activin A, as a neuronal autocrine
factor, may act on the neuron itself and mediate signal
transduction through the activin A/Smad pathway after ischemia
(Hiratochi et al., 2007). In addition, in PC12 OGD models,
blockade of activin A RII site in the activin A transmembrane
signal transduction pathway leads to aggravation of OGD-
induced neuronal damage, and the expression of activin A and
Smad3 is significantly downregulated (Xue et al., 2016). These
results suggest that neuronal damage, induced by OGD, activates
the activin A/Smad pathway, which exerts a neuroprotective role
through the inhibition of apoptosis. Upregulation of RII may
be the initiating factor in the activation of the activin A/Smad
pathway induced by OGD injury, which may rely on an activin A
positive feedback regulation mechanism (Table 2).

Activin A Signaling Pathway and Ischemic
Tolerance
Sublethal ischemic damage induces increased anti-ischemic
response in the late stages of brain injury. This phenomenon is
called ischemic tolerance (IT) and is induced by ischemic pre-
conditioning (IPC) (Nishio et al., 2000). Ischemic brain injury
can induce high expression of activin A, which can then activate

Frontiers in Neuroscience | www.frontiersin.org 3 October 2018 | Volume 12 | Article 697

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Su et al. Role of Activin A in Brain Injury

TABLE 2 | Activin A targets in brain injury.

Activin A-related brain injury Targets/mechanism References

Hypoxic-ischemic brain damage Follistatin/BMP-4,

Act A/Smad pathway,

p-Smad3/CHOP/caspase-12,

LC3II/Beclin1,

JNK1/p38

Tian et al., 2014

Nakajima et al., 2014

Guo et al., 2014

Wang et al., 2016a

Xue et al., 2017.

Focal cerebral ischemia Act A/Smad pathway Mukerji et al., 2009

Hiratochi et al., 2007

Xue et al., 2016.

Ischemic tolerance Act RII/JNK1/Smad3/Smad4 Xue et al., 2016

Wang et al., 2016b.

Cerebral hemorrhage Activin A binding protein Nicolas et al., 2017

Ebert et al., 2006.

Premature infant brain injury Acvr2a/Acvr2b,

IL-10

Dillenburg et al., 2018

González-Domínguez et al., 2016

Petrakou et al., 2013.

Sepsis encephalopathy TNF-α/IL-6/IL-1,

caspase-1/IL-1β/ IL-8

Tania et al., 2014

Petrakou et al., 2013

Asashima et al., 1991.

Act A, activin A; Act RII, activin A receptor type II; Acvr2a/Acvr2b, activin A receptor type 2a/2b; BMP-4, bone morphogenetic protein 4; CHOP, C/EBP homologous protein; IL, interleukin;

JNK1, c-Jun N-terminal kinase 1; LC3II, microtubule-associated protein light chain 3 II; TNF-α, tumor necrosis factor alpha.

an endogenous neuroprotective signaling pathway (Wu et al.,
1999). It was demonstrated that after IPC in PC12 cells, the
expression of activin A RII is upregulated, suggesting that the
IPC-induced IT is mediated by the signaling pathway involving
activin A, RII, and downstream Smad proteins (Xue et al.,
2016). The main mechanism of IPC involves JNK1 activation,
which inhibits Smad3 phosphorylation and the entry of the
downstream Smad4 complex into the nucleus (Wang et al.,
2016b). Furthermore, pre-treatment with JNK1 inhibitors also
induces IT in PC12 cells. Given the existing crosstalk between
the intracellular JNK1 protein and activin A/Smad pathway,
JNK1 inhibitors may represent potential therapeutic agents for
drug-induced IT (Wang et al., 2016b; Table 2).

Activin A and Cerebral Hemorrhage
Studies have found that activin A is an immunosuppressive
factor that induces cardiovascular and cerebrovascular diseases
by inhibiting the activity of T lymphocytes in the body (Zipori
and Barda-Saad, 2001; Ofstad et al., 2013; Yoon et al., 2013).
Patients with cerebral hemorrhage show a significant increase in
activin A and activin A binding protein levels, while patients with
cerebral infarction show a significant increase in activin A (Ebert
et al., 2006; Nicolas et al., 2017). Therefore, activin A and activin
A binding protein levels in peripheral blood may be associated
with cerebrovascular disease occurrence and development. Thus,
detecting changes in these proteins may be helpful in guiding
clinical diagnosis and treatment of cerebrovascular diseases,
treatment decisions, and prognosis (Table 2).

Activin A and Premature Infant Brain Injury
Brain injury in pre-term infants is mainly restricted to white
matter damage. Its primary neuropathological feature is damage
of oligodendrocyte precursor cells (OPCs), which inhibits the
formation of myelin (Yue et al., 2018). A study found that the

activin A receptor subtype Acvr2a/Acvr2b signaling pathway is
involved in the regulation of myelin repair after brain injury in
pre-term infants (Dillenburg et al., 2018). Acvr2b competes with
Acvr2a for binding to activin A, thus resulting in decreased levels
of Acvr2a-bound activin A, which in turn hinders Acvr2a-driven
oligodendrocyte (OL) differentiation andmyelination. Therefore,
the activin A receptor Acvr2a may serve as a novel therapeutic
target for the repair of myelin damage (Dillenburg et al., 2018).

Activin A levels in the serum are significantly increased in
pre-term infants during infection, which significantly inhibits the
release of pro-inflammatory mediators from stimulated neonatal
peripheral blood mononuclear cells in vitro and is associated
with a dramatic increase in IL-10, an anti-inflammatory and
immunoregulatory mediator (Petrakou et al., 2013; González-
Domínguez et al., 2016). This suggests that activin A and
IL-10 have strong anti-inflammatory and immunomodulatory
effects in neonatal infection and are crucial for controlling the
inflammatory response in neonates. Thus, activin A may be a
target for the treatment of brain damage in prematurely born
infants (Table 2).

Activin A and Sepsis Encephalopathy
One of the pathogenic mechanisms of sepsis encephalopathy
is the activation of inflammation and apoptosis, for which
TNF-α and IL-6 are the two most important inflammatory
cytokines, produced in the early stages of this disease (Sun et al.,
2017). Activin A promotes the expression of TNF-α, IL-6, and
IL-1, in inflammatory and immune reactions, and eventually
promotes the occurrence of inflammatory responses (Tania et al.,
2014). In addition, studies have shown that serum activin A
is elevated during acute and chronic inflammation, which may
further increase the uninhibited inflammatory response leading
to multiple organ failure and even death (Lee et al., 2016).
However, other studies have indicated that activin A inhibits
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the inflammatory response by inhibiting caspase-1, IL-1β, and
IL-8, thus leading to the dramatic increase in the production
of the anti-inflammatory mediator IL-10 (Sierra-Filardi et al.,
2011; Petrakou et al., 2013). Therefore, activin A has both pro-
inflammatory and anti-inflammatory functions, is associated
with the severity of sepsis encephalopathy, and can be used as
an early predictor of this pathogenesis (Table 2).

TREATMENT OF BRAIN INJURY
TARGETED TO ACTIVIN A

Exogenous Activin A in the Treatment of
White Matter Damage
White matter damage is characterized by myelin injury, mainly
affecting OLs (Liu X. B. et al., 2013). One study found that activin
A, as a neurotrophic factor, plays a role in the repair of white
matter damage (Dutta et al., 2014). Moreover, in an in vitro
study, human recombinant activin A was added to cultures of
primary OLs (no axons) or to neuro-glia co-cultures (Goebbels
et al., 2017). After 3–5 days in culture, the number of OPCs
in primary OL cultures that differentiated into mature OLs was
significantly higher in treated versus untreated cells. Moreover,
in the neuron-OL co-culture, the area of myelin was significantly
higher in the activin A-treated cells. Thus, activin A seems to
act as a myelination promoting factor. Researchers also found
that activin A promotes the differentiation of OPCs into OLs by
activating the ERK1/2 MAPK signaling pathway (Goebbels et al.,
2017).

Exogenous Activin A in Hypoxic-Ischemic
Brain Injury Treatment
Using the hypoxia-ischemia brain damage model in neonatal
rats, it was shown that pathological changes in the brain
are significantly reduced by an intraperitoneal injection of
activin A, confirming that the application of activin A reduces
brain tissue damage induced by hypoxia-ischemia (An et al.,
2005). In addition, in the OGD/reperfusion model in primary
neuronal cultures, researchers used neuroprotector stress-
induced phosphoprotein 1 (STI1) to treat neurons and found
that STI1 is dependent on activin-A receptor 1 (ALK2) for
the inhibition of neuronal apoptosis (Beraldo et al., 2018).
Thus, since ALK2 acts as a downstream mediator of the STI1
neuroprotection pathway, it may be useful as a therapeutic target
for ischemic brain injury (Beraldo et al., 2018). It was also
shown that activin A reduces brain edema and the release of
inflammatory cytokines in neonatal rats after hypoxic-ischemic
brain damage and plays a role in nerve regeneration and
functional repair, by increasing nestin protein expression, as
well as the number and differentiation of neural stem cells
(Peng et al., 2006; Zhang et al., 2016).

Exogenous Activin A in the Treatment of
Focal Cerebral Ischemia-Reperfusion
Injury
Focal cerebral ischemia and reperfusion lead to complex
interactions between cells and molecules that eventually cause

cells to either repair themselves or be destroyed (Cole
et al., 1992; Li et al., 2004). Studies have found that activin
A is an early response gene for cerebral ischemia and
supports the survival of cortical neurons in vitro (Mukerji
et al., 2009). In addition, activin A treatment protects
neurons in the ischemic cerebral hemisphere, decreases the
number of activated microglia, and reduces the activation
of terminal kinases, like p38 and c-Jun N, involved in
neuronal apoptosis after stroke. These findings suggest that
activin A promotes tissue survival after focal cerebral ischemia/
reperfusion.

Emodin Neuroprotection-Targeting Activin
A Pathway
One study demonstrated that administration of emodin
in OGD-treated neuronal cultures significantly increases
cell viability and activin A content in the culture medium,
whereas it significantly decreases the expression of caspase-3
(Guo et al., 2013). Therefore, emodin promotes the up-
regulation of activin A expression, increases the viability
of neurons, and inhibits neuronal apoptosis in ischemic
and hypoxic conditions, thus playing a neuroprotective
role.

CONCLUSION

In summary, activin A, as a neuroprotective factor, maintains
the survival of neurons in the central nervous system, protects
neurons from neurotoxicity, and plays important roles in brain
injury (Iwahori et al., 1997; Keelan et al., 2000). Therefore,
it can be used as a clinical test index, which is of great
significance for disease diagnosis and prognosis (Bergestuen
et al., 2010). The protective effect of the activin A-mediated
signaling pathway against brain injury and its application in the
clinic have received increased attention. Future research on the
molecular mechanisms involved in activin A neuroprotection
will provide new insight for developing treatments against brain
damage.
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